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Kantor-Malujdy, N.; El Fray, M.

Elastomer–Hydrogel Systems: From

Bio-Inspired Interfaces to Medical

Applications. Polymers 2022, 14, 1822.

https://doi.org/10.3390/

polym14091822

Academic Editor: Donatella Duraccio

Received: 26 March 2022

Accepted: 27 April 2022

Published: 29 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Review

Elastomer–Hydrogel Systems: From Bio-Inspired Interfaces to
Medical Applications
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Abstract: Novel advanced biomaterials have recently gained great attention, especially in minimally
invasive surgical techniques. By applying sophisticated design and engineering methods, various
elastomer–hydrogel systems (EHS) with outstanding performance have been developed in the last
decades. These systems composed of elastomers and hydrogels are very attractive due to their high
biocompatibility, injectability, controlled porosity and often antimicrobial properties. Moreover, their
elastomeric properties and bioadhesiveness are making them suitable for soft tissue engineering.
Herein, we present the advances in the current state-of-the-art design principles and strategies for
strong interface formation inspired by nature (bio-inspiration), the diverse properties and applications
of elastomer–hydrogel systems in different medical fields, in particular, in tissue engineering. The
functionalities of these systems, including adhesive properties, injectability, antimicrobial properties
and degradability, applicable to tissue engineering will be discussed in a context of future efforts
towards the development of advanced biomaterials.

Keywords: elastomers; hydrogels; elastomer–hydrogel systems; injectable biomaterials; adhesive
surfaces; tissue engineering

1. Introduction

The structure of biological materials has been fine-tuned over millions of years of
evolution. The study of live organisms to derive new principles and technologies and
then apply them to man-made materials, including polymers and combined systems
such as composites and hybrids, to emulate biological functions and performance, is in
a central place of biomimetics (bioinspiration). Following the principles of designing
materials with defined biological properties, such as bioactivity, adhesiveness, self-healing,
etc., the use of polymeric materials in medicine is one of the most important application
areas in restoring health, interacting therapeutically or, ultimately, replacing diseased
tissues or organs. The diversity of the chemical structures, synthesis possibilities and the
monomers’ origins/sources make polymers important in the controlled release of drugs,
implants for tissue reconstruction, medical devices and many other areas [1–5]. Naturally
occurring polymers were the first to be used in medical applications around the 1960s.
The most common representatives of natural polymers are proteins, polysaccharides and
polynucleotides [6]. The main advantage of these natural polymers is high biocompatibility
due to their chemical structure and natural origin. Nevertheless, these polymers can cause
an immune response due to the possible impurities remaining after processing. Natural
material fabrication typically involves decellularization and the removal of antigenicity, to
obtain a material that will not cause an immune response after implantation in the human
body. Therefore, synthetic materials which are obtained via precision macromolecular
engineering or well-established polymerization processes often have better properties,
both physical and biological, and are therefore frequently developed and used in medical
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applications. They can be engineered as very complex supports for tissues and organs that
exhibit organized heterogeneity within multiple cell types [7].

Elastomers are a class of polymeric materials that can repeatedly and easily undergo
large, reversible deformations with complete recovery [8]. They are usually composed
of long-chain molecules, extremely flexible due to their ability to reconfigure themselves
and dissipate an applied force. The main feature of elastomers, also called “biomedical
elastomers” or “bioelastomers” is their viscoelasticity combined with biodegradation, thus
making them suitable for medical applications as drug delivery systems [9,10], biosen-
sors [11,12], artificial organs [13,14], materials for regenerative medicine [15,16], tissue en-
gineering [17–19] and veterinary medicine [20]. They are suitable for medical applications
due to their great attributes such as a 3D-crosslinked network structure, good mechanical
properties and the possibility of tailoring degradation by introducing functional groups
within the structure [18].

Hydrogels (HGs) are macromolecular structures consisting of polymer networks
with the ability to absorb water without any dissolution [21]. Water is held between the
polymer chains, which gives the material elastic features; however, hydrogels become
a rigid macromolecular tangled structure when the water evaporates. The features of
HGs such as their hydrophilic character, a similar structure to tissues, ability to degrade,
chemical stability and the ability to absorb an immense amount of water or biological fluids,
make HGs eligible for tissue engineering and regenerative medicine (TERM) [22].

Synthetic materials were designed as structural components of medical devices with
tailored stability/degradation time. However, rapid development of materials engineering
has triggered the new trend to incorporate the natural polymers’ sophistication into the
synthetic polymer structures, to introduce biological cues that are necessary to support
or replace the targeted tissue or organ and to better understand how these features can
be created more effectively [23]. Advances in manufacturing strategies have ensured
additional contributions to biomaterial design [24]. Thus, combined systems such as
elastomer–hydrogel systems, often inspired by nature, containing natural and synthetic
structural elements/polymers of distinct but often complementary or synergistic properties,
are rapidly being developed to better optimize the final performance of medical devices.

This review is focused on recent advancements in the development of elastomer–
hydrogel systems derived from distinctly different polymeric materials (natural origin
and synthetic, hydrophobic and hydrophilic, elastic and stiff) to create materials with
functionalities and properties resembling biological tissues. Insights into bio-inspired
strategies for strong interface formation between elastomers and hydrogels will be provided
and their functionality, including bioadhesiveness, injectability, porosity, biodegradation
and elasticity will be discussed.

2. Preparation of Elastomer–Hydrogel Systems

Elastomer–hydrogel systems (EHS) are the combination of two or more polymeric
materials, commonly of natural and synthetic origin, offering remarkable properties and
multifunctionalities through the combination of different structural components (Figure 1).
These may be systems where a hydrogel is encapsulated by an elastomer matrix to prevent
its dehydration or both components are forming interpenetrating polymer networks (IPN)
which can be bonded to each other by covalent bonds or non-covalent interactions such as
hydrogen bonding, van der Waals and electrostatic interactions.

