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Motivated behaviors are often initiated in response to perturbations of homeostasis.

Indeed, animals and humans have fundamental drives to procure (appetitive behaviors)

and eventually ingest (consummatory behaviors) substances based on deficits in

body fluid (e.g., thirst) and energy balance (e.g., hunger). Consumption, in turn,

reinforces motivated behavior and is therefore considered rewarding. Over the years,

the constructs of homeostatic (within the purview of the hypothalamus) and reward

(within the purview of mesolimbic circuitry) have been used to describe need-based

vs. need-free consumption. However, many experiments have demonstrated that

mesolimbic circuits and “higher-order” brain regions are also profoundly influenced

by changes to physiological state, which in turn generate behaviors that are poised

to maintain homeostasis. Mesolimbic pathways, particularly dopamine neurons of the

ventral tegmental area (VTA) and their projections to nucleus accumbens (NAc), can

be robustly modulated by a variety of energy balance signals, including post-ingestive

feedback relaying nutrient content and hormonal signals reflecting hunger and satiety.

Moreover, physiological states can also impact VTA-NAc responses to non-nutritive

rewards, such as drugs of abuse. Coupled with recent evidence showing hypothalamic

structures are modulated in anticipation of replenished need, classic boundaries between

circuits that convey perturbations in homeostasis and those that drive motivated behavior

are being questioned. In the current review, we examine data that have revealed the

importance of mesolimbic dopamine neurons and their downstream pathways as a

dynamic neurobiological mechanism that provides an interface between physiological

state, perturbations to homeostasis, and reward-seeking behaviors.
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INTRODUCTION

Motivated behaviors are fundamentally rooted in homeostasis. To survive, animals, including
humans, have adopted behavioral strategies to efficiently procure and ingest substances based
on homeostatic perturbations, particularly deficits in body fluid (e.g., thirst) and energy balance
(e.g., hunger). Historically, researchers have dichotomized physiological underpinnings of ingestive
behaviors into “homeostatic” and “non-homeostatic” [occurring in the absence of need and based
on positive feedback (e.g., reward; hedonic)] neural processes—that is, as separate mechanisms.
Indeed, as this field progressed, there have been attempts to conceptualize these two constructs as a
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means through which to view maladaptive motivated behaviors,
particularly behaviors underlying obesity development and
drug addiction. As such, reward-related neural substrates
are thought to override processes that maintain homeostatic
balance (1–6). However, there is ambiguity when delineating
the neural substrates that regulate “homeostatic” vs. reward
processes. Rather than separable concepts, there are in fact
many overlapping and parallel pathways [see (7–15) for review].
Moreover, one system traditionally viewed as participating in
reward-driven ingestive behavior—the mesolimbic dopamine
system—now appears to be a central hub for directing behavior
in responses to homeostatic challenges. This review focuses on
a particular form of mesolimbic dopamine activity—the phasic
activation of dopamine neurons and subsequent phasic release
of dopamine in striatal terminal regions—and will consider what
these signals mean for goal-directed behavior and how they may
be tuned by perturbations in physiological state.

PHASIC DOPAMINE SIGNALING AND

MOTIVATED BEHAVIORS

Midbrain dopamine neurons in VTA and SNc (substantia nigra
pars compacta) exhibit distinctive firing patterns involving a
combination of regular, pacemaker-like firing, irregular single
spikes, and occasional high-frequency trains of action potentials,
known as bursts (16–20). Bursts are of particular interest as
these brief neural activations lead to transient increases in
dopamine concentration in terminal regions such as NAc, which
via activation of D1 and D2 receptors, influence the excitability
of striatal output neurons and regulate their plasticity (21, 22).
Collectively, the bursts of action potentials from dopamine
cell bodies and the dopamine release associated with them
(23) are termed “phasic” dopamine signaling. These signals are
further shaped at the cell body and terminals by dopamine
D2 autoreceptor inhibition, dopamine synthesis and vesicular
packaging, the ready-releasable pool of vesicles, the rate of
dopamine reuptake by the dopamine transporter [for an excellent
review, see (22)], and cholinergic modulation of presynaptic
release (24–26). For the purposes of this review, the primary
focus will be on the preponderance of data that support
phasic dopamine as critical for aspects of goal-directed behavior
including reinforcement, associative strength, reward prediction,
incentive motivation, value and utility (27–35).

Phasic dopamine signaling has frequently been studied in
the context of motivated behaviors that result from positive
reinforcement. For example, dopamine is thought to reinforce
learned associations between predictive stimuli and primary
reward (36, 37). As motivated behaviors occur on subsecond
timescale, phasic dopamine signaling has been implicated as
a driving mechanism through which mesolimbic circuitry
regulates reward-seeking (38–44). Within the reward prediction
error framework, phasic dopamine activity at the time of the
outcome (e.g., sucrose reward) is determined by an animal’s
expectation. Importantly, when errors in expectation occur (e.g.,
the outcome is better or worse than predicted), phasic dopamine
signaling at the time of reward responds with a brief change

in activity, specifically a burst or pause in neuronal firing or a
transient increase or suppression in dopamine release at terminal
regions. Accordingly, associative strength grows steeply when
differences exist between predictions and outcomes (38, 43–45)
and, based on these data, phasic dopamine has been commonly
termed a “teaching” signal that has functional properties in
mediating motivational aspects of behavior. In turn, phasic
dopamine responses evoked by predictive cues act to incentivize
approach and consumption (46–50).

However, the complex roles of phasic dopamine signaling
extend beyond positive reinforcement. Indeed, as goal-directed
behaviors for positive reinforcement are highly adaptive, forming
associations between aversive stimuli and negative reinforcement
is also essential for survival. Consideration of these complexities
will be critical in understanding how mesolimbic dopamine
signaling can regulate behaviors in response to homeostatic
perturbation as well as how changes in physiological state
can profoundly change neural computations within mesolimbic
circuitry. In humans, expectation of pain relief (i.e., negative
reinforcement) results in transient increases in NAc blood
oxygen level-dependent (BOLD) activity as well as increased
functional connectivity between the NAc and key mesolimbic
nodes (e.g., VTA andmedial prefrontal cortex) (51, 52). Similarly,
in animals, mesolimbic dopamine also play a role in processing
aversive stimuli. For example, pain relief in injured rats results
in increased VTA dopamine activity as measured by c-Fos
immunohistochemistry and detection of NAc dopamine with
microdialysis (53). Moreover, in the same study, administration
of analgesia in injured rats resulted in a conditioned place
preference and these effects were blocked by pharmacological
inhibition of the VTA. Other research has demonstrated that
cues that are associated with the avoidance of punishment
(e.g., foot shock) reliably increase NAc phasic dopamine release,
while inescapable punishment results in a decrease in phasic
dopamine release (54). Finally, aversive agents like oral quinine
and systemic LiCl (lithium chloride) reduce phasic dopamine
release in the NAc and the rapid encoding of these stimuli allow
for plastic adaptations in subsequent behaviors (55–58).

