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Abstract

Background: Suppression subtractive hybridization (SSH) strategy was used with extraintestinal
pathogenic Escherichia coli (EXPEC) that cause avian colibacillosis (avian pathogenic E. coli or APEC)
and human urinary tract infections (uropathogenic E. coli or UPEC) to determine if they possessed
genes that were host and/or niche specific. Both APEC and UPEC isolates were used as tester and
driver strains in 4 different SSHs in order to obtain APEC- and UPEC-specific subtraction fragments
(SFs).

Results: These procedures yielded a total of 136 tester-specific SFs of which 85 were APEC-
derived and 51 were UPEC-derived. Most of the APEC-derived SFs were associated with plasmids;
whereas, the majority of UPEC-derived sequences matched to the bacterial chromosome. We
further determined the distribution of these tester-derived sequences in a collection of UPEC and
APEC isolates using polymerase chain reaction techniques. Plasmid-borne, APEC-derived
sequences (tsh, cvaB, traR, traC and sopB) were predominantly present in APEC, as compared to
UPEC. Of the UPEC-derived SFs, those encoding hemolysin D and FIC major and minor fimbrial
subunits were present only in UPEC. However, two UPEC-derived SFs that showed strong
similarity to the uropathgenic-specific protein gene (usp) occurred in APEC, demonstrating that usp
is not specific to UPEC.

Conclusion: This study provides evidence of the genetic variability of EXPEC as well as genomic
similarities between UPEC and APEC; it did not identify any single marker that would dictate host
and/or niche specificity in APEC or UPEC. However, further studies on the genes that encode
putative or hypothetical proteins might offer important insight into the pathogenesis of disease, as
caused by these two ExPEC.

Background to septicemia [1,2]. Among the typical extraintestinal
Extraintestinal pathogenic Escherichia coli (EXPEC) are a  infections caused by ExPEC in humans are urinary tract
specific group of E. coli that cause a diverse spectrum of  infections (UTIs), which are a major public health con-
invasive infections in animals and humans often leading  cern in developed countries costing healthcare systems
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billions of dollars annually [3-5]. Similarly, colibacillosis,
caused by avian ExPEC isolates (avian pathogenic E. coli
or APEC), is an economically devastating disease to poul-
try industries worldwide [1,6].

Both APEC and human ExPEC, implicated in UTIs
(uropathogenic E. coli or UPEC), are similar in that they
both possess a common set of virulence markers such as
various adhesins, iron uptake systems, complement resist-
ance traits, and invasins [2,7-17]. However, no single vir-
ulence factor has been shown to be specifically unique to,
or definitive of, UPEC or APEC, suggesting that these
ExPEC might lack host specificity. Intriguingly, some of
the virulence genes that occur on APEC's plasmids (aero-
bactin, salmochelin, and sit operons) and pathogenicity
islands (PAls) (pap operon that encodes P fimbriae and
kps gene cluster) also occur on plasmids and PAIs of UPEC
[8,10,13-16,18]. A growing body of evidence suggests that
APEC could be a possible source of UPEC causing UTIs or
other diseases in human beings [10,16,19-24]. Similarly,
E. coli plasmids may serve as reservoirs of resistance or vir-
ulence genes for human ExPEC [19,20,23], and APEC
plasmids contribute to uropathogenicity of E. coli in mice
[25]. On the other hand, UPEC and APEC may be armed
with specific genes that determine their specificity to a
particular host (human vs. avian) or niche (e.g., urinary
tract vs. respiratory tract).