A wide range of EHS preparation methods such as a two-step polymerization, molec-
ular stent, one-spot, extrusion 3D-printing and free-shapeable methods results in diverse
properties of the systems, thus widening their applicability in different areas [25]. In the
last decades, EHS have triggered more attention due to their specific physicochemical
key properties such as enhanced mildness, solubilization, density, permeability, stiffness,
low surface tension, stability, mesh size and structure. Moreover, their biocompatibil-
ity, biodegradability, non-immune response and structural similarity to the extracellular
matrix (ECM) have attracted the researchers to focus on new developments in medicine.
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The properties of EHS can be structured through selection of their chemical composition,
cross-linking strategy, structure stabilization, hydrophobicity/hydrophilicity ratio, etc.
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Figure 1. Schematic representation of elastomer–hydrogel systems. Hyphen (-) signs represent free
electron pairs.

Among various groups of polymers, thermoplastic elastomers such as polyurethanes [26],
poly(ε-caprolactone) copolyesters [27], poly(ether ester)s [28] and thermoset elastomers
such as crosslinked polyesters [29] have been developed for heart valves and muscle
applications, skin, cartilage implants, blood vessels, vascular catheter and wound dress-
ings [30–34]. Simultaneously, hydrogels which show a physicochemical similarity with
ECM and provide high-water content are considered as highly biocompatible materials.
Therefore, the use of elastomers and hydrogels is increasing rapidly in medical applica-
tions [35–38]. The rational design of elastomers and hydrogels could be a solution to obtain
highly functional elastomer–hydrogel systems with tailor-made elasticity and wettabil-
ity while preserving or creating strong adhesion between the components or with the
biological tissues.

Such systems can be created by physical interactions (topological entanglements)
and/or chemical bonds to create a strong interlinks between elastomer and hydrogel.
Different chemicals such as silane coupling agents [39], cyanoacrylates [40] and benzophe-
none [41], have been used to create chemical bonds between distinctly different polymers;
for instance, a silane coupling agent (SCA) introduced into the precursors of a cured
polydimethylsiloxane (PDMS) elastomer and polyacrylamide (PAAm) hydrogel. After
manufacturing, SCA condenses and creates bonds across the interface and improves adhe-
sion. Bonding energy differences were investigated on various addition sequences such
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as cured hydrogel and cured elastomer, cured hydrogel and uncured elastomer, uncured
hydrogel and cured elastomer (Figure 2) [39]. Furthermore, there are techniques of com-
bining these distinctly different components inspired by nature and it is proven that these
strategies can be applied for the biomimetic devices and machines with a wide selection of
elastomers and hydrogels.
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Figure 2. An elastomer and a hydrogel forming covalent bonds after a manufacturing process.
(a) Silane coupling agents are mixed into the precursors of a hydrogel and an elastomer separately.
(b) During the formation of the two networks, the coupling agents are covalently incorporated into the
networks, but do not condensate. (c) After a manufacturing process, the coupling agents condensate,
add crosslinks in the individual networks, and form bonds between the networks. A surfactant may
further promote adhesion. (d) Silane coupling agents hydrolyze and form (e) silanol groups, which
condensate to form (f) siloxane bond. Reproduced from [39] with permission. Copyright 2018 Qihan
Liu et al.

3. Bio-Inspiration for Strong Interface Formation between Elastomers and Hydrogels

Many researchers are inspired by nature to create bonds between different surfaces.
For instance, synthetic adhesives bio-inspired from marine organisms such as mussels,
gained great attraction due to their suitability for saline and watery environments, as
well as their high adhesive strength [42–44]. These adhesives show exceptionally high
bonding strengths with various substrates, and due to research progress in the isolation and
characterization of mussels’ main adhesive components, their use in medical applications
such as dental and surgical glues is envisioned [45,46]. The main adhesive compound in
mussels is 3,4-dihydroxyphenylalanine (DOPA) which contains catechol units to create
covalent and noncovalent interactions to many different surfaces, see Figure 3 [47].

Another inspiration is taken from the ability of geckos’ feet to adhere to tough surfaces.
It has inspired researchers to fabricate tissue adhesives by mimicking its nano-scaled
fibrillar array structure on the bottom of geckos’ feet. Those fibrillar arrays maximize the
interfacial adhesion to surfaces by capillary forces and van der Waals interactions [48,49].
However, the created adhesion is not permanent, especially to wet surfaces. Therefore,
Mahdavi et.al. have developed a gecko-inspired biodegradable tissue adhesive consisting
of oxidized-dextran aldehydes (DXTA) coated on nano-patterned poly(glycerol sebacate
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acrylate) (PGSA) produced by photolithography and reactive ion etching for medical
therapies. The adhesion results showed that the fabricated DXTA-PGSA hybrid showed
2-fold higher adhesion than PGSA without DXTA [50].

Polymers 2022, 14, x FOR PEER REVIEW 5 of 27 
 

 

 
Figure 3. (A) Blue mussel attached to a solid substrate (another mussel shell) using its byssal threads. 
Photo credit MSc Simon Frølich (Aarhus University). (B) Biodistribution of mussel foot proteins 
(mfps) in the byssal thread and pad. (C) Primary amino acid sequence of mfp-1, mfp-3 and mfp-5 
(Y: DOPA, K: lysine). (D) Scheme showing examples of the adhesive and cohesive properties of 
catechol-containing proteins, R represents the remainder of the mfps. (E) Time-lapse photography 
showing the molding of a byssal thread (molding time ≈5 min). Reproduced from [47] with 
permission. Copyright 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 

Another inspiration is taken from the ability of geckos’ feet to adhere to tough 
surfaces. It has inspired researchers to fabricate tissue adhesives by mimicking its nano-
scaled fibrillar array structure on the bottom of geckos’ feet. Those fibrillar arrays 
maximize the interfacial adhesion to surfaces by capillary forces and van der Waals 
interactions [48,49]. However, the created adhesion is not permanent, especially to wet 
surfaces. Therefore, Mahdavi et.al. have developed a gecko-inspired biodegradable tissue 
adhesive consisting of oxidized-dextran aldehydes (DXTA) coated on nano-patterned 
poly(glycerol sebacate acrylate) (PGSA) produced by photolithography and reactive ion 
etching for medical therapies. The adhesion results showed that the fabricated DXTA-
PGSA hybrid showed 2-fold higher adhesion than PGSA without DXTA [50]. 

These examples clearly demonstrate that nature offers a great model for the 
development of strong interfaces between different surfaces/materials/systems. 