Mesolimbic dopamine responses to aversive stimuli comprise
a substantial amount of complexity and heterogeneity (56),
for example, with populations of VTA dopamine neurons
that are either excited or inhibited by aversive stimuli (59).
Work from Ungless and colleagues using electrophysiology in
anesthetized rats has identified regional variation in the VTA,
with dorsally-located dopamine neurons inhibited and ventrally-
located dopamine neurons excited by aversive or noxious stimuli,
while a separate population of non-dopaminergic neurons are
inhibited by the same aversive stimuli (in this case, tail pinch or
foot shock) (60, 61). Others have demonstrated that tail pinch
in anesthetized animals increases phasic dopamine release within
the dorsal striatum and NAc core while alleviation of pain by
removing the tail pinch increases dopamine release in the NAc
shell—converging evidence for distinct neural populations that
modulate positively and negatively valence states (62).

Given that feeding and drinking may be produced through
negative reinforcement processes (63–67), it is key to determine
whether physiological states can exert control over mesolimbic
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processes. Techniques such as pharmacology and human
neuroimaging, while certainly valuable, lack the temporal
resolution and specificity to observe the subsecond nature
of motivated behaviors and their associated mechanisms
within mesolimbic pathways. Similarly, the distinctions
within behavioral processes (e.g., appetitive vs. consummatory
behaviors) are often difficult to parse using methods that have
low temporal resolution. Thus, the combination of real-time
recordings (e.g., electrophysiology, fast-scan cyclic voltammetry,
in vivo fiber photometry) along with precise control of
behavioral and physiological outcomes (e.g., intraoral and
intragastric delivery of stimuli) will be critical in understanding
the interactions between behavior, physiological state, and
mesolimbic phasic dopamine signaling.

PHYSIOLOGICAL AND NEURAL CONTROL

OF HOMEOSTASIS

Homeostasis is tightly regulated by a multitude of peripheral
physiological processes as well as actions within the brain.
These peripheral processes include feedback from various organs
(e.g., stomach and intestines; kidneys and vasculature), which
use both neural (e.g., vagus nerve) and hormonal routes to
relay information regarding homeostatic balance to central
nodes that subsequently generate the appropriate behaviors
poised to maintain and reinstate homeostatic balance (e.g.,
eating, drinking). Here, were provide a brief overview of the
central neural processes that are traditionally thought of as
“homeostatic” and how the mesolimbic system has gained
prominence as a neural substrate that is sensitive to homeostatic
perturbation.

Feeding and Energy Balance
Energy balance is generally well-maintained by a variety of
peripheral signals relating to hunger and satiety. However,
feeding behaviors come with their own complexities that often
deviate from traditional notions of homeostatic balance. Recent
work has focused intensely on investigating digressions in
homeostatic energy balance in the context of the obesity epidemic
and these studies have been reviewed in a number of recent
manuscripts (13, 14, 68–73). There is a rich body of literature
examining neural controls of energy balance from the perspective
of basic homeostatic control and perturbation as well as data
suggesting that so-called “homeostatic” neural substrates are
capable of regulating “reward” related feeding behaviors.

In states of hunger and satiety, hormonal mechanisms and
post-ingestive effects on peripheral organs that are relayed to the
central nervous system are often critical for initiating and halting
feeding behaviors. Indeed, many feeding-related hormones
readily enter the brain to control food intake and feeding
behaviors. Hypothalamic and hindbrain nuclei have been focused
on as primary targets for these hormonal and neural feeding
signals. These two brain regions are traditionally associated with
maintaining homeostatic energy balance, and their anatomical
proximity to ventricular areas with a permeable blood brain
barrier allows for heightened sensitivity to circulating hormones.

The pancreas-derived hormone, insulin, a critical hormone for
blood glucose regulation, enters the brain to promote satiety
and reduce feeding behaviors [reviewed in (74)]. The adipose-
derived satiety hormone, leptin, provides a robust satiety signal
to hypothalamic and hindbrain nuclei (75–78). Similarly, the gut
and hindbrain derived incretin and satiety hormone, glucagon-
like peptide-1 (GLP-1), utilizes central processes to reduce food
intake and feeding behavior [reviewed in (79)]. Conversely, the
stomach-derived hormone, ghrelin, interacts with hypothalamic
circuitry to increase food intake (80).

Perhaps most interesting, however, is the ability of these
feeding hormones to engage motivated behaviors via signaling
to hypothalamic and hindbrain substrates. For example, insulin
administration into the arcuate nucleus of the hypothalamus
reduces sucrose self-administration (81) and ventricular
insulin delivery blocks high-fat diet induced conditioned place
preference (82). Leptin receptor signaling in the nucleus of the
solitary tract (NTS) reduces food seeking and effort to work for
food (83). Similarly, GLP-1R signaling in the lateral hypothalamic
area (LHA) and NTS is critical for motivated responding for
food and, interestingly, chronic GLP-1R knockdown in both
these regions produces elevated responding for food reward
(84, 85). Ghrelin also acts on hypothalamic substrates to increase
food motivated behaviors via direct ghrelin receptor activation
and interactions with feeding-related neuropeptides (86–88).
Importantly, these data suggest that homeostatic feeding signals
act within hypothalamic and hindbrain nuclei to not only
regulate feeding based on metabolic deficits, but also regulate
reward-seeking and goal-directed actions.

To uncover the underlying neural mechanisms that regulate
these parallel homeostatic and reward-related phenomena,
agouti-related peptide expressing (AgRP) neurons in the arcuate
nucleus of the hypothalamus have received a considerable
amount of attention, and tremendous effort has been dedicated
to examine these substrates as key regulators of energy balance.
Besides the classic notion that AgRP neurons convey hunger
signals (89), the ability of these neurons to engage motivated
behaviors is striking. Betley and colleagues performed an elegant
study examining the type of motivational signal AgRP neurons
relay (66). While feeding can be motivated by intrinsic rewarding
properties of food (i.e., positive valence), there is also the
possibility that AgRP neurons transmit negative valence signals
(i.e., hunger). Indeed, consistent with production of negative
affect, optogenetic activation of AgRP neurons was shown to
cause avoidance of a flavored, non-nutritive gel as well as
avoidance of a location paired with AgRP photostimulation.
Overall, these data again reflect the integration between
homeostatic perturbation and motivated behaviors where, in
this case, animals seek out food in order to restore homeostatic
balance, a behavior that is in part motivated by negative valence
signals. Others have demonstrated that AgRP neurons are rapidly
inhibited by just the sight of food independent of consumption
(90). Given the role of AgRP neurons as interoceptive sensors of
hunger states, these data are initially counterintuitive. However,
the authors of this study propose that this anticipatory inhibition
of AgRP neurons to sensory properties of food acts to slow
food-seeking behaviors once food has been found and in
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anticipation of restoration from caloric need. Thus, in addition
to integrating signals relaying homeostatic state, AgRP neuron
activity integrates learned associations with respect to food-
related stimuli.