To better evaluate the relationship between APEC and
UPEC, a comparative analysis of APEC and UPEC
genomes is important. Such studies might also clarify evo-
lutionary relationships between these two ExPECs and
identify genes that decide vital differences in virulence
and host specificity. Several PCR-based DNA subtraction
methods have been used for the detection of genetic dif-
ferences between two closely related genomes and subse-
quent identification of genes responsible for bacterial
virulence [26,27]. Here, we describe the use of genomic
suppressive subtractive hybridization (SSH) to compare
APEC and UPEC strains in order to determine if they har-
bor host and/or site-specific DNA sequences. Four SSHs
were run in the present study using two APEC isolates and
two UPEC isolates. Well characterized APEC O1 and
UPEC CFT073 strains were included in the study to deter-
mine the known APEC- and UPEC-specific sequences that

may involved in the disease process
[[13,14,17,21,26,28,29], GenBank Accession No. for
APEC O1: NC_008563, and for UPEC CFT073:

AE014075]. Two other strains, APEC 113 and UPEC 88
that harbor a common set of virulence genes, were
included to look for hitherto unknown genes that are
implicated in APEC and UPEC pathogenicity [16]. Each
APEC and UPEC strain was used as both driver and tester
strains in order to obtain both APEC- and UPEC-specific
subtraction fragments (SFs). Additionally, we examined a
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collection of APEC and UPEC isolates with PCR to under-
stand the distribution of these SFs among ExPEC.

Results and discussion

Characteristics of the strains used for the study

Several methods such as the embryo lethality assay (ELA)
and the day-old chicken challenge model using intratra-
cheal (IT), subcutaneous (SC), intravenous (IV) and intra-
muscular (IM) routes of inoculation have been used
extensively to assess the virulence of avian E. coli [30-32].
The ELA is a simple method that can be used to discrimi-
nate between virulent and avirulent APEC strains [31]. We
used this method to characterize the four isolates that
served as driver and tester strains in this study. As deter-
mined by chick embryos challenge, APEC O1, APEC 113,
UPEC CFT073 and UPEC 88 were identified as virulent
(Table 1). While ELA results correlate with that of SC, IV
and IM day-old challenge models, they do not correlate
with the IT challenge model [30,33]. Therefore, we further
characterized these APEC strains with the IT challenge
model [32]. This model, which categorized APEC into 3
groups, highly pathogenic, intermediate pathogenic or
low pathogenic on the basis of deaths and macroscopic
lesions, demonstrated that APEC O1 is highly pathogenic
while APEC 113 falls in the intermediate pathogenic
group (Table 1).

Phylogenetic analysis using triplex PCR has shown that E.
colistrains can be grouped into four main phylogenetic
groups, namely, A, B1, B2, and D. Virulent ExPEC strains
are said to belong mainly to group B2 and, to a lesser
extent, to group D, whereas most commensal E. coli
strains belong to group A [34]. As shown in Table 1, all
four E. coli strains used for SSH belonged to the B2 phylo-
genetic group. Of the 95 UPEC isolates used for the gene
prevalence studies, the majority (79%) fell into one of the
virulence-associated phylogenetic groups, B2 (61%) or D
(18%); whereas, only 16% belonged to the other two phy-
logenetic groups (Table 2). However, of the 95 APEC iso-
lates used for gene prevalence studies, 36%, 11%, 22%
and 26% of strains belonged to phylogenetic groups A,
B1, B2 and D, respectively (Table 2). Several recent studies
reported similar results for APEC, suggesting that predic-
tions about the virulence of APEC strains cannot be based
merely on chromosomal differences, as used in this typing
procedure [10,16]. Plasmid PAIs have a strong association
with APEC's capacity to cause disease and will likely need
to be given due consideration when typing APEC isolates
[13,16,17,25,28].

Multilocus sequence typing (MLST) provides a novel
approach to molecular epidemiology and strengthens our
understanding of phylogenetic distribution of infectious
disease agents [35]. Further, MLST data can be transferred
between laboratories around the globe via the web-acces-

Page 2 of 8

(page number not for citation purposes)


http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_008563
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AE014075

BMC Microbiology 2007, 7:81

Table I: Characteristics of tester and driver strains
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MLSTA
Strain ST® ST Phylogenetic % Embryo deathsP Pathogenicity groupE
complex group®
APEC Ol 95 95 B2 60 High
APEC 113 79 95 B2 15 Intermediate
UPEC 88 73 73 B2 45 NA
UPEC CFT073 73 73 B2 40 NA

AMLST, multilocus sequence typing.
BST, sequence type.

