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Abstract

Objective.—Here, our objective was to develop a binary decoder to detect task engagement in 

humans during two distinct, conflict-based behavioral tasks. Effortful, goal-directed decision-

making requires the coordinated action of multiple cognitive processes, including attention, 

working memory and action selection. That type of mental effort is often dysfunctional in mental 

disorders, e.g. when a patient attempts to overcome a depression or anxiety-driven habit but feels 
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unable. If the onset of engagement in this type of focused mental activity could be reliably 

detected, decisional function might be augmented, e.g. through neurostimulation. However, there 

are no known algorithms for detecting task engagement with rapid time resolution.

Approach.—We defined a new network measure, fixed canonical correlation (FCCA), 

specifically suited for neural decoding applications. We extracted FCCA features from local field 

potential recordings in human volunteers to give a temporally continuous estimate of mental effort, 

defined by engagement in experimental conflict tasks.

Main results.—Using a small number of features per participant, we accurately decoded and 

distinguished task engagement from other mental activities. Further, the decoder distinguished 

between engagement in two different conflict-based tasks within seconds of their onset.

Significance.—These results demonstrate that network-level brain activity can detect specific 

types of mental efforts. This could form the basis of a responsive intervention strategy for 

decision-making deficits.
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1. Introduction

Deficits in effortful executive function, including cognition, attention, and conflict 

resolution, are a core feature of many mental illnesses [1–6]. Existing treatments for mental 

illness are less than 50% effective, in part because they rarely address these cognitive 

symptoms. Many patients are left with behavioral deficits that impact their ability to 

function normally [7]. Electrical deep brain stimulation (DBS) can directly modulate the 

circuits underlying abnormal behaviors [8] and has been proposed as a more effective 

approach for treating mental illnesses, including major depressive disorder (MDD) and 

obsessive-compulsive disorder (OCD) [9–11]. Randomized clinical trials of DBS for MDD 

and OCD have, however, had mixed results [8, 12–14]. Titrating DBS to achieve a desired 

psychologic effect, an approach commonly called ‘closed-loop’ or ‘adaptive’ DBS (aDBS), 

may be a more effective approach [8, 15, 16]. In a psychiatric aDBS paradigm, detection of 

a specific goal-directed effort could trigger stimulation to modulate neural activity in a way 

that augments executive function during that effort [15, 16]. Stimulating the brain during 

well-defined behavioral states, for example during experimental psychophysical tasks, has 

repeatedly been shown to enhance mental functions, including value judgments and 

associative processes [17–21].

A challenge is that there is no established signature of this cross-cutting concept of 

engagement in mentally demanding tasks, in part because it depends on multiple cognitive 

systems. To complete an effortful task, one must attend to relevant stimuli, hold pertinent 

information in working memory, incorporate past experiences with present context to make a 

decision, and act. A single decision requires multiple interdependent processes, including 

attention, working memory, decision making, and action. As such, these behaviors are not 

encoded in any single region, but instead involve the rapid coordination of multiple brain 

regions and are reflected in the activity of brain networks. Detecting network states 
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associated with task engagement and stimulating during those states could be a more 

efficient path towards aDBS [16].

A particularly useful state to target for intervention is the mental process surrounding 

decision-making during conflict. In controlled laboratory environments, patients with mood, 

anxiety, and developmental disorders show abnormal behavioral and neural responses to 

decisional conflict [22–25]. These abnormal responses may manifest as perseverative 

incorrect responses, slowed reaction times, or impulsive errors [26–28]. In some cases, 

patients appear behaviorally normal, but show markedly abnormal neural responses, 

suggesting that their decision-making circuits are unusually taxed by conflict [24, 29]. Brain 

stimulation applied during conflict can bias decisions and behaviors, suggesting that such 

stimulation can enhance the effortful control required for optimal decisions [17, 30]. Thus, if 

we can identify when a patient is engaged in mental processes related to resolving conflict 

(e.g. including attention, working memory, action selection, etc), DBS could be applied to 

prospectively bias a decision-making process before it begins. Detecting the presence of 

mental states related to task engagement is critical to the therapeutic strategy. Brain 

stimulation delivered during other mental activity might interfere with normal, healthy 

processing or might amplify an abnormality.