Absorption of nutrients and eventual post-ingestive
consequences primarily act to engage satiety mechanisms,
with hormonal signals described as one of several downstream
outcomes. Alternatively, mechanisms that sense nutrients can
profoundly influence motivated behaviors independently of
hormonal modulation. For example, flavor-nutrient experiments
have been enlightening in understanding the concept of
appetition, where the post-ingestive consequences of calorie
intake can induce goal-directed behaviors to further consume
food. Studies from Sclafani and colleagues have demonstrated
that pairing intragastric infusions of carbohydrates (e.g., glucose)
or fat with particular flavors can lead to preferential intake of
those flavors (91–95). There is still considerable debate about
whether these food-seeking behaviors are engaged by sensing
of nutrients at the level of the gut (e.g., by glucose transporters)
or whether the nutrients are transported in the blood to act
directly on the brain (96–98). What is remarkable is that these
post-ingestive processes act independently of taste to engage
neural processes that guide reward-seeking behaviors (99–103).
Thus, in addition to hormonal processing, there is abundant
evidence that the actions of nutrients in the periphery are critical
for developing relationships between physiological state and
motivated behaviors.

Taken together, these data suggest that the presumed
“homeostatic” processes of hunger and satiety are complex and
capable of engaging behaviors that are often considered “reward-
related.” Moreover, the collective evidence is consistent with
the theme that there are parallel and overlapping circuitries
that integrate changes in physiological state with reward-seeking
behaviors.

Body Fluid Homeostasis
Body fluid homeostasis is tightly regulated as sodium deficit
and dehydration pose highly threatening challenges to survival.
Moreover, the rewarding value of fluids like water and hypertonic
saline is heavily dependent on physiological state. A key example
of this is the phenomenon of sodium appetite, where motivation
to obtain and consume sodium changes drastically depending
on body fluid balance. Indeed, sodium deprivation produces
a robust, selective, and innate appetite for sodium that is in
turn reflected in goal-directed behaviors to seek out and ingest
sodium [see (104) for review]. For example, animals that have
never before encountered a hypertonic sodium solution express
powerful and preferential intake of it immediately upon sodium
depletion (105, 106). Other studies have demonstrated that
sodium depleted animals will make operant responses for sodium
or approach sodium-related cues (107–109). In addition to goal-
directed behaviors for acquiring salt, sodium deplete animals
show exclusively appetitive taste reactivity to intra-oral infusions
of hypertonic sodium in comparison to sodium replete rats
that exhibit a mixture of appetitive and aversive taste reactivity
(110). Thus, in states of need, the appetitive value of sodium is
profoundly augmented, thus providing an ideal platform to study

the impact of perturbations in homeostasis on goal-directed
behaviors and reward encoding.

At the level of the central nervous system, decerebrated
rats fail to produce behavioral responses to sodium depletion
including increased sodium intake or frequency of saline-
induced appetitive taste reactivity, relative to intact animals—
suggesting an important role for forebrain structures in
regulating behavioral outcomes to changes in body fluid
homeostasis (111). More recent studies have revealed that
a subpopulation of neurons in the NTS that express 11-
β-hydroxysteroid dehydrogenase type 2 (HSD2) not only
powerfully drive sodium appetite in sodium-replete mice, but
also project to a number of forebrain regions that control
motivated behaviors (112, 113). Other research has shown
that lesions to the central nucleus of the amygdala disrupt
consummatory behaviors in response to sodium depletion
(114, 115), while lesions to the parabrachial nucleus result in
attenuated licking to changing sodium concentrations in sodium
depleted rats (116, 117). In sodium-deprived states, synchrony
has been shown between the lateral hypothalamus, central
amygdala, and nucleus accumbens, thus providing evidence
that these regions encode the appetitive properties of sodium
and its associated goal-directed behaviors based on body fluid
state (118). Collectively, these data emphasize the importance
of forebrain neural substrates in body fluid homeostasis and
provide a valuable foundation for researchers to use sodium
appetite as a powerful means to measure behaviors dependent
on physiological state in the context of mesolimbic dopamine
signaling.

Intake of water, like sodium, is also highly dependent on
an organism’s current body fluid state—this is to be expected
as thirst and sodium appetite are highly intertwined and
act in concert to maintain body fluid homeostasis. Centrally,
circumventricular organs play a critical role in detecting blood
composition and osmolarity and, under appropriate conditions,
generate water seeking and consumption. Indeed, stimulation of
circumventricular organs (e.g., subfornical organ, SFO) results in
robust water intake in water sated animals and neural activity
in these regions is modulated by water intake (119, 120).
Interestingly, as the neural responses to water intake occur
rapidly, it has been proposed that these processes are not directly
controlled by changes in blood osmolarity (i.e., a direct response
to homeostatic deficit) and are in fact an anticipatory response
to changes in homeostatic balance. As such, activity in SFO
nitric oxide synthase (NOS) expressing neurons is increased
during water restriction and then promptly decreases seconds
after subsequent water consumption (121). The decrease in
SFO NOS neural activity occurs well before changes in blood
osmolarity suggesting that the SFO is well equipped to anticipate
changes in homeostasis. Moreover, data from the same group
also suggests that suppressing activity of thirst-promoting SFO
neurons is negatively reinforcing and that overall the state of
thirst relays a negative-valence signal that motivates an animal to
drink to terminate the aversive, thirsty state (67). These findings
parallel studies on AgRP neurons of the arcuate nucleus and
their responses to food and food restriction [as described above,
(66)]. Interestingly, effects of the thirst-promoting hormone,
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angiotensin II, may, in part, require learned associations between
angiotensin II receptor signaling and subsequent water intake
(122). These data suggest that the central control of thirst is
not limited to basic homeostatic responses and involves complex
interactions between physiological state and forebrain processes
that allow for the approach, consumption and reinforcement of
water in order to restore body fluid homeostasis.

Taken together, there is abundant evidence suggesting that
changes in physiological state, particularly those that threaten
survival, can profoundly influence motivated behaviors and
reward-seeking. This has critical implications for understanding
the neural control of these processes and provides a platform
through the interaction between homeostatic perturbation and
its eventual effects on the mesolimbic dopamine system can be
studied.

MODULATION OF MESOLIMBIC

PATHWAYS BY CHANGES IN

PHYSIOLOGICAL STATE

The mesolimbic dopamine system represents a neurobiological
substrate that can adapt and respond to a variety of conditions
that extend well beyond stimulus-reward associations. The
data described below provide support for the hypothesis
that mesolimbic phasic dopamine signaling through VTA-NAc
pathways is poised to respond to changes in physiological state
and is a prime example of a neural substrate that integrates both
homeostatic and reward processes.