CE. coli isolates in phylogenetic groups B2 and D are more likely to be associated with disease than phylogenetic groups A and BI.

D20 eggs were inoculated for each isolate. There were no deaths in the control groups (PBS-inoculated and uninoculated eggs).

EPathogenicity group of the 2 APEC strains were determined according to a previously described scheme [32]. Highly pathogenic (high) isolates
caused mortality or severe lesions (pericarditis, perihepatitis, and/or liver necrosis) in >50% of the chickens inoculated. Intermediate pathogens
did not cause death and produced lesions in <50% of chickens inoculated. Weak pathogens (low) produced no mortality and occasional
airsacculitis NA — not applicable, because pathogenicity of UPEC isolates for day-old chickens was not determined.

sible databases. MLST of driver and tester strains revealed
that the two APEC strains belong to the ST95 complex and
two UPEC strains belong to the ST73 complex as defined
by the publicly available E. coli MLST database (Figure 1,
Table 1). By comparison with this database, the two UPEC
and two APEC strains used as driver and tester strains in
this study were found to be phylogenetically related to
each other.

Sequence analysis of tester-specific fragments

Four subtracted libraries of tester strains were constructed
for four different SSHs with the aim of identifying
genomic differences between APEC and UPEC. Four SSHs
yielded a total of 482 tester-specific clones. After amputa-
tion of the vector sequences and regions of low quality
(Phred quality value < Q20), 258 sequences (> 100 bp in
size) remained and were regarded as valid SFs. Of these
258 SFs, 122 sequences were discarded due to redundancy
(overlapping > 90% and similarity > 98%) or because they
were present in the E. coli K12 genome. The remaining
136 SFs ranged in size from 121-1343 bp. Using the
BLAST program, a search for similarity with these
sequences was undertaken (see Additional files 1, 2, 3, 4).
Additionally, these SFs were used as targets in subsequent
sequence prevalence studies. Of the 136 tester-specific
SFs, 46 were APEC O1-derived (SSH1), 28 were UPEC

CFT073-derived (SSH2), 39 were APEC 113-derived
(SSH3), and 23 were UPEC 88-derived (SSH4). The SFs
were further categorized as sequences that have previously
described functions; similarity to phage/prophage
sequences; encode hypothetical proteins; or lack similar-
ity to any of the genes in published databases. SSH1
yielded 10 SFs that corresponded to genes with known
functions (4 plasmid-associated SFs, and 6 chromosomal-
associated SFs), 22 SFs that are parts of genes with putative
or unknown functions (8 plasmid-associated SFs, and 14
chromosomal-associated SFs including 5 phage-derived
sequences), and 14 SFs that are unique to APEC O1 strain.
Of the 28 CFT073-derived SFs obtained from SSH2, 22
sequences corresponded to genes that encode hypotheti-
cal proteins and another 6 to the genes encoding proteins
with known functions. All 28 CFT073-borne SFs were
located on the chromosome including 2 that showed sim-
ilarity to phages or prophages. Among the SFs of SSH3, 6
fragments did not show similarity to any known
sequences, 9 showed similarity to genes with known func-
tions (8 plasmid-associated SFs, and 1 chromosomal-
associated), and 24 showed similarity to genes with
unknown or putative functions (3 plasmid-associated SFs,
and 21 chromosomal-associated SFs including 2 phage-
borne sequences). Of the 23 SFs obtained from SSH4, 15
chromosomal-located SFs showed similarity to genes with

Table 2: Phylogenetic groups of the E. coli isolates used in the SF distribution study

Number of isolates in each phylogenetic group (%)8

Category of E. coli? A Bl B2 D
APEC 36 (37.89) I'1(11.58) 22 (23.16) 26 (27.37)
UPEC 10 (10.53) 6 (6.32) 61 (64.21) 18 (18.94)