A further challenge is that goal-directed efforts, including the resolution of decisional 

conflict, take place over the course of seconds. Task engagement must thus be detected at a 

similarly fine temporal resolution. While motor intent can be decoded at those time scales 

from single units and local field potentials [31–33], there is no known method to decode 

specific mental efforts within seconds of initiation. Additionally, goal-directed states involve 

the coordinated activity of multiple brain areas. Detecting task engagement associated with 

decision-making might thus require broad, multi-site measurement of brain activity. 

Detection would need to be based on efficient computation of high-level neural features that 

describe network-level brain activity [29, 34]. In the present study, we demonstrate such a 

decoder of task engagement using a functional connectivity operator on cortical and sub-

cortical local field potential recordings across up to 30 brain regions. The operator, a 

derivative of Canonical Correlation Analysis (CCA) termed Fixed CCA (FCCA), is a simple 

linear combination of individual channels that can be efficiently applied to successive 

windows of neural data. Considering goal-directed mental efforts during two conflict-based 

tasks, we show that our classification algorithm can accurately distinguish task engagement 

from free behavior on the timescale of seconds. We further show that mental state 

classification can be achieved with a small subset of critical neural features, and that the 

approach can be extended to distinguish between two distinct types of goal-directed effort.

2. Methods

2.1. Study design

We collected an exhaustive sample of all the willing participants during the fixed study 

period.

Research subjects were 17 participants, each with a history of long-standing pharmaco-

resistant complex partial seizures, that underwent clinically-indicated invasive monitoring to 
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confirm seizure focus. Neural activity during task performance was recorded while 

participants were hospitalized awaiting seizures for clinical mapping. The decision to 

implant electrodes and the number, types, and location of implantations were all determined 

on clinical grounds by a team of caregivers independent of this study. Participants were 

informed that participation in the experiment would not alter their treatment in any way and 

that they could withdraw at any time without jeopardizing their clinical care. Each 

participant gave fully informed consent according to study sponsor guidelines, and all 

procedures were approved by the local institutional review board at Partners Healthcare 

(Massachusetts General Hospital) and the Army HRPO.

2.2. Behavioral tasks

Participants performed two conflict-based tasks: the multisource interference task (MSIT) 

and the emotional conflict resolution (ECR) task (figures 1(A)–(D)). Task stimuli were 

presented with Presentation or Psychophysics Toolbox [35–37]. MSIT [38, 39] and the ECR 

task [40] have been designed to reliably and robustly activate networks associated with 

cognitive and emotional conflict, respectively.

MSIT runs comprised one to five 64-trial blocks. During each trial, a fixation cross was 

presented for two seconds followed by an image of three numbers between zero and three. 

One of the numbers, the ‘target’, was different than the other two numbers, the ‘distractors’. 

Participants were given a keypad and instructed that keypad numbers one, two, and three 

represented the numbers one, two, and three on the screen. Participants were then instructed 

to identify the target by pressing the button corresponding to its value, ignoring its position. 

Each trial was considered as ‘congruent’ or ‘incongruent’ depending on difficulty level. If 

the distractor was flanked by invalid targets (zero), the trial was congruent. If the distractor 

was flanked by valid targets, the trial was incongruent. In incongruent trials, the target was 

also out of position relative to its corresponding keypad button [38, 39]. Congruence 

changes from trial to trial were evenly balanced in number and frequency within each block 

(i.e. there were never more than two trials of the same type in a row, and the number of 

congruent trials followed by congruent trials was the same as the number of congruent trials 

followed by incongruent trials, and vice versa).