The Impact of Hunger on Mesolimbic

Dopamine Signaling
Hunger is undoubtedly one of the most potent drivers of goal-
directed behaviors, and a vast amount of research takes advantage
of hunger as a primary means to study reward-seeking and
motivated behaviors. However, it should be emphasized that
hunger can powerfully modulate phasic mesolimbic dopamine
signaling, can alter goal-directed behaviors toward rewards
other than food (e.g., drugs of abuse), and can fundamentally
impact the neurophysiology of dopamine neurons. For example,
in experiments from Wilson and colleagues, rats were placed
in a chamber where access to a palatable liquid meal was
restricted by a wire mesh screen. After 10min, the screen was
removed, and the animal was allowed to consume the meal for
20min. Critically, this task allowed the experimenters to use
microdialysis to measure NAc dopamine levels while separating
anticipatory (10min pre-meal period) and consummatory
(20min meal access) behaviors. The results of these experiments
revealed that when well-trained animals were food-deprived
during a test session, there was a significant increase in NAc
dopamine levels during both the anticipatory and consummatory
phase of this task, relative to control rats fed ad libitum
(123). While the authors of this study claimed that NAc
dopamine release is more attributable to consummatory aspects
of feeding given that they observed a more robust response
during the consummatory phase of their task, the temporal
resolution of microdialysis fails to capture subsecond, phasic

dopamine signaling in response to food cues. Regardless, this
study introduced the importance of hunger states in modulating
mesolimbic dopamine signaling. Indeed, food restriction can
both increase dopamine neuron firing rate (19) and reduce
dopamine reuptake (124) and, in addition, food-restricted rats
show enhanced extracellular dopamine release in response to
extended sucrose intake (125) [however, see (126)]. Further
studies have shown that chronic food restriction results in
enhanced burst firing of SNc dopamine neurons, augmentation
of cocaine-induced burst firing and, remarkably, persistence of
this increased burst firing even after animals are refed (127).
Finally, phasic NAc dopamine release evoked by sugar pellets is
elevated in food-restricted rats, relative to ad libitum fed rats,
as discussed in more detail below (128). These results have
critical implications for how changes in energy balance, in this
case the state of hunger, impact the physiological properties
of dopamine neurons. Importantly, these findings suggest that
homeostatic perturbation can (1) sensitize phasic dopamine
signaling to enhance reward seeking for substances critical for
survival and (2) alter phasic dopamine signaling to potentially
enhance maladaptive reward seeking for substances of abuse.

As described above, alterations in energy balance can potently
modulate neurobiological processes within mesolimbic neural
pathways. Indeed, these changes can have a robust impact
not only on goal-directed behaviors for natural rewards (e.g.,
food), but also enhance behavioral sensitivity toward other
rewarding substances, such as drugs of abuse. Moreover, these
processes are a clear example of how mechanisms that are
designed to respond to homeostatic perturbations can be molded
into behaviors that are maladaptive and viewed as “reward-
related.” In an experiment using a model of drug relapse, rats
were trained to self-administer heroin via lever presses, which
was followed by a 14-day abstinence period where the rats
were removed from operant chambers and underwent either
mild food restriction or were allowed ad libitum food access.
During test sessions in which the levers were available but
no reward was administered (i.e., extinction parameters), food
restricted rats exhibited enhanced heroin-seeking behaviors, as
reflected by increased lever responses, relative to food sated rats.
Furthermore, these effects can be modulated by both duration
of food restriction or re-feeding. As such, reduced duration
of food restriction and re-feeding attenuates this enhanced
heroin-seeking behavior (129). Importantly, these data suggest
that depending on the physiological state of an organism, it is
possible to tune the sensitivity of mesolimbic mediated reward-
seeking behaviors. Indeed, using the same behavioral paradigm,
D’Cunha and colleagues demonstrated that food restricted
animals exhibit increased extracellular dopamine levels in the
NAc shell (measured via microdialysis) in response to the heroin-
associated context (i.e., self-administration operant chambers)
in comparison to sated animals. Interestingly, these effects are
attenuated in response to NAc shell D1 receptor blockade,
suggesting a putative role of NAc shell D1 receptor signaling
in modulating hunger mediated heroin-seeking behaviors (130).
These observations can be seen across other drugs of abuse
and by using different reward-related behavioral paradigms.
Indeed, with nicotine self-administration, the highest level
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of self-administration behavior can be seen in animals with
the greatest degree of food and weight restriction (131).
Furthermore, food restricted rats show enhanced conditioned
place preference (CPP) to cocaine, relative to ad libitum fed rats,
with food restriction potentiating both the acquisition and the
expression of cocaine-induced CPP (132). Thus, in support of
the data described above, food restriction and energy balance
have potent effects not only on the expression of reward-seeking
behaviors, but also the acquisition of goal-directed behaviors for
natural rewards and a variety of drugs of abuse.

Body Fluid Homeostasis and Mesolimbic

Dopamine Signaling
While much work has focused on the mesolimbic system in the
context of food reward [(27, 29, 133) for examples], the role of
phasic dopamine signaling in body fluid homeostasis is less well
understood. However, it is important to emphasize again here
that the dependency of the appetitive value of sodium or water
on body fluid homeostatic state allows researchers to precisely
examine the interaction between perturbations in physiological
state with mesolimbic dopamine signaling and goal-oriented
behaviors.

Several studies have provided a glimpse into the role of
dopamine signaling in controlling body fluid homeostasis and
drinking behaviors (134–137). However, few have utilized real-
time recording techniques to examine (1) the effects of body fluid
balance on mesolimbic pathways; (2) how changes in body fluid
balance influence different components of motivated behaviors
(i.e., appetitive vs. consummatory); and (3) the neurobiological
mechanisms that underlie state dependent mesolimbic dopamine
signaling. Early lesion studies using knife cuts demonstrated
that cuts medial to the striatum result in severe dopamine
depletion as well as persistent eating and drinking deficits, while
cuts through the ventral and posterior portions of the striatum,
while still impairing animals, had less severe consequences
(134). Given the clear disadvantages of knife cut lesions, it
is difficult to fully attribute these behavioral effects to striatal
dopamine. However, in a separate study, more selective lesions
of SNc-striatal dopamine pathways using 6-hydroxydopamine
attenuated drinking behaviors in response to the thirst promoting
hormone, angiotensin II (135). In pharmacological studies,
dopamine receptor blockade has mixed effects. As such, systemic
dopamine D2 receptor blockade was shown by one group to
decrease the latency to stop drinking (136), while others showed
that similar antagonism produces only modest reductions in
total licking during a drinking session (137). Thus, while these
data suggest a putative role of the mesolimbic dopamine system
in directing drinking in response to perturbations in body
fluid homeostasis, basic pharmacology and lesion studies fail to
capture the subsecond processes involved in phasic dopamine
responses to perturbations in body fluid homeostasis.