AEach category of E. coli contains 95 isolates. APEC, Avian Pathogenic Escherichia coli; UPEC, Uropathogenic Escherichia coli.
BPercentages of isolates falling within each phylogenetic group are shown in parentheses. E. coli isolates in phylogenetic groups B2 and D are more

likely to be associated with disease than phylogenetic groups A and Bl [34].
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Figure |

Unrooted phylogram (neighbor-joining tree) of MLST loci of
APEC and UPEC strains used for SSHs. The tree was con-
structed from the concatenated sequences of the 7 MLST
loci described in the text. Branch lengths reflect absolute
nucleotide differences between concatenated sequences.

hypothetical functions, 6 had similarity to genes with
known functions (4 plasmid-located SFs, and 2 chromo-
somal-located SFs), while 1 sequence was unique to the
driver strain UPEC 88. Interestingly, 23 APEC-derived SFs
matched to plasmid regions, where only 5 of UPEC-
derived fragments did, suggesting that plasmids may play
a more prominent role in APEC virulence than they do in
UPEC. Further, the presence of plasmid sequences, phage/
prophage sequences, integrases, recombinases, and trans-
posases among the SFs strongly support the already estab-
lished theory of evolution of bacterial pathogenicity
through horizontal gene transfer and genetic recombina-
tion

Prevalence of SFs among APEC and UPEC

The prevalence of SFs among a collection of APEC and
UPEC is summarized (see Additional files 1, 2, 3, 4).
There was no statistically significant difference between
the prevalence of 66 APEC-derived SFs among APEC and
UPEC out of a total of 85 APEC-derived SFs. None of the
APEC-derived fragments that were present in more than
10% of APEC tested was limited only to APEC. However,
certain APEC O1-derived SFs could be traced back to a PAI
located on a large plasmid in APEC O1, pAPEC-O1-
ColBM [28]. These fragments included traA and traC (SF
A12), tsh (SF A22), and sopB (SF A28) occurred signifi-
cantly more often in APEC than in UPEC. Similarly, the
APEC 113-derived SF B11 that matched cvaB of pAPEC-
02-ColV was present in 63% of the APEC, while only 7%
of UPEC carried the sequence [13]. The cvaB is a gene
located in the ColV operon [20], and tra genes encode for
plasmid transfer proteins [13,28]. The tsh, which encodes
the temperature-sensitive hemagglutinin (Tsh), is
involved in development of air sac lesions of birds during
colibacillosis [36], highly prevalent among APEC, carried
by highly pathogenic strains of APEC, and considered to
be an APEC virulence marker [17,36,37]. However, a pre-
vious report indicates that a gene homologue to tsh is
present in UPEC CFT073 though it is less conserved rela-
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tive to its counterpart in APEC [38]. The APEC-O1 derived
SF A22 obtained from SSH1 showed 100% homology to
a region of tsh of APEC-O1-ColBM but matched to a
region that is less conserved in tsh homologies from other
pathogens. Interestingly, APEC 113-derived fragments,
B27 and B28, which showed 100% similarity to two dif-
ferent regions of the putative phosphotransferase system
encoded by an APEC GimB genetic island, were present
predominantly in UPEC (37%) rather than in APEC
(10%) (GenBank AJ810519).