  

Figure 3. (A) Blue mussel attached to a solid substrate (another mussel shell) using its byssal threads.
Photo credit MSc Simon Frølich (Aarhus University). (B) Biodistribution of mussel foot proteins
(mfps) in the byssal thread and pad. (C) Primary amino acid sequence of mfp-1, mfp-3 and mfp-5 (Y:
DOPA, K: lysine). (D) Scheme showing examples of the adhesive and cohesive properties of catechol-
containing proteins, R represents the remainder of the mfps. (E) Time-lapse photography showing
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These examples clearly demonstrate that nature offers a great model for the develop-
ment of strong interfaces between different surfaces/materials/systems.

4. Components of Elastomer–Hydrogel Systems by Their Origin

The creation of EHS involves various polymerization and crosslinking methods, with
a very broad component selection for the targeted properties and application. The compo-
nents of EHS can be extremely diverse and derived either from natural or synthetic sources
(Figure 4). In this review, we will focus on components of EHS by the nature of their origin,
including natural, semisynthetic, and synthetic raw materials.
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4.1. Elastomers

The versatility of elastomers originates from a wide design window, where natural
polymers (biopolymers) and synthetic elastomers can be used to gain the required proper-
ties for targeted applications. In this section, we have introduced the elastomers according
to their source, and mechanical properties.

4.1.1. Natural Elastomers

Natural elastomers are characterized by their inherent biocompatibility, biodegra-
dation, hydrophilic character and high bioactivity, which are promising for regenerative
medicine. Mainly, natural-origin elastomers are derived from proteins, including collagen,
elastin, fibrin, chitin [51] and resilin [52,53]. Mechanical properties of the most popular
ones (collagen, elastin and fibrin) are shown in Table 1.

Table 1. Mechanical properties of selected proteins.

Proteins Dominant
Amino Acids Distribution Young Modulus

[Mpa]
Tensile

Strength [Mpa] Elongation [%] References

Collagen 35% Glycine,
12% Proline

Bone, teeth,
vasculature, organs 100–2900 5–500 5–50 [53]

Elastin 32% Glycine,
21% Alanine

Skin, lungs,
vasculature 0.3–0.6 0.36–4.4 100–220 [15]

Fibrin 45% Glycine,
30% Alanine Blood 1.7–14.5 0.01–0.02 100 [54,55]

The most popular elastomer is collagen, a type of fibrous protein, which is the main
structural component of connective and bone tissue [56]. Collagen’s structure is mostly
dominated by rigid secondary regions of triple-helix, thus resulting in 29 types of collagen.
Collagen is a flexible macromolecule, with strain at break of 10–20% and a resilience of
90% [57]. The elasticity of collagen may differ depending on the structural arrangement of
fibrous tracts. For instance, bone collagen has a higher density of intermolecular crosslinks
than soft tissue collagen. Other important elastomers found in tissues are elastin and
fibronectin [58]. Elastin mostly contains amorphous, random-coil domains which result in
high elasticity of this protein, thus directly contributing to organ elasticity [59]. Interestingly,
it has rubber-like properties that provide high elasticity, extensibility and resilience. Elastin
can form an insoluble network as a result of hydroxylation and crosslinking. Elastin
is widely used in soft tissue engineering, e.g., split-skin autografts for burn wounds,
gastrointestinal patches, heart valve replacement and vascular grafts. However, natural
elastin is not used often in cardiovascular prosthetic implants due to its purification,
batch-to-batch variations, and high propensity to calcification due to its poorly defined
purification [15]. The exceptional properties of another biomacromolecule, fibrin, are
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directly connected with the blood clotting process assisting wound healing. Therefore, this
elastomeric protein is used in materials for skin grafts. Fibrin shows mitogenic, chemotactic
and proangiogenic activities and even degradation (coagulation and fibrinolysis) products
are activators of wound repair [58]. This protein is widely used in many applications
due to rich bioactivity and easy manipulation. Fibrin can be a perfect candidate for the
cell instructive scaffolds due to its three-dimensional organization and injectability which
minimizes the invasiveness of the procedure and biodegradation within a short period of
time (1–26 weeks) [60].

4.1.2. Synthetic Elastomers

In order to mimic the elastomeric and biological properties of natural tissues and
organs, synthetic materials have been rapidly developing in the last decades. Their advan-
tage over natural-based elastomers is the much wider availability of monomeric units and
the synthesis approaches. The most popular synthetic elastomers belong to the group of
polyesters, where the mechanical properties (elasticity) and degradation in various envi-
ronments can be tailored by applying various monomers and synthesis routes, preferably
in bulk, without solvents [61]. Synthetic elastomers are usually linear polymers or block
copolymers formed by the polyaddition, ring-opening polymerization and polyaddition
of difunctional or cyclic monomers [62–65]. The elastomer structure can be stabilized by
chemical or physical crosslinking (Figure 5). Chemically crosslinked elastomer chains
and/or segments are interconnected into a three-dimensional network structure by co-
valent bonds, which are introduced during the curing process (Figure 5a). Curing can
be performed by radiation or thermal processes. The most popular elastomers in this
group are poly(ethylene glycol) (PEG), poly(glycerol sebacate) (PGS) and poly(glycerol
sebacate-co-acrylate) (PGSA). In physically crosslinked elastomers (Figure 5b), elastomeric
chains/segments are associated by weak hydrogen bonds, van der Waals forces, dipolar
forces, microcrystalline or glassy domains [66]. Main groups of physically crosslinked ma-
terials are segmented polyurethanes (PUs), block copolyesters and styrene-based triblock
copolymers [67].