To carefully parse the temporal, behavioral, and mesolimbic
components involved in body fluid homeostasis, recent studies
from our laboratory combined real-time recording of NAc
dopamine release via fast-scan cyclic voltammetry with intraoral
delivery of hypertonic saline during varying states of body fluid

homeostasis (138). First, naive rats that had never experienced
hypertonic saline were divided into 3 groups: sodium replete,
deplete, or re-replete (sodium deplete, then allowed to restore
sodium balance). Critically, upon intraoral delivery of hypertonic
saline, only sodium deplete animals exhibited a robust, phasic
increase in NAc dopamine release and this effect was absent in
both replete and re-replete animals. These data are consistent
with previous work demonstrating that (1) the rewarding value
of sodium is highly dependent on the physiological state of
the animal and (2) that animals need not have previous
experience with either sodium depletion or hypertonic saline
for sodium depletion to alter the value of hypertonic saline.
More importantly, these data provide strong evidence that VTA-
NAc phasic dopamine signaling encodes the rewarding value of
sodium in a state-dependent manner. Given the importance of
VTA-NAc phasic dopamine in encoding discrepancies between
predicted and actual outcomes, this study next examined whether
cues associated with intraoral hypertonic saline are also capable
of evoking phasic dopamine responses. Interestingly, the training
history of the rats was critical. Phasic dopamine responses
to sodium paired cues from rats trained only under replete
conditions, were absent even when rats were subsequently tested
under deplete conditions. On the contrary, phasic dopamine
responses from rats trained under deplete conditions were
robust when also testing under deplete conditions. However,
this response appeared flexible and was absent in rats trained
under deplete conditions and tested under replete conditions.
Thus, both innate and learned responses to sodium are
intimately connected with the physiological state of the animal.
Moreover, the findings implicate an important role of VTA-NAc
phasic dopamine in guiding goal-directed behaviors based on
perturbations in body fluid homeostasis.

HOMEOSTATIC SIGNALS ARE RELAYED

TO MESOLIMBIC PATHWAYS

Based on the work described above, changes in physiological
state and homeostatic perturbation have a key role in modulating
mesolimbic pathways and their relevant behavioral outputs.
What remains unclear are the gatingmechanisms that (1) provide
information regarding physiological state to the mesolimbic
system and (2) how mesolimbic pathways integrate and relay
this information. Fortunately, there are many investigations
that provide insight into the mechanisms linking peripheral
signals (e.g., hormonal signaling; post-ingestive feedback) and
mesolimbic circuitry (discussed in Section Homeostatic signals
are relayed to mesolimbic pathways) as well as the transmission
of homeostatic signals through central relays to mesolimbic
pathways (Section Neuronal inputs to mesolimbic pathways that
regulate homeostasis).

Direct Hormonal Influences on the

Mesolimbic Pathway
Receptors for a multitude of feeding related hormones are
expressed throughout the brain including key nodes within
the mesolimbic pathway (77, 139–143). This provides one
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potential and relatively straightforward mechanism through
which perturbations in homeostasis might directly influence
mesolimbic physiology. For example, pharmacological activation
of GLP-1Rs in the VTA, NAc core, and NAc shell reduces
palatable food intake and body weight (144) and affects responses
to drugs of abuse (145–147). Moreover, GLP-1R action within the
VTA can alter phasic dopamine signaling as, in our laboratory, we
demonstrated that LiCl-induced reductions in stimulated phasic
dopamine release can be attenuated by GLP-1R blockade (58)
and that ventricular injections of the GLP-1R agonist, exendin-
4, can reduce cocaine-induced phasic dopamine signaling in
the NAc core (148). These effects appear to be due, in part, to
altered excitatory drive onto dopamine cell bodies as GLP-1R
activation does not alter evoked NAc phasic dopamine release as
measured in ex vivo brain slices (149). Other satiety hormones,
including amylin and leptin, which have effects on food intake
and related behaviors, are also capable of modulating phasic
dopamine signaling. Indeed, in addition to VTA amylin receptor
activation reducing food intake and food motivated behaviors,
amylin receptor signaling in the VTA also reduces NAc core
phasic dopamine release (150). Moreover, NAc core D1/D2
dopamine receptor activation partially rescues the food intake
suppressive effects of VTA amylin receptor activation (151). It
remains possible, though, that some of the effects of amylin
may be either indirect, through action in the area postrema
or via the calcitonin receptor (152). VTA amylin signaling
also synergistically acts with leptin receptor signaling, where
combined activation of receptors for these hormones in the
VTA produces weight loss and hypophagia (153). Leptin receptor
signaling in the VTA, similar to the other satiety peptides
described above, can independently control energy balance and
food motivated behaviors. Intra-VTA administration of leptin
reduces food intake, while knockdown of VTA leptin receptors
results in hyperphagia and heightened sensitivity to palatable
foods (154). The sustained weight loss from VTA manipulation
is yet another example of overlap between the role of the VTA in
homeostatic and reward-related functions.

Interestingly, leptin and insulin signaling in the VTA can
also reduce excitatory synaptic transmission on to dopamine
neurons, attenuate VTA dopamine concentration, and reduce
food motivated behaviors (154–159). Leptin can also exert its
effects on cocaine-seeking behaviors via attenuation of cocaine-
induced increases in NAc dopamine levels (160) and also reduces
dopamine neuron activity (154). Furthermore, ob/obmice, which
lack a functional leptin gene have reduced responses to the
psychostimulant, amphetamine, and have reduced dopamine
release in NAc (155). Overall, these data demonstrate that
leptin not only has an impact on mesolimbic pathways but is
also physiologically critical for the expression of goal-directed
behaviors (for either nutritive or non-nutritive substances) and
appropriate functioning of phasic dopamine signaling. However,
in the case of insulin, there are a few inconsistencies. In
response to insulin, while some have described attenuated
VTA dopamine concentration and reduced excitatory synaptic
transmission (156–158), others have demonstrated increases in
dopamine neuron activity and striatal dopamine release (161,
162). In light of this, the net effect of insulin on phasic

dopamine activity remains unclear. One intriguing proposal is
that local NAc circuits have a critical role in modulating insulin-
mediated phasic dopamine signaling (162). This represents a key
mechanism through which VTA and NAc dopamine signaling
can independently use homeostatic signals to regulate state-
dependent goal-directed behaviors.

Like satiety hormones, peripheral hunger signals can also
directly act within VTA-NAc dopamine systems. Ghrelin, a
stomach-derived hormone that induces feeding in sated rats (and
thus is considered a peripheral “hunger hormone”), not only
has receptors expressed in the VTA and NAc (142), but also
alters phasic dopamine signaling and food motivated behaviors.
Physiologically, ghrelin action in the VTA increases dopamine
neuronal firing, synaptic plasticity, and NAc dopamine turnover
(163). Pharmacological manipulations have demonstrated that
intra-VTA and NAc shell delivery of ghrelin can increase food
intake, however, only VTA ghrelin receptor signaling is effective
in increasing food motivated behaviors (i.e. operant responding
for food reward) (164, 165). One possible explanation for this is
divergent circuitry from the VTA to other feeding relevant brain
regions (e.g., LHA, dorsal striatum). Our laboratory has explored
the effects of central ghrelin signaling on phasic dopamine release
in the NAc. In awake, behaving ad libitum fed rats, delivery
and consumption of sugar pellets reliably evoked modest phasic
dopamine release in the NAc core; this release was significantly
greater in food-restricted rats. Importantly, the effect of food
restriction was recapitulated in ad libitum fed rats that were given
intracerebroventricular ghrelin during the recording session.
Interestingly, this effect was recapitulated by delivery of ghrelin
to the LH (targeting orexin positive neurons) but not the VTA
directly (128)—supporting multi-synaptic processes in driving
phasic dopamine signaling. Furthermore, ghrelin’s ability to
potentiate phasic dopamine release extends beyond primary food
reward, as central administration of ghrelin can also increase
NAc phasic dopamine responses to food-predictive cues (166).
Thus, by integrating hormonal signals directly within VTA-NAc
pathways, mesolimbic dopamine signaling can relay information
relating to both hunger and satiety states to then guide goal-
directed behaviors.