In contrast, most of the UPEC-derived fragments were
present at a higher rate in UPEC than in APEC. Yet, many
of these SFs contained genes that encode putative or hypo-
thetical proteins, making it difficult to directly relate them
to UPEC pathogenicity. Functional assays coupled with
construction of isogenic mutants of such genes followed
by subsequent testing in experimental infection models
will likely provide new insight into UPEC pathogenicity
and lead to discovery of previously unknown UPEC viru-
lence mechanisms. Intriguingly, the SFs, U14, U20/U27,
which matched to the foc gene cluster, encoding the F1C
fimbrial major and minor subunit precursors, and U28,
which corresponds to the hlyD gene, were exclusively
present in UPEC. F1C fimbriae, which lack hemagglutina-
tion properties, are known to mediate specific adherence
of UPEC to the collecting ducts and distal tubules of the
human kidney [39]. The hlyD gene, a well known UPEC
virulence marker, is present on PAls in at least in some
UPEC strains [8,40]. The hly operon of UPEC consists of
four genes: hlyA, hlyB, hlyC, and hlyD [41]. Although this
operon is known to be present in CFT073 and thought to
be absent in these APEC strains, this study did not detect
any UPEC-derived sequences with similarity to hly genes
other than hlyD, perhaps due to inappropriate fragment
sizes yielded with the restriction enzymes used in the
present study. Two UPEC 88-derived fragments, C19 and
C22, which matched to regions of the usp gene that
encodes the uropathogenic-specific protein, were present
predominantly in UPEC rather than in APEC. Although
usp was thought to be uropathogenic-specific and a viru-
lence marker of UPEC [42], a small percentage of APEC
contained the gene revealing that it is not strictly specific
to UPEC.

Previously, we carried out SSH between APEC O1 and a
commensal E. coli strain isolated from feces of a healthy
chicken [26]. This study demonstrated that genes, encod-
ing the Tia invasion determinant protein, the iron-respon-
sive element (IreA), P pili, and aldo-keto reductase are
more common in APEC and UPEC than in avian com-
mensal E. coli. However, neither this study, nor the
present one, detected a single trait that was unequivocally
present in all the UPEC or all the APEC tested. Had such
traits been detected, we would have suspected that they
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were involved in host and/or niche specificity of these two
ExPEC. We suggest that delineating the functions of hypo-
thetical and unknown proteins of UPEC and APEC would
strengthen this conclusion and add to our current under-
standing of ExPEC pathogenesis.

To the authors' knowledge, this is the first study compar-
ing APEC and UPEC genomes using SSH to explore their
differences and similarities and to identify APEC- and
UPEC-specific genes that may be involved in ExPEC path-
ogenicity in different hosts and niches. When this study
was conducted, the genome sequence of APEC O1 (an
O1:K1:H7 strain) was not completed. Since the genome
sequence of this strain is now publicly available, direct
comparison of APEC O1 and human ExPEC genomes
(e.g., UPEC CFT073) can be used to facilitate identifica-
tion of APEC- and UPEC-specific genes. However, it is
remarkable that the present study identified 14 APEC O1-
specific, hitherto unknown sequences (30% of APEC-
derived SFs) that are absent from the other APEC isolates
tested.

Conclusion

SSH between APEC and UPEC identified some genes that
are already known to be associated with the virulence of
these two pathogens. Some of the UPEC-derived genes
encode putative or hypothetical proteins. Delineation of
their functions might reveal factors that determine host
and/or niche specificity. This study also confirmed the
findings of others that APEC virulence is commonly asso-
ciated with plasmid-linked genes [13,16,17,25,28]. None
of the SFs were present in almost all the isolates screened,
and it is apparent that both pathogens use a combination
of virulence factors to establish disease in the host.