Polymers 2022, 14, x FOR PEER REVIEW 7 of 27 
 

 

domains which result in high elasticity of this protein, thus directly contributing to organ 
elasticity [59]. Interestingly, it has rubber-like properties that provide high elasticity, 
extensibility and resilience. Elastin can form an insoluble network as a result of 
hydroxylation and crosslinking. Elastin is widely used in soft tissue engineering, e.g., 
split-skin autografts for burn wounds, gastrointestinal patches, heart valve replacement 
and vascular grafts. However, natural elastin is not used often in cardiovascular prosthetic 
implants due to its purification, batch-to-batch variations, and high propensity to 
calcification due to its poorly defined purification [15]. The exceptional properties of 
another biomacromolecule, fibrin, are directly connected with the blood clotting process 
assisting wound healing. Therefore, this elastomeric protein is used in materials for skin 
grafts. Fibrin shows mitogenic, chemotactic and proangiogenic activities and even 
degradation (coagulation and fibrinolysis) products are activators of wound repair [58]. 
This protein is widely used in many applications due to rich bioactivity and easy 
manipulation. Fibrin can be a perfect candidate for the cell instructive scaffolds due to its 
three-dimensional organization and injectability which minimizes the invasiveness of the 
procedure and biodegradation within a short period of time (1–26 weeks) [60]. 

4.1.2. Synthetic Elastomers 
In order to mimic the elastomeric and biological properties of natural tissues and 

organs, synthetic materials have been rapidly developing in the last decades. Their 
advantage over natural-based elastomers is the much wider availability of monomeric 
units and the synthesis approaches. The most popular synthetic elastomers belong to the 
group of polyesters, where the mechanical properties (elasticity) and degradation in 
various environments can be tailored by applying various monomers and synthesis 
routes, preferably in bulk, without solvents [61]. Synthetic elastomers are usually linear 
polymers or block copolymers formed by the polyaddition, ring-opening polymerization 
and polyaddition of difunctional or cyclic monomers [62–65]. The elastomer structure can 
be stabilized by chemical or physical crosslinking (Figure 5). Chemically crosslinked 
elastomer chains and/or segments are interconnected into a three-dimensional network 
structure by covalent bonds, which are introduced during the curing process (Figure 5a). 
Curing can be performed by radiation or thermal processes. The most popular elastomers 
in this group are poly(ethylene glycol) (PEG), poly(glycerol sebacate) (PGS) and 
poly(glycerol sebacate-co-acrylate) (PGSA). In physically crosslinked elastomers (Figure 
5b), elastomeric chains/segments are associated by weak hydrogen bonds, van der Waals 
forces, dipolar forces, microcrystalline or glassy domains [66]. Main groups of physically 
crosslinked materials are segmented polyurethanes (PUs), block copolyesters and styrene-
based triblock copolymers [67]. 

 
Figure 5. Schematic structure of chemically crosslinked (a) and physically crosslinked (b) 
elastomers. 

Figure 5. Schematic structure of chemically crosslinked (a) and physically crosslinked (b) elastomers.

Thermoplastic polyesters and their copolymers are currently dominating the field of
biomedical materials. Most of them are highly biodegradable and hydrolysable to metabolic
products. The most popular ones are poly(lactic acid) (PLA), poly(glycolic acid) (PGA),
poly(ε-caprolactone) (PCL) and their copolymers and blends. Polyesters can result in a
direct reaction between carboxylic acid (-COOH) and a hydroxyl group (-OH), usually
from alcohol. However, the synthesis route can include single or double ester exchange,
acidolysis, activated condensation or carboxylate polymerization reaction with the use of
acid halides [68].

An interesting example of condensation copolyesters are segmented block or random
copolymers containing alcohols or acids derived from long chain fatty acids which are
endogenous to the human body [65]. Many studies have proven that polyesters containing
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either terephthalic acid (e.g., ethylene terephthalate as in PET) or poly(butylene succinate)
(PBS) are biocompatible and exhibit good mechanical properties for soft tissue-engineering
applications. A common feature of biomedical thermoplastic elastomers is heterogeneous
degradation as a result of which, a loss of structural integrity occurs and therefore they can
be used as soft micro/nanoparticles for drug delivery [69]. In heterogeneous degradation,
the crystalline domains are more resistant to degradation than amorphous regions [70,71]
thus different amounts of co-monomeric units can be used as simple design tools for
materials of variable degradation time.

Other recently developed elastomers are poly(diol citrate)s (PCC) synthesized through
the polycondensation of citric acid (CA) and various diols which have a significant influence
on the properties of the final materials. CA is one of the products of human metabolism,
created during the Krebs and citric cycle [72,73]. According to Yajing Zhou et al., the molar
ratio of monomers and thermosetting conditions have crucial effects on the properties of
the PCC, as demonstrated by elongation ranging from 70% to 260% [72].

The polycondensation of glycerol and sebacic acid has resulted in poly(glycerol se-
bacate) (PGS), a highly elastomeric polymer mimicking collagen and elastin’s mechanical
properties found in the extracellular matrix [74]. The inherent components of this polymer
are natural metabolic compounds, where glycerol is involved in the synthesis of phospho-
lipids and sebacic acid is important for the synthesis of fatty acid. PGS has been found to
be biodegradable at low crosslink density [75]. PGS, as with many condensation polymers
whose properties can be simply tailored by weight content of the monomers on the feed,
is capable of forming a variety of polyester networks using low molecular weight multi-
functional alcohols and carboxylic acids. PGS has extraordinary potential for soft and hard
tissue engineering [76–79].

Another group of important synthetic elastomers are segmented polyurethanes. For
instance, dopant-free conductive polyurethane elastomer (DCPU) was synthesized with
the use of poly(caprolactone) (PCL) (biodegradable segment), aniline trimer with two
amine end groups (conductive segment), and dimethylolpropionic acid (DMPA) (dopant
molecule) with 1,6-hexamethylene diisocyanate (HDI) as the hard segment component.
According to Cancan Xu et al., DCPUs are biodegradable; degradation can occur through
hydrolysis and oxidation by enzymes. Furthermore, DCPU films and products of their
degradation during cytotoxicity test with 3T3 fibroblasts showed good cell viability. The
mechanical properties demonstrated high elasticity with the breaking strain ranging from
685 to 825% thus indicating the potential of this material in medical applications [26].
The mechanical properties of the commonly used synthetic elastomers are summarized
in Table 2.

Table 2. Mechanical properties of selected synthetic elastomers.