ECR task runs comprised one to six 64-trial blocks. During each trial, a fixation cross was 

presented for 2 s followed by an image of an emotive face showing happy or fearful 

expressions. Images were drawn from a set of expressions with five identifiable male faces 

and six identifiable female faces [41]. The words ‘FEAR’ and ‘HAPPY’ were overlaid on 

the faces such that the word and expression either matched (congruent) or did not match 

(incongruent) for each trial. The images were presented in a pseudorandom order such that 

the identity, gender, congruence, and valence (fear or happy) did not occur more than twice 

in a row.

The ECR task exposes functional connectivity differences between psychiatric participants 

and healthy controls. Generalized anxiety disorder (GAD) patients are less able to regulate 

emotional conflict during the ECR task than are healthy controls [40, 42]. Likewise, the 

MSIT task exposes functional connectivity differences between major depressive disorder 

(MDD) participants and obsessive-compulsive disorder (OCD) participants relative to 
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healthy controls [43, 44]. These tasks thus not only measure decisional conflict but may 

have relevance for the diagnosis and classification of mental disorders. The tasks were 

selected as part of the development of a larger psychophysical diagnostic battery [15].

Datasets containing less than 20% of data from any class (MSIT, ECR, or non-task) were 

excluded. No outliers were excluded.

2.3. Electrode localization

Electrodes were localized and mapped to standard brain regions using a volumetric image 

co-registration procedure. Using Freesurfer scripts (http://surfer.nmr.mgh.harvard.edu), the 

preoperative T1-weighted MRI was aligned with a postoperative CT. Electrode coordinates 

were manually determined from the CT and placed into the native space [45].

Mapping to brain regions was performed using the electrode labeling algorithm (ELA) 

(https://github.com/pelednoam/ieil). The ELA estimates the probability that a particular 

brain region contributes to the dipoles that constitute the source of the recorded signal. 

Electrodes implanted in the brain receive signals from multiple sources, including white 

matter and gray matter. The ELA identifies the signal source by identifying the probability 

that a given electrode is in a labeled region of the brain (gray matter). A probability was 

assigned to each electrode based on the likelihood that it was in a gray matter region of 

interest, as parcellated using Freesurfer and the DKT (Desikan-Killiany-Tourville) brain 

atlas [46, 47].

2.4. Invasive electroencephalography recordings

Depth electrodes (Ad-tech Medical, Racine WI, USA, or PMT, Chanhassen, MN, USA) with 

diameters of 0.8–1.0 mm and 8–16 2.4 mm platinum/iridium-contacts on each lead were 

stereotactically placed for seizure localization. The participants received bilateral electrodes 

ranging from five to nine electrodes in the right hemisphere, and five to eight electrodes in 

the left hemisphere. Each participant’s electrode montage was determined solely by clinical 

mapping considerations.

Intracranial local field potential (LFP) recordings were acquired using one or two neural 

signal processor (NSP) recording systems (Blackrock Microsystems Inc., Salt Lake City, 

UT) at a sampling rate of 2 kHz. Table S1 (stacks.iop.org/JNE/16/056015/mmedia) includes 

a summary of the invasive electroencephalography (iEEG) LFP recordings collected per 

participant. Depth recordings were referenced to one scalp EEG electrode during 

acquisition.

2.5. Data preprocessing and signal conditioning

Data analysis was performed using custom analysis code in Matlab (MathWorks) and 

Fieldtrip [48]. All data were down-sampled to 1000 Hz and demeaned relative to the entire 

recording. Line noise and its harmonics up to 200 Hz were removed by subtracting a 

bandpass filtered signal from the raw signal on each channel. Neighboring channels were 

bipolar referenced relative to one another to reduce the effects of volume conduction [49].
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2.6. Channel selection

Channels that exhibited excessive line noise or no discernible signal were removed from the 

analysis. Based on clinical reports and on visual inspection, electrodes surrounding the 

epileptic focus and/or exhibiting abnormal activities were also excluded.

2.7. Feature estimation: fixed canonical correlation and coherence analysis

A derivative of traditional canonical correlation analysis (CCA), fixed canonical correlation 

analysis (FCCA) and fixed canonical coherence analysis (FCHA) was used to estimate 

functional connectivity between regions over time. Here, traditional CCA was modified 

using the equation described below to apply a fixed projection space across all observations 

to compare feature estimations over time.