Post-ingestive Caloric Sensing and Cues

That Predict Calories
Besides the role of hormonal signaling within mesolimbic
dopamine pathways, other post-ingestive consequences of
nutrient consumption can impact central neural substrates
and subsequently guide goal-directed behaviors. In regards to
the neural correlates that mediate caloric sensing and cues
associated with calories, mesolimbic dopamine neurons again
arise as potential nodes that integrate and relay post-ingestive
information.

Several investigations have determined that animals can,
independently of taste, use the post-ingestive consequences of
nutrient consumption (e.g., carbohydrates and fat) to generate
cue-reward associations and that these processes are in part
modulated by mesolimbic phasic dopamine signaling (97, 99,
167–171). For example, while animals are able to generate
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preferences for both sucrose and non-nutritive saccharin in
comparison to water, sucrose preference is substantially greater
than saccharin even when matched for sweetness. This is
further emphasized in operant conditioning tasks, where animals
are more inclined to lever press for nutritive substances
(e.g., sucrose) over non-nutritive sweeteners such saccharin
or sucralose. Importantly, in trpm5-/- mice, which lack sweet
taste transduction, these behavioral outcomes persist only
with sucrose, albeit with slower temporal occurrence. These
results further suggest that motivated behaviors can occur
independently of hedonic value, although hedonic value certainly
acts synergistically with nutritional value (169). Furthermore,
using fast-scan cyclic-voltammetry, this study revealed greater
phasic dopamine signals in the NAc core to delivery of sucrose
pellets than to saccharin pellets, suggesting that mesolimbic
phasic dopamine is capable of encoding the nutritive value
of substances (169). This is further supported by studies that
examined cued associations with nutritive or non-nutritive
rewards. From our laboratory, in rats conditioned to associate
cues with the delivery of either sucrose or saccharin pellets,
we found that sucrose cues evoked greater phasic dopamine
release in the NAc core, relative to saccharin cues. Importantly,
this difference was greatest when sucrose and saccharin were
presented on alternate days during conditioning—giving rats the
opportunity to distinguish between post-ingestive consequences
of each type of reward. When the nutritive value of these rewards
was masked by presenting saccharin and sucrose pellets within
the same session, the attenuation of phasic dopamine release
to the saccharin cues, relative to sucrose cues, was reduced
although, interestingly, was not abolished (170, 172). Overall,
these data suggest that while the encoding of hedonic taste
value plays a role in modulating phasic dopamine signaling,
nutritive value of rewards also contributes strongly to these
processes.

Interestingly, mesolimbic dopamine can be highly sensitive to
the precise caloric content of nutrients. Fat, similar to sucrose
and glucose, also elicits post-ingestive feedback mechanisms
that influence goal-directed behaviors (171, 173–175). When
fat is delivered intragastrically, dorsal striatal dopamine levels
increase in parallel with increasing caloric density of fat infusions,
and dopamine receptor blockade impairs an animal’s ability to
regulate caloric intake (176). These data suggest that mesolimbic
dopamine signaling not only regulates caloric sensing, but also
relays a signal reflecting the magnitude of caloric content.

The mechanisms regulating caloric sensing and hormonal
regulation of energy balance, while intertwined, can also exhibit
dissociable processes. In experiments involving intragastric
infusions of glucose, disruption of glucose metabolism with
intravenous 2-DG was shown to reduce striatal dopamine
levels. Interestingly, this reduction was rescued with subsequent
intravenous glucose administration (168). In a separate study,
delivery of low concentrations of glucose into hepatic-portal vein
was shown to increase spontaneous phasic dopamine release
events in the NAc shell (97). Thus, in addition to peripheral
hormonal signals, which relay homeostatic state and taste
information encoding hedonic value, peripheral nutrient sensing
and post-ingestive feedback signals are also critical mechanisms

that regulate mesolimbic dopamine signaling in response to
homeostatic perturbation.

The data described above have covered dopamine signaling
in response to calories in both the dorsal and ventral striatum—
brain regions that have been previously attributed to dissociable
functions in regards to motivated behaviors (177). Indeed,
recent evidence has suggested that dorsal and ventral striatal
dopamine pathways are differentially modulated by caloric
content and hedonic value. As such, intake of non-nutritive
sucralose was shown to increase ventral striatal dopamine levels,
however, increases in dopamine within the dorsal striatum only
occurred when sucralose intake was paired with intragastric
glucose. Moreover, when intragastric glucose infusions were
paired with the taste of a bitter compound, ventral striatal
dopamine was unresponsive, relative to baseline, while dorsal
striatal dopamine levels were augmented (103). Taken together,
these results provide evidence for separate striatal circuits that
regulate hedonic value or post-ingestive reinforcement. However,
questions remain regarding whether hedonic value and caloric
value are processed either through distinct dorsal vs. ventral
striatal pathways or via integrated pathways within these brain
regions. Regional specificity of phasic dopamine signals remains
a subject of intense study (178–180).

NEURONAL INPUTS TO MESOLIMBIC

PATHWAYS THAT REGULATE

HOMEOSTASIS

While physiological state information can be relayed to the
mesolimbic system directly via hormones, the VTA and NAc
also receive extensive neuronal projections from a multitude of
neural substrates that are involved in processing homeostatic
information. This provides an alternative, yet complementary,
mechanism through which physiological state information
is integrated prior to being transmitted to the mesolimbic
dopamine system.

Hindbrain Inputs
Hindbrain neural processes are capable of modulating goal-
oriented behaviors and reward (83, 84, 144). Thus, it is
unsurprising that homeostatic information that is relayed to
hindbrain neural substrates can be transmitted to mesolimbic
dopamine pathways. Indeed, the NTS has a direct projection
to both VTA and NAc (181) and homeostatic feeding circuits,
such as GLP-1 expressing neurons in the NTS, provide input
to the VTA (144). Interestingly, NTS GLP-1R activation alters
the expression of dopamine-related genes in the VTA (182).
These data suggest that, besides direct homeostatic signaling
to mesolimbic circuitry, these signals can be initially gated by
hindbrain processes before being relayed to the mesolimbic
circuits. Further support for this hypothesis can be observed in
animals with lesions to the area postrema (AP) and parabrachial
nucleus (PBN) - while amylin receptor activation can reduce
VTA stimulated dopamine release in the NAc in control animals,
these effects are abolished in animals with either AP or PBN
lesions (152).
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Brainstem subregions that regulate body fluid homeostasis
also have projections to the mesolimbic pathway. Within
the NTS, a subset of neurons expressing 11-β-hydroxysteroid
dehydrogenase type 2 (HSD2) are particularly sensitive to sodium
depletion and signals that relay sodium deficiency (112) and in
turn project to the AP (183). While these HSD2 neurons have
sparse projections to the VTA, there are monosynaptic VTA
projections to the pre-locus coeruleus (pre-LC) and external
lateral PBN (PBel-inner) (184). Importantly, within the pre-LC
and PBel-inner, sodium sensitive neurons that express Forkhead
box protein 2 (FoxP2) have direct projections to the VTA.
Thus, one logical pathway through which sodium deficiency and
body fluid homeostasis is relayed to mesolimbic pathways is via
a polysynaptic pathway that traverses through NTS/AP HSD2
neurons→Pre-LC/PBel-inner FoxP2 neurons→VTA dopamine
neuron circuitry (104).