Material Crosslinking
Type

Young Modulus
[Mpa]

Tensile Strength
[Mpa] Elongation [%] References

Poly(diol citrate) (PCC) chemical 140–1737 * 171–977 * 70–260 [72]

Poly(glycerol sebacate) (PGS) chemical 0.056–1.5 0.5 40–450 [77]

Dopant-free conductive
polyurethane elastomer (DCPU) chemical 0.5–3.8 9.6–20.3 170–190 [26]

Poly(glycerol
sebacate-co-acrylate) (PGSA) chemical 0.05–1.38 0.05–0.5 42–189 [74]

Poly(caprolactone) (PCL) physical 210–340 10.0–60.0 300–1200 [80–82]

Poly(butylene succinate) (PBS) physical 550 20.0–40.7 100–224 [83–85]

Poly(glycolic acid) (PGA) physical 6900 68.9 15–20 [80]

* depending on analysis conditions (temperature, strain rate, etc.).
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Recently, fatty acid-derived copolyesters have also been gaining great attention in
regenerative medicine due to their decomposition/disintegration into natural components
such as glycolic acid, citric acid, ricinoleic acid, etc. [86]. For instance, Ickowicz et al.
synthesized copolyesters based on castor oil and citric acid by polycondensation reac-
tions for use in soft tissue augmentation. Degradation studies showed that the branched
copolyester showed less than 10% of weight loss in 30 days. The in vivo biocompatibility
study was performed in rats, which revealed 20% weight loss of formulation in 9 months
after post-subcutaneous administration [87]. The advantages and disadvantages of the
selected natural and synthetic elastomers are presented in Table 3.

Table 3. Advantages and disadvantages of selected natural and synthetic elastomers.

Elastomer Advantages Disadvantages References

Collagen
Wide range of elasticity depending on the origin of
protein, can be prepared by crosslinking, show low

antigenicity
hard to control degradability [57]

Elastin Rubber-like properties
demanding purification

process, high propensity to
calcification

[15,31]

Fibrin

Bioactivity (mitogenic, chemotactic and
proangiogenic activities), degradation products
(coagulation and fibrinolysis) are activators of

wound repair

rapid
degradation [54]

Poly(lactic acid) (PLA) Easy to print (low melting point), highly
biocompatible and biodegradable

the lack of cell-recognition
signals [88]

Poly(glycerol sebacate)
(PGS)

Can mimic mechanical properties of collagen and
elastin, degradation product are a natural metabolic

compound

the lack of cell-recognition
signals [74,77]

Poly(ε-caprolactone)
(PCL) Highly elastic, slow degradation time (1–2 years) the lack of cell-recognition

signals [89,90]

Poly(butylene succinate)
(PBS) Controlled biodegradability, the lack of cell-recognition

signals [91]

4.2. Hydrogels

Most hydrogels consists of natural and synthetic moieties. An important aspect is
designing such a material is to properly combine the expected features of the various
components for subsequent applications. Attention should be paid to chemical modifi-
cations or filling HGs with components such as drugs or cells, which may be an obstacle
in combining an already processed matrix. The form of HGs to be placed in the body is
usually challenging, so nowadays, the design of injectable materials has gained popularity.
Great emphasis is now put on insulin delivery, which is widely described in [92]. Wound
healing in hyperglycemia is difficult, therefore Wang et al. group created an antibacterial
hydrogel dressing with deferoxamine. They obtained HG with good mechanical properties
and self-healing properties and biocompatibility [93]. Injectable composite thermoactive
hydrogels are used in bone regeneration assessment in bone tumor regeneration. Depend-
ing on the patient’s body temperature, β-sodium glycerophosphate and carbon particle
hydrogels show sol–gel phase transitions and therefore irregular bone defects are built
up [94]. Likewise, injectable hydrogels are typically used to prevent bleeding, for example
after an arterial rupture. The solution to this problem is a hemostatic nanoporous hydrogel,
combining the reaction of the transglutaminase enzyme and Schiff’s base reaction. The
minimally invasive method was applied with a gelation time of about 10 s and with no
need to use hemostatic clamps at both ends of the vessel damage [95]. As a positive feature,
the environment of the hydrated structure of HG protects drugs and cells, and ensures good
transport of nutrients to the cells [96]. Another important aspect is that all components of
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HGs (monomer, initiator and crosslinker) are entirely reacted during the formation process,
or the side products are efficiently removed since unreacted products can significantly
deteriorate chemical and physical properties. Therefore, relatively low toxic and high
effective components are used [97].

HGs can be divided by their sources into natural, synthetic and semisynthetic origins.
The advantage of natural components is their non-toxicity, biocompatibility and degradabil-
ity. However, they are often unstable. On the other hand, synthetic HGs ensure stability but
are hard to degrade. Therefore, by the combination of natural and synthetic components,
the final properties can be easily tuned for medical applications [98–100].

4.2.1. Natural Hydrogels

HGs occurring in nature can be divided into two main groups: polysaccharides,
such as chitosan, hyaluronan, alginate, agarose, and proteins. Natural HGs promote
good cell interactions and adhesion thanks to their origin. As natural materials, they are
also marked by their biodegradability, biocompatibility and low cytotoxicity. Based on
polysaccharides that connect using the Schiff-type reactions, aldehyde hydroxyethyl starch
(AHES) and amino carboxymethyl chitosan (ACC), the rapidly forming in situ hydrogel has
a homeostatic ability, which is a particularly attractive property for tissue adhesives [101].
Natural hydrogels are mainly used for articular cartilage tissue engineering due to their
similar constituent of water which is from 60 to 90% for hydrogel and about 70% in the ECM
of cartilage tissue. Stimuli-responsive polysaccharide hydrogels are intelligent hydrogels
that change form in response to factors such as pH, light, pressure, etc. Polysaccharide
HGs exhibit storage properties to immobilize molecules, which makes them interesting for
biomedical usage [102].

4.2.2. Synthetic and Semisynthetic Hydrogels

Synthetic hydrogels can be generated chemically by crosslinking polymers with ra-
diation, click chemistry reactions [103,104], or Michael type addition [105], and are called
chemical HGs. Physical HGs can be formed by warming or cooling the polymer solution,
mixing polyanion and polycation solutions, or lowering the pH to attach via hydrogen
bond polymers in an aqueous solution [97,106–108]. Both chemical and physical HGs are
inhomogeneous due to their interior structure. They consist of areas entitled “clusters” that
swell a low amount of water because of high crosslinking density. In contrast, there are also
low crosslinked density regions or even filled water spaces or macropores. Synthetic HGs
offer an advantage over natural HGs, in that they are more controllable, but less biologically
active. The composition or architecture of the matrix needs to be considered. Features of
synthetic and semisynthetic hydrogels such as biocompatibility, reproducibility, mechanical
properties and biodegradability are crucial. Therefore, attention goes towards the selection
of HGs components for specific applications.