First, channels were organized into corresponding regions of interest based on electrode 

localization results. For example, regions X and Y contain two groups of signals that vary 

with time, t. The number of signals included in regions X and Y was determined by the 

minimum number of signals mapped to region X and region Y by the ELA. In this way, the 

same number of signals was considered for each region. Time domain inputs result in 

canonical correlation estimates, and frequency domain inputs result in canonical coherence 

estimates. Frequency domain inputs are a continuous power signal averaged over frequency 

bands of interest (4–8 Hz, 8–15 Hz, 15–30 Hz, 30–55 Hz, and 65–200 Hz) after time-

frequency decomposition using Morlet wavelet decomposition using the 

‘ft_specest_wavelet’ function in Fieldtrip (width = 3, gwidth = 7) [48].

For two sets of data, X[=] p × n and Y[=] p × n, covariance matrices were defined as Cov 

(X)= ΣXX = XXT and Cov (X, Y)= ΣXY = XYT, where Cov (Y, Y)= ΣYY = XY. For 

coefficient vectors a and b, G and H are defined as linear combinations of X and Y, where 

G = aT * X and H = bT * Y. The goal is to find the optimum linear combination of the 

measurements within each set, such that the resulting series are maximally correlated. 

Correlation between X and Y can be written in terms of the variance and covariance:

ρ = aTXTYb
(aTXTXa)(bTYTYb)

. (1)

As a continuation of equation (1) described above, two sets of data, X and Y, can be reduced 

using singular value decomposition, where X = UXΣXVX and Y = UYΣYVY. The simplified 

solution of the maximization problem can be found by computing: 

QXY = Cov(X) * Cov(X, Y) * Cov(Y , Y), which simplifies to:

QXY = UXVX
TVYUY

T . (2)

QXY can be reduced using singular value decomposition, where a and b can be defined in 

terms of the covariance of X and Y, and the singular value decomposition of QXY:
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QXY = UQΣQVQ . (3)

The principal vectors of a and b can be used to define a fixed basis or projection space 

where:

a = XXTUQ (4)

b = YYTVQ (5)

Thereafter, Fixed Canonical Correlation and Coherence values can be calculated for any new 

sample of data via a simple multiplication step (equation (1)).

2.8. Classification

2.8.1. Class label assignment.—Data were windowed using a four second window 

sliding every two seconds. Each four second window of data was labeled as ‘task’ or ‘non-

task’ depending on whether the participant was actively engaged in the MSIT and ECR 

behavioral tasks. Task engagement was defined by periods where the task was on the 

presentation monitor, (i.e. both image presentation and fixation periods are included in the 

‘task’ label assignment). A three-second buffer was placed at the start and end of ‘task’ 

periods to allow for ramp-up and ramp-down periods (i.e. the three seconds before and after 

the task began and ended were labeled as ‘task’). The length of ‘task’ periods are determined 

by the number of task blocks the participant agreed to participate in. ‘Non-task’ labels were 

assigned to portions of the recording collected immediately before and after task 

performance, as well as during any breaks the participant opted to take between task blocks. 

This decision was based on our assumption that these free-behaving data interleaved with 

periods of blocked task engagement are well suited for functional connectivity estimations 

of the unique features of the task state [50]. The length of ‘non-task’ periods was arbitrarily 

determined by the number and length of breaks the participant opted to take during the 

experiment. During ‘non-task’ periods, the participant was behaving freely and was not 

engaged in the task. Common free behaviors included asking questions of the experimenter, 

conversing with family members, using a smartphone or tablet recreationally, and toileting. 

Task blocks only were used to compute the fixed projection spaced described in equations 

(4) and (5).

2.8.2. Classification model and prediction.—A support vector machine (SVM) 

classifier with a linear kernel was designed using the LIBSVM Matlab implementation [51]. 