Midbrain Inputs
Besides hindbrain projections, the VTA also receives extensive
input from midbrain substrates that regulate homeostatic
processes. In particular, the lateral dorsal tegmental area (LDTg)
projections to the VTA (185, 186) have been identified as one
pathway that regulates homeostatic functions and goal-directed
behaviors. Additionally, the LDTg is critical for maintaining
both burst and tonic firing of VTA dopamine neurons (187,
188). Interestingly, animals can be trained to self-administer
optogenetic activation of LDTg inputs to the VTA (189), which
in turn increases NAc dopamine levels (190). Additionally,
excitation of cholinergic or glutamatergic LDTg input to the
VTA produces conditioned place preference for opioids (191).
Overall, these data provide support for LDTg to VTA pathways
in modulating reward, however, whether homeostatic changes
can mediate this pathway remains understudied. Nonetheless,
the LDTg is anatomically poised to use homeostatic signals. The
LDTg receives input from the NTS (192) and expresses receptors
for hormones that regulate energy balance (140, 141). Recent data
have also demonstrated that GLP-1 (193) and amylin receptor
activation (193) in the LDTg reduces food intake and motivated
behaviors. Collectively, midbrain LDTg input to the VTA is
critical for VTA function, and this system reflects yet another
parallel pathway through which homeostasis and reward interact.

Other midbrain inputs to the VTA, including the
pedunculopontine tegmental nucleus (PPTg) can modulate
goal-directed behaviors and putative homeostatic functions.
For example, the PPTg sends cholinergic and glutamatergic
input to the VTA (194–196), modulates burst firing of VTA
neurons (197), and interacts with the VTA, along with other
limbic structures, to regulate reinstatement of cocaine seeking
(198). In the context of homeostasis, others have demonstrated
that PPTg lesions block food conditioned place preference in
food-sated, but not food-deprived rats (199). Moreover, melanin-
concentrating hormone (MCH) and orexin producing neurons
from the LHA send projections to the PPTg (200), although the
role of this pathway in modulating energy balance is unknown.
Thus, while the PPTg appears to have putative roles in regulating
homeostatic balance and goal-directed behaviors, the precise

interactions between PPTg, homeostatic perturbations, and
phasic dopamine signaling remains to be determined.

Forebrain Inputs
Hypothalamic nuclei in the forebrain, as we have briefly
discussed, consist of classic homeostatic neural regulators. In
parallel with hindbrain and midbrain pathways, hypothalamic
brain regions, in particular the lateral hypothalamic area (LHA),
send direct and reciprocal projections to the VTA and NAc
(3, 201–207) and provide another set of circuits through
which homeostatic signals can be relayed to the mesolimbic
dopamine system. Several studies have delved into the role
of LHA-VTA pathways in reward related behaviors, while
others have assessed the relationship between homeostatic LHA
signaling and the VTA. Photostimulation of GABAergic LHA-
VTA pathways results in increased NAc dopamine release
and promotes approach behaviors (208). Interestingly, animals
will self-administer photostimulation of LHA-VTA pathways,
an effect that is mediated by neurotensin transmission (203).
Polysynaptic pathways to the NAc can also modulate reward
seeking. For example, LHA CART (cocaine and amphetamine
regulated transcript) neurons that project to the paraventricular
thalamic nucleus (PVT) promote reward behaviors, which can
then be attenuated by glutamate receptor blockade in the NAc
shell (209).

In the context of homeostatic regulation, there have been some
efforts to delineate the relationship between hormonal signals,
the LHA, and VTA dopamine signaling. The LHA contains a
subpopulation of neurons that produce orexin, a neuropeptide
that interacts with feeding hormones and drugs of abuse (80,
210–223), which then project to many sites throughout the brain,
the VTA among them. It has been demonstrated in vitro that
leptin administration can reduce excitatory synaptic strength
between LHA orexin neurons and the VTA and that these
effects can be attenuated by fasting or high-fat diet induced
obesity (224). Additionally, energy balance can be regulated
through LHA neurotensin neurons that also express leptin
receptors. These in turn modulate local LHA orexin neurons
that subsequently impact mesolimbic pathways (225). Finally, we
have demonstrated in our laboratory that the hyperphagic effects
of central ghrelin administration can be blunted by intra-VTA
administration of orexin receptor antagonist and that ghrelin
injected directly into LHA recapitulates the effect of ICV ghrelin
on phasic dopamine signaling whereas, interestingly, intra-VTA
ghrelin does not (128).

Neurons in the LHA are also sensitive to levels of circulating
nutrients and this may be a route by which nutritional value
is relayed to mesolimbic circuitry (226–229). Along these lines,
MCH neurons in LHA are excited by physiological increases
in extracellular glucose (228). These neurons project to VTA
and optogenetic activation of their terminals biases preference
for the non-nutritive sweetener, sucralose, relative to sucrose.
Interestingly, co-activation of these terminals while mice are
drinking water is not sufficient to shift their preference away
from sucrose, indicating that taste is involved and is presumably
integrated with nutritive value as relayed by MCH neuron
activation. In addition, the same manipulation, activation of
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MCH neuron terminals in VTA, elevates dopamine levels in NAc
(230). Collectively, the data described above are a prime example
of how reward-seeking is modulated by changes to physiological
state and, moreover, show how hypothalamic to VTA circuits
can act in concert with hindbrain and midbrain VTA pathways
to dynamically regulate homeostatic responses and goal-directed
behaviors.