In designing a synthetic hydrogel for application as a carrier of cells, one should
consider the balance that needs to be kept between the biodegradation time and mechanical
properties of HGs and ECM, and the growth of the desired tissue. Polymeric particles
(macromolecules and proteins), similar to natural ones, influence the structure of tissues,
and behavior of cells, which contributes to the regulation of cell functions. Some of the
biodegradable synthetic HGs are poly(N-isopropylacrylamide) (PNIPAAm), poly(ethylene
oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO), triblock copolymer
consisting of poly(lactic acid-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG)
(PLGA-PEG-PLGA) or poly(ethylene glycol)–polylactide-poly(ethylene glycol) (PEG-PLA-
PEG). PEG derivatives which are mostly combined with fibrinogen, hyaluronic acid or
poly(propylene fumarate) (PPF) are used in particular adhesives and scaffolds [106,107].
Zant and Grijpma synthesized and crosslinked macromers based on poly(trimethylene
carbonate) (PTMC), poly(D,L-lactide) (PLL), poly(ε-caprolactone) (PCL) and PEG by using
photopolymerization, and the obtained synthetic HGs showed high water uptake, remark-
able ability to promote cell adhesion and proliferation [109]. As another example, modified
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alginates with 2-aminoethyl methacrylate (AEMA) subjected to photo-crosslinking are
excellent materials for creating a filler or a scaffold because of slow degradation. Gelation
occurred in vivo, and the mechanical properties were improved, supporting the compo-
nents of cartilage tissue [99]. For instance, acrylamide-based hydrogels filled with MgO
controlled the initial burst release through modification of the structure of the matrix,
acting as nanosized drug reservoirs [110]. Additionally, acrylamide-based vaginal rings are
designed to deliver acyclovir into the vagina, thus increasing protection against infection
after childbirth. This is a novel approach to cross-linked hydrogels which gradually release
drugs in this scope [111]. The mechanical properties of commonly used hydrogels are given
in Table 4.

Table 4. Mechanical properties of commonly used hydrogels.

Synthetic HGs Crosslinking
Type

Young
Modulus [Mpa]

Tensile
Strength [Mpa] Elongation [%] References

Poly(ethylene glycol)
(PEG)/polydimethylsiloxane (PDMS)

hydrogel
chemical 0.006–0.36 0.02–0.42 30 [112]

Chitosan (CS) and poly(vinyl alcohol)
(PVA) (CS/PVA) chemical 2.3–2.5 6.0–9.70 16.3–28.1 [113]

Tunicate cellulose nanocrystals
(TCNCs) aligned (anisotropic d-Gel) physical 152.1 13.7–56.2 1400 [114]

Aluminum ion cross-linked hydrogel
(Gel) high-modulus hydrogels

(HM-Gel)
physical 0.59–1.94 1.26–1.74 550–650 [115]

Carboxymethyl cellulose/polyacrylic
acid hydrogel (CMC/PAA) physical 0.065–0.18 0.40–0.85 350–700 [116]

PDLLA-dMA-PCL-dMA-PEG-dMA
hydrogel physical 1.4 ± 0.2 0.47 ± 0.06 84 ± 22 [117]

Poly(trimethylene carbonate
dimethacrylate) hydrogel

(PTMC-dame)
physical 1.04 ± 0.04 0.46 ± 0.07 159 ± 43 [118]

The main disadvantage of synthetic hydrogels is the lack of biologically recognized
cell attachment sites and thus, poor cell proliferation. Despite the promising mechanical
properties, the proliferation of cells proves the usefulness of the hydrogel. Semisynthetic
hydrogels make it possible to combine the desired properties. Due to this combination,
semisynthetic hydrogels have the appropriate physical properties and are reproducible but
also have the desired biological properties, which result in a wider spectrum of utility [7].
For instance, a synthetic hydrogel consisting of sodium p-styrene sulfonate (NaSS) and
N,N-dimethyl acrylamide (DMAAm), which was negatively charged NaSS and neutral
DMAAm, on which there is no proliferation. This combination was examined for the
adhesion, migration and proliferation of cells. In conclusion, even if the cell behavior
was satisfactory, they were unable to proliferate [119]. In contrast, hydrogels made from
poly(ethylene glycol) (PEG) and proteins such as fibrinogen, gelatin and albumin were able
to support the neurite extension and glial cell migration from the dorsal root ganglion, in
contrast to the control PEG hydrogel [120].

5. Biofunctionalities of Elastomer–Hydrogel Systems

EHS are gaining increased interest for medical applications due to their unique combi-
nation of properties, often emulating live organisms’ function and performance. Some of
the sophisticated properties found in biomimetic materials will be discussed with emphasis
on bioadhesiveness, injectability, antibacterial properties, biodegradability and porosity
which are important for tissue engineering (Figure 6).
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5.1. Bioadhesiveness

Most of the medical applications, especially surgical procedures, require tissue adhe-
sives, sealants, and hemostatic agents. Those bioadhesives are mostly a glue to bind the tis-
sues, seal the gaps or cracks and initiate the formation of blood clots, respectively [121,122].
Synthetic compounds which show adhesive properties such as poly(ethylene glycol) di-
acrylate (PEGDA) [123], N,N-dimethylaminoethyl methacrylate-co-methyl methacrylate
(NDMEM) [124], gelatin methacrylate (GelMA) [125], tannic acid (TA) [126], etc., have been
successfully introduced by physical or chemical processes into the patches or scaffolds with
the development of materials science. This approach has gained successful outcomes in
medical applications thanks to the adhesion ability of those materials to various tissues
such as soft tissue, bone and skin [127–130]. However, their lack of robust and reversible
adhesion abilities limit their application efficiencies. Therefore, inspiration from nature
provides enormous information on how to develop materials with versatile adhesion capac-
ities for both wet and dry surfaces. Determination of the key compounds within the various
species has opened the way to introducing these compounds into the structured materials
for medical applications. Thanks to these compounds, EHS can act fully or partially as
bioadhesives, depending on the functional groups introduced that are inspired by nature
(Figure 7). EHS can be structured to achieve the desired, controllable and reusable adhesion
strength in wet environments.