Methods

Bacterial strains and growth conditions

Two UPEC strains, CFT073 and UPEC 88, were used for
SSHs. These were kindly supplied by Dr. James Johnson
(Mucosal Vaccine Research Center, VA Medical Center,
and Department of Medicine, University of Minnesota,
Minneapolis, MN) and Dr. Paul Carson (Meritcare Hospi-
tal, Fargo, ND), respectively. The CFT073 strain (O6 sero-
group) originated from the blood of a woman with
pyelonephritis [29,43], and UPEC 88 (O6 serogroup) was
isolated from the urine of a patient with cystitis [16]. Two
APEC strains, APEC O1 (O1 serogroup) and APEC 113
(02 serogroup), used for SSHs, were isolated from the
lung and bone marrow of two different turkeys with coli-
septicemia [16,26]. An additional collection of 95 APEC
and 95 UPEC isolates were used to study the distribution
of SFs in ExPEC using the polymerase chain reaction
(PCR). These additional APEC and UPEC isolates have
been described previously [16,26]. Additional APEC iso-
lates originated from chickens and turkeys having lesions
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of colibacillosis; whereas, the additional UPEC isolates
originated from cases of human UTIs and were kindly pro-
vided by Dr. Paul Carson (Meritcare Hospital, Fargo, ND).
Strains were grown routinely at 37 °C overnight in Luria-
Bertani (LB) broth and LB agar. When necessary, media
were supplemented with 100 pg ampicillin ml-1. All
strains were stored frozen at -80°C in Brain Heart Infu-
sion (BHI) broth with 20% (v/v) glycerol.

Characterization of driver and tester strains

Virulence of the E. coli isolates used in SSHs was deter-
mined in embryonated eggs as described previously [31].
In brief, each isolate was grown in BHI broth overnight at
37°C, washed twice in phosphate-buffered saline (PBS),
resuspended in PBS and diluted to approximately 10° cells
ml-! PBS. After quantifying the bacterial concentration by
viable counts, 0.1 ml of the diluted culture was inoculated
into the allantoic cavity of 12-day-old, specific-pathogen-
free (SPF) eggs. Eggs were candled once daily for 4 days
post-infection, and the deaths were recorded. PBS-inocu-
lated and uninoculated SPF eggs were included as con-
trols.

The two APEC isolates used for SSHs were assigned to
pathogenicity groups according to the method described
previously [32]. Briefly, two groups of broiler chickens (6
chickens in a group) were inoculated with 0.1 ml of the
appropriate bacterial suspension in PBS containing 107
cells ml! by the intratracheal route. The pathogenicity
group of each strain was determined by comparison of the
mortalities and macroscopic lesions they caused to that
seen in birds inoculated with APEC isolates of known
pathogenicity groups. Isolates for comparison belonging
to high, intermediate and low pathogenicity groups were
kindly supplied by Dr. Sandra Cloud (University of Dela-
ware, Newark, DE). Another group received 0.1 ml of PBS
and served as a placebo control.

Bacterial strains used for SSHs were subjected to MLST to
understand the phylogenetic relationship between driver
and tester strains as previously described [35]. Briefly, 583
to 932 bp internal fragments of seven housekeeping gene
loci in the E. coli chromosome (adk - adenylate kinase;
fumC - fumarate hydratase; gyrB - DNA gyrase; icd - isoc-
itrate/isopropylmalate dehydrogenase; mdh - malate
dehydrogenase; purA — adenylosuccinate dehydrogenase;
recA — ATP/GTP-binding motif) were amplified by PCR,
and the sequence type (ST) and ST complex of the strain
were defined according to the E. coli MLST data base main-
tained at the Max-Planck Institut fuer Infektionsbiologie
[44].

All the E. coli used in this study were subjected to phylo-
genetic analysis according to the previously published
scheme [34]. Briefly, a triplex PCR was employed to
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amplify the two genes, chuA and yiaA, and the DNA frag-
ment, TSPE4. Based on these results, the isolates were
assigned to one of four groups (A, B1, B2 and D).