Growing evidence now supports forebrain structures involved
in executive functions such as learning, memory, and decision
making, as sites for homeostatic signaling (14, 231–233). Of
particular interest are pathways originating from the ventral
subregion of the hippocampus (vHP), which have been shown
to interact with phasic dopamine signaling (234) as well as to
integrate homeostatic signals (235–237). For example, ghrelin
administration to the vHP increases food intake and reward
seeking and increases phosphorylated tyrosine hydroxylase
within the NAc (236). Further studies have demonstrated that
vHP ghrelin signaling requires downstream communication to
LHA orexin neurons (238), providing putative evidence for
a polysynaptic pathway between the vHP, LHA, and VTA.
The vHP also has the capability of bidirectionally modulating
feeding behaviors, as GLP-1R signaling in the vHP potently
reduces food intake and motivated behaviors (237). Additionally,
these effects are mediated by vHP to medial prefrontal cortex
pathways (mPFC) (239). The mPFC to NAc projections have
been implicated in a variety of phasic dopamine-related functions
(240–243) and mPFC dopamine signaling has been shown to
have a role in modulating energy balance and feeding (242).
Together, these data provide another polysynaptic pathway (e.g.
VTA→mPFC→NAc) through which homeostatic perturbation
might impact phasic dopamine signaling. Overall, these data
emphasize the notion that pathways that regulate homeostasis
and goal-directed behaviors are remarkably complex, and the
degree to which information regarding physiological state is
relayed to mesolimbic dopamine pathways is not limited to
peripheral, hindbrain, or midbrain input.

CONCLUSIONS AND CONSIDERATIONS

In the current review, we have emphasized the notion that
there is substantial overlap between homeostatic and reward-
related neural processes. More specifically, existing data support
complex, dynamic, and parallel neural pathways that integrate
physiological state and goal-directed behaviors. Accordingly,
mesolimbic phasic dopamine signaling represents one of many
central mechanisms through which these integrative processes
can occur.

However, many questions remain to be addressed. First, the
intricacies between phasic burst firing of VTA dopamine cell
bodies and terminal dopamine release in the NAc are under
evaluation. While we have described heterogeneity of VTA
dopamine neurons in processing positive vs. negative valence,
the electrophysiological activity of individual NAc neurons is
also intimately tuned to either rewarding or aversive stimuli
and can be shaped toward cues that predict these stimuli
(244). Of course, while VTA dopamine neuron activity and

phasic burst firing of VTA neurons robustly mediates terminal
dopamine release and reuptake (22, 245), several investigations
have proposed the notion that NAc neurons are capable of
modulating terminal release of dopamine independently of VTA
cell bodies (24–26). For example, optogenetic activation of
NAc cholinergic interneurons increases extracellular dopamine
(25, 26) that is in turn modulated by the endocannabinoid
system and prefrontal cortical afferents to the NAc (245). In
the context of homeostatic modulation of phasic dopamine
signaling, we have briefly described the effects of insulin on
NAc dopamine release. Data from Stouffer and colleagues have
emphasized the role of cholinergic interneurons (which express
insulin receptors) in modulating the insulin-mediated increases
in dopamine levels within the striatum (162). Collectively, the
possibility of local NAc circuitry and NAc input from other brain
regions in modulating dopamine release should be a focal topic
in conjunction with perturbations in homeostasis.

Next, we have described the ability of phasic dopamine
signaling to respond to a variety of different perturbations to
homeostasis, however, whether the responses of the mesolimbic
dopamine system to varying physiological states utilizes
overlapping or distinct output pathways is unknown. Given the
variety of inputs to the VTA, as we have described above, it seems
highly likely that these inputs are capable of engaging distinct
subpopulations of VTA neurons whose signals are subsequently
integrated to generate a specific behavioral outcome. For
example, in the case of feeding and energy balance, it would
be enlightening to determine whether the receptors for feeding
hormones are co-expressed on the same neuronal populations
within the VTA and how anorexigenic and orexigenic peptides
interact through local VTA circuits to impact phasic dopamine
signaling. In a similar vein, the degree to which perturbations
in body fluid homeostasis can impact mechanisms regulating
energy balance at the level of the VTA should also be examined.
Eating and drinking are intimately linked and it is well known
that eating stimulates thirst and dehydration induces anorexia
[excellently reviewed in (246)]. Moreover, temporal differences
in signaling pathways between this mixture of hormones might
also affect these interactions. Indeed, what is left to be reconciled
is the slow temporal action of peripheral hormone or nutrient
signaling to the brain, relative to the rapid subsecond actions of
phasic dopamine signaling.

In light of the data presented here, the endogenous relevance
of phasic dopamine signaling in regulating behavioral responses
to homeostatic perturbations requires further study. We briefly
describe work that attributes phasic dopamine signaling as
a “teaching signal” that strengthens associations and guides
behaviors toward stimuli that are advantageous for an animal.
Indeed, some have argued that phasic dopamine signaling
is in large part mediating approach/appetitive behaviors
toward cues associated with high subjective utility (e.g.,
incentive salience) as opposed to consummatory behaviors
(47, 50). The question that remains, however, is how the
robust influence of homeostatic perturbation on phasic
dopamine signaling subsequently impacts particular behavioral
components that are related to motivation and goal direction.
One possibility is that homeostatic need states tune phasic
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dopamine signaling to engage appetitive behaviors toward
stimuli that are relevant for the need state. For example, in
a sodium deplete state, this physiological state might tune
phasic dopamine signaling to engage appetitive behaviors
for obtaining sodium, while responses for food reward are
attenuated. Whether VTA-NAc pathways are physiologically
relevant for these behavioral outputs remains to be seen.
Thus, for future studies, researchers might use loss-of-function
experiments (e.g., optogenetic inhibition of dopamine neurons)
to determine what characteristics of goal-directed behaviors (e.g.,
appetitive, consummatory) are impacted during varying states of
need.

Finally, the interaction between sex differences, homeostasis,
and phasic dopamine signaling requires extensive examination.
Several recent studies have demonstrated that the effects of
central homeostatic signaling are sex dimorphic. For example,
female rats have higher levels of LHA ghrelin receptor expression

than males, and acute blockade of LHA ghrelin receptors in
females, but not males, reduces food intake, body weight,

and food seeking behaviors (88). Central GLP-1R activity also

reveals sex dimorphism, where broad activation of GLP-1Rs
results in greater suppression in food motivated behaviors in
female compared to male rats along with interactions with
estrogen signaling (247). Interestingly, these results appear to
vary depending on brain region, as LHA GLP-1R knockdown
or blockade increases food motivation only in male rats (85).
Examination of sex differences in body fluid homeostasis
are also in progress. Recent studies have revealed an effect
of sex on thirst, including increased water intake in male
rats compared to female rats in response to angiotensin II

(248), a lack of desensitization to repeated angiotensin II
administration in female rats (249), and interactions of thirst
and estrogens (250). Thus, future work should examine whether
these sex dimorphisms in homeostatic regulation are reflected in
mesolimbic phasic dopamine signaling.

While questions remain, a putative mechanism arises whereby
neurons in the VTA are readily able to burst fire in response
to homeostatic perturbation and the presence of state-relevant
stimuli (e.g., food, cues predicting food); this in turn modulates
the degree to which phasic dopamine increases occur in striatal
targets—in particular the NAc. The result of the phasic increase
could be to alter ongoing NAc activity as well as plasticity
in the service of guiding motivated behaviors. Future research
conducted with a special emphasis on the impact of physiological
state on mesolimbic dopamine signaling will be critical in
furthering our understanding of maladaptive behaviors with the
eventual goal of effectively treating prominent health issues such
as obesity and drug addiction.
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