Recently, bioinspired adhesives have attracted great attention due the combination
of natural functionality realized through synthetic approaches. For instance, mussels
show extremely good adhesion with high binding strength to various surfaces under wet
conditions [131–133]. It was found that the catechol unit is the main factor that allows
mussels to adhere to a variety of surfaces [134,135]. Materials containing catechol units can
be used to create covalent and non-covalent attachments to various substrates for many
medical applications, including drug delivery systems and wound healing [47,136,137].
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5.2. Injectability

Traditional surgeries are increasingly being replaced by less invasive methods that
shorten an overall procedure and the patient’s recovery time. Especially, in tissue engi-
neering, the focus is on to improving the materials’ performance by their injectability [138].
The injectable systems can efficiently deliver particles such as drugs (antibiotics, anes-
thetics), biomolecules (fibrin), fillers (silica nanoparticles) or genes (DNA, siRNA) [139].
An attractive model, developed by Li et al., is an injectable probe for measuring oxygen
in tissues [140]. Hydrogels containing N-isopropylacrylamide copolymer macromers for
mesenchymal stem cell (MSC) delivery allow the formation of bone bridges, promoting
the viability of MSCs, and can be used to create hard tissues, due to gelatin microparticles
(GMP) which are enzymatically digestible porogens and sites for cell attachment [141].
Another long-term persistent hydrogel is the photo-crosslinked material composed of a
double-network of modified sodium alginate and gelatin created by the Schiff base reac-
tion [142]. Collectively, different works have clearly demonstrated the huge potential of
injectable materials for biomedical applications. Xu et al., produced an injectable EHS con-
sisting of hyperbranched multi-acrylated poly(ethylene glycol) macromers (HP-PEGs) and
thiolated hyaluronic acid (HA-SH) and used it as a stem cell delivery system for diabetic
wound healing (Figure 8) [143]. It is also worth noting that new injectable and photocurable
elastomers containing fatty acid derivatives can be successfully used for minimally invasive
surgical protocols in the repair of small hernia defects (Figure 9) [144].
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5.3. Biodegradation

Biodegradable materials are now tending to become the most commonly used materi-
als in medical applications due to their gradual bio-resorption into the human body [145].
Biodegradability is one of the key properties for the materials which are used in medical
applications. It should be considered that the degradation rate must be consistent with the
healing and regeneration process. Various crosslink densities, crosslinking mechanisms and
component types were applied to control the degradation rate of such systems [146,147].
The most commonly used biodegradable materials consist of homo- or copolymers of
alpha-hydroxy acids, such as lactic and/or glycolic acids.

Biodegradation can be triggered either by water (hydrolytic degradation) and/or
enzymes (enzymatic degradation) within the body. The chemical structure of a polymer
has the greatest influence on the type of degradation. Other important factors are chemical
composition, the type of crosslinking bonds, molecular weight and its distribution, porosity,
stereochemistry and chain mobility [148]. The elastomeric part of the EHS usually tends
towards hydrolytic biodegradation due to its molecular chain structures sensitive to water
(Figure 10). The hydrolysis of ester bonds usually leads to the creation of carboxyl and
hydroxyl end groups, whereas natural biomaterials tend to degrade enzymatically.
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The injected and/or implanted EHS can be degraded by oxidative (catalases, horseradish
peroxidase and xanthine oxidase) or hydrolytic (protease, hydrolase, phosphatases, lipase
and esterase) enzymes when exposed to body fluids and tissues [149–151]. Inflammatory
cells (e.g., macrophages and leukocytes) create reactive oxygen species such as hydrogen
peroxide, superoxide and nitric oxide during the inflammatory response to foreign materi-
als [152]. EHS can be cut up by those species which are contributing to material degradation
whereas the hydrolytic enzymes hydrolyze the components of the hybrid network to help
in the absorption of nutrients and solutes.

For instance, a poly(caprolactone) (PCL)/gelatin(Gel) scaffold (sublayer) was electro-
spun on a dense polyurethane (PU)/propolis(EEP) (top layer) membrane to fabricate a
bilayer wound dressing. It was demonstrated that the EHS combining a synthetic polymer
with a natural one could enhance the stability of the scaffold. Hydrolytic and enzymatic
degradation studies showed that PU/EEP membrane exhibited a slower degradation rate
in comparison with a PCL/Gel hybrid structure. In the case of hydrolytic degradation,
the total mass loss after 28 days for PU/EEP and PCL/Gel was found to be 1.9 and 76%,
respectively [153].

5.4. Porosity

The porosity is an important feature in medical applications, especially in scaf-
folds [154,155]. The pore architecture and interconnectivity have a beneficial role in prolifer-
ation, cell survival and migration to create functional materials, and secrete ECM. Therefore,
scaffold porosity is a must for homogenous cell distribution and interconnection throughout
engineered tissues [156,157]. Additionally, pore size can have an effect on the cell growth,
vascularization, nutrients and oxygen diffusion, especially in the absence of a functional
vascular system [133–135,158–160]. Various techniques, components and ratios are used to
obtain controlled pore size and architecture scaffolds. For instance, Kanimozhi et al. pre-
pared a chitosan/poly(vinyl alcohol)/carboxymethyl cellulose (CP-CMC) porous scaffold
by simple freeze drying and salt leaching techniques. Among scaffolds, 1:1 weight ratios
showed significantly high porosity as compared to other ratios. The incorporation of CMC
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enhanced the scaffold porosity from 50 to 90% by increasing the molar ratio of CMC. How-
ever, when comparing the freeze-dried scaffolds and salt-leached scaffolds of 1:1 weight
ratio, the 50% CP:50% CMC material showed a higher porosity of 90% in salt-leached
and 70% in freeze-dried scaffolds, respectively. The reason was explained thus: with the
increase of CMC ratio, the actual volume occupied by the molecules decreased [161].