Genomic suppression subtractive hybridization

Four SSHs, namely, SSH1, SSH2, SSH3 and SSH4 were
carried out using two strains of APEC and two strains of
UPEC. SSH1 and SSH2 were carried out between APEC
O1 strain and UPEC CFT073 strain using APEC O1 and
UPEC CFT073 as the tester strain, respectively. In order to
enhance the probability of identifying hitherto unknown
genes involved in APEC and UPEC pathogenicity, SSH3
and SSH4 were carried out between APEC 113 and UPEC
88 which share an identical genetic profile based on the
known virulence genes [16]. The Clontech PCR-Select
Bacterial Genome Subtraction Kit (ClontechLaboratories,
Inc., Palo Alto, CA) was used for the SSHs according to the
manufacturer's instructions. Briefly, the tester and driver
genomic DNA used for each SSH was digested with the
same four-base cutting restriction enzymes (Rsal or
Haelll). The tester DNA was then aliquoted into two
tubes, and the DNA in each aliquot was ligated to a differ-
ent adaptor provided with the kit (adaptors 1 and 2R).
Two hybridizations were carried out in the presence of
excess driver DNA. The product of the second hybridiza-
tion was then used as template in a PCR reaction for
enrichment of the tester-specific sequences. The amplified
PCR products were subsequently cloned into the pGEM T-
Easy vector (Promega, Madison, WI) and transformed
into competent E. coli ]M109 (Promega). The subtracted
library was screened for tester-specific SFs exactly accord-
ing to the method described previously by Kariyawasam et
al. [26], using the DIG High Prime Labeling and Detection
Starter Kit™ (Roche Diagnostics, Penzberg, Germany).
Tester-derived libraries were analysed with the PHRED
program (University of Washington, Seattle, WA) to iden-
tify the miscalled bases [45]. Sequences having a PHRED
quality score of at least 20 were considered of good quality
and were taken for further analysis.

DNA sequencing and bioinformatics

Tester-specific clones were grown in LB containing ampi-
cillin, and the recombinant plasmids were purified using
Plasmid Minipreps from Promega. Inserts were sequenced
bi-directionally at the DNA Sequencing and Synthesis
Facility at Iowa State University, Ames, IA, using the
BigDye terminator chemistry (Applied Biosystems, Foster
City, CA). The BLASTN and BLASTX searches were per-
formed on the National Center for Biotechnology Infor-
mation website to identify the genes from the subtraction
library [46].

Nucleotide sequence accession numbers
The nucleotide sequences of the UPEC or APEC-specific
fragments (see Additional files 1, 2, 3, 4) have been sub-

http://www.biomedcentral.com/1471-2180/7/81

mitted to GenBank under the accession numbers
DQ988883-D0Q988928, ED797564-ED797572,
ED797582-ED797590, ED797599-ED797606,
ED797616-ED797625, ED797573-ED797581,
ED797591-ED797598, ED797608-ED797615, and
El415524-E1415497.

Prevalence of SFs in APEC and UPEC

Oligonucleotide primer sets were designed (Primer 3 soft-
ware) to amplify the tester-specific sequences obtained
from the subtractive hybridization library and procured
from Integrated DNA Technologies, Commercial Park,
Coralville, TA. An overview of the primers used andthe
expected amplicon sizes are shown in Additional file 5.
Each 25-pl PCR reaction mixture contained 2.5 pul of 10 x
PCR buffer (100 mM Tris-HCI, pH 8.4, and 500 mM KCl),
0.25 pl of 250 mM MgCl,, 0.40 pl of 10 mM deoxynucle-
oside triphosphates, 0.5 pl of each of the forward and
reverse primers (stock concentration, 20 uM), 0.1 ul (5U
ul'l) of Tag DNA polymerase (Invitrogen), 2 ul of tem-
plate DNA extracted by the rapid boiling method, and
18.75 pl of sterile double distilled water. After denatura-
tion at 94°C for 3 min, the sampleswere subjected to 30
cycles of 94°C for 45 s, 59°C for 45 s, and 72°C for 45 s,
followed by final 5-min incubation at 72°C. Samples
were fractionated by 1.5% (w/v) agarose gel electrophore-
sis and visualized by ethidium bromide staining.

Biostatistics

Prevalence data for each of the tester-specific SHFs were
analyzed by two-tailed Fisher's exact test, controlling the
multiple comparison error rates by the Bonferroni
method [47]. Analyses were conducted with a standard
statistical software (GraphPad Software, Inc, San Diego,
CA).
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