In another study, Morris et al. produced porous elastomer–hydrogel scaffolds of
chitosan/polyethylene glycol diacrylate (CS/PEGDA) using 3D bioprinting by a stere-
olithography method to create internal pore and macroscopic shapes. They achieved varied
pore sizes by changing the CS molecular weight ratios. For instance, the average pore size
of the pure PEGDA scaffolds increased from 24% to 67% by the addition of low molecular
weight CS (LMWCS) (MW = 50–190 kDa) into the scaffold with the ratio LMWCS:PEGDA
at 1:7.5. These kinds of studies show that controlled pore size and architecture can be
achievable for specific needs in medical applications [162].

5.5. Antibacterial Surfaces

Antibacterial materials, especially surfaces, are playing an important role in protecting
from contamination and eliminating bacteria from skin tissue and the surfaces of medical
devices and implants. Bacterial adhesion is the main cause of the creation of 3D biofilm
complex structures which infect the surrounding tissues. Therefore, new strategies which
eliminate biofilm-based issues are applied. Hence, EHS which contain antibacterial com-
ponents are being developed. For instance, Piarali et al. fabricated a fiber mesh based on
the surface modification of polyhydroxyalkanoate, using an electrospinning technique, for
tissue regeneration. In this study, basically an EHS was created by a synthetic antimicrobial
peptide with anti-biofilm and strong bactericidal properties [149].

In another study, Muzammil et al. created elastomer–hydrogel scaffolds contain-
ing castor-oil-reinforced chitosan with various hydrophilic polymers. The obtained EHS
showed antibacterial and hemostatic activities with good mechanical properties. Therefore,
such systems could be good candidates for skin tissue regeneration and wound healing
applications [163].

6. Elastomer–Hydrogel Systems for Soft Tissue Engineering Applications

The development of advanced systems for tissue engineering applications has been
widely studied over the last decades. Specific interactions between the components, the
combination of raw material advantages and the molecular organization of these systems
dictates the direction of the tissue engineering applications. Different EHS systems which
combine different classes of elastomers and hydrogels in one material with large yield
formulations and many advantages, such as high interaction with targets to enhance their
performance have been effectively developed.

EHS play an important role in the success of tissue engineering approaches, as they
guide the structure of developing tissues, gaining mechanical and physical stability, and
migrating cells or delivering the molecules to transplanted areas. Those highly efficient EHS
find applications in soft, bone, skin, neural and cardiac tissue engineering [164–167] (Figure 11).

For instance, Fischenich et al. has developed a thermoplastic elastomer (TPE) hydrogel
system for soft tissues, especially for articular cartilage, the knee meniscus, etc. The created
system was based on a blend of unreacted ω-hydroxy-polystyrene-b-poly(ethylene oxide)
(SO) and coupled polystyrene-b-poly(ethylene oxide)-b-polystyrene (SOS). The obtained
TPE hydrogel system could be a promising candidate for soft tissue replacement with
a comparable equilibrium compressive modulus of approximately 0.5 MPa and shear
modulus of 0.2 MPa (Figure 12) [168].
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Lewis et al. reported a thermoplastic elastomer–hydrogel system based on the pre-
fabrication of an efficient nanoscale network architecture using the melt-stateω-hydroxy-
polystyrene-b-poly(ethylene oxide) (SO) and polystyrene-b-poly(ethylene oxide)-b-polysty
rene (SOS) as amphiphilic block copolymers. They proved by physical and mechanical
analysis that the obtained systems have relevant moduli and water compositions, subsec-
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ond elastic recovery rates, negligible hysteresis, and unprecedented resistance to fatigue
over hundreds of thousands of compression cycles. They suggested that such hydrogels
may have tremendous promise beyond the synthetic soft tissue engineering applications
for which they have been targeted [169]. In another study, Remya et al. synthesized EHS
by modifying PCL with different molecular ratios of water soluble polymer PEO using
the electrospinning technique to create scaffolds. The weight loss for pure PCL was 8.5%
whereas for PCL/PEO blends with 50:50 ratios and differing the molecular weight of the
PEO (10 k g/mol vs. 60 k g/mol), the weight loss was 41.7 and 48.7%, respectively after
3 months. The study also showed that the properties of PCL scaffolds such as cell viability,
mechanical properties and hydrophilicity were increased by the incorporation of PEO and
these materials could be possible candidates for bone tissue engineering applications [169].

7. Conclusions and Perspectives

Inspiration from nature is a driving force in the development of various functional
structures, including elastomer–hydrogel systems of great promise for medical applications.
Recent advancements in (nano)materials science show that the rational design of hybrid
systems can result in highly functional materials of good adhesion strength, injectability and
the desired biological properties for specific medical applications. The variety of elastomers
and hydrogels for the creation of elastomer–hydrogel systems continues to grow, and
highly advanced materials are constantly being developed to fulfill all the requirements
of the medical industry. Bio-inspired materials obtained from natural-resource-based
elastomers, including fatty acids, have the benefits in biocompatibility and biodegradability
as simultaneous optimal physicochemical and mechanical properties. In addition, natural
hydrogels can overcome the potential long-term side effects of synthetic materials since
biodegradation products are non-toxic and biocompatible.

In spite of the unique advantages of elastomer–hydrogel systems, the disadvantages
of those systems still remain. The main disadvantages of elastomer–hydrogel systems are
the weak adhesion between elastomer and hydrogel due to their nature (elastomers are
hydrophobic, whereas hydrogels are hydrophilic), and increased water loss. However,
those challenges can be overcome by using a nanocomposite and/or double-network
hydrogel systems to improve the strength and toughness of hydrogels and thus providing
better integrity of the system. In addition, the improvement of the adhesion between the
components is a key question to be answered. Even though some progress has been made
in the fabrication of elastomer–hydrogel systems to increase interfacial adhesion by using
covalent bonding, noncovalent mechanisms and topological adhesion, further investigation
in this field is needed to promote their practical applications.

Clearly, future efforts should concentrate on a better understanding of the interac-
tions of those materials with each other and with natural body tissues, thus opening
new chapters in bio-inspired materials science and engineering. Finally, such advanced
bio-inspired elastomer–hydrogel systems may lead to the production of a novel class of
materials on a commercial scale that are easily processable, highly biofunctional and easily
applied/administrated.
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