FCCA and FCHA features and corresponding ‘task’ versus ‘non-task’ class labels were used 

as classifier input.
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2.8.3. MSIT versus ECR versus non-task classification model and prediction.
—A multiclass error-correcting output codes (ECOC) model was designed using the Matlab 

function, ‘fitcecoc’. Three binary SVM models were trained using one versus one coding 

design, such that one class is positive, one class is negative, and the other is ignored. FCHA 

and corresponding ‘ECR task’, ‘MSIT’, and ‘non-task’ class labels were used as classifier 

input. The one versus one coding scheme applies a majority voting scheme to determine the 

predicted label of new observations.

2.8.4. Feature selection.—For MSIT versus non-task feature selection, training set 

features were correlated with class labels, and the top 25 correlated features across all 

frequency bands of interest were run through a greedy-like feature selection process. This 

was done under the assumption that the features most correlated with class labels would 

typically align with the optimal features selected through the greedy-like process. For 

example, consider a feature set of size n. During our greedy-like feature selection process, 

classification accuracy is re-calculated for the feature set (of size n − 1) after each feature is 

removed, and subsequently replaced. The feature whose removal retains maximum 

classification accuracy is then removed, and the process is repeated until the size of the 

feature set is one. Optimal features were defined as the feature set that yielded maximum 

classification accuracy, up to five features. Feature sets from all frequency bands were 

included in feature selection.

MSIT versus ECR versus non-task feature selection was conducted in the same manner as 

MSIT versus non-task feature selection, using the top 50 correlated features across all 

frequency bands of interest. Up to 25 optimal features were chosen to achieve optimal 

classification performance.

2.8.5. Time resolution of state transition detection.—Multi-task datasets (MSIT 

versus ECR versus non-task, N = 4) were used to evaluate the time resolution of detecting 

state transitions. The classifier was trained on four fifths of the dataset and tested on the 

entire dataset. Testing on the entire dataset was necessary to capture the data before, during, 

and after transitions from one state (e.g. MSIT) to another (e.g. ECR) in chronological order. 

Based on the predicted class labels, the percent of transitions that were detected within 10 s 

of state onset was quantified. Of these successful detections, the mean amount of time 

between state onset and detection was quantified offline.

2.8.6. Evaluation of decoder stability.—Four participants, P6, P9, P13, and P15 

completed two sessions of the MSIT, and three participants, P6, P12, and P13, completed 

two sessions of the ECR task, where sessions were separated by at least four hours. 

Classification performance and feature selection were compared within participants over 

both sessions of each task. Only bipolar electrodes present in both recordings after 

preprocessing were included in the analysis. For example, if an electrode was included in the 

first recording session and eliminated during the second recording session (e.g. due to 

excessive line noise), the electrode would be excluded in both test datasets. The stable basis 

space required for feature selection was determined from only the training set.
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To improve classification performance, stable, discriminative features were defined under 

two conditions: (1) task and non-task FCHA values must be significantly different during 

both the first and the second recording session (α < 0.05), (2) task and non-task FCCA and 

FCHA values must be consistent (not significantly different within a data type) between the 

first and second recording session (α > 0.05). For each participant, features were identified 

that met the stability conditions using only training set data.

2.9. Statistical analysis

2.9.1. Cross validation.—Classifier performance was assessed with a five-fold cross 

validation strategy. The time series of features was separated into five folds. Four folds were 

used for training and the remaining fold was used for testing. This process was repeated until 

every fold was used for testing.

For multi-session classification, four fifths of data from the first recording session and four 

fifths of the data from the second recording session was used for training. The remaining 

fifths from each session were used for testing. This process was repeated until every fold 

was used for testing.

2.9.2. Class balancing.—Task data exceeded non-task data for 18 of 24 recording 

sessions analyzed. To balance unequal ‘task’ and ‘non-task’ class sizes, a data-level 

approach agnostic of the classification algorithm was used. The class of smaller size was 

augmented by random oversampling with replacement within the training set and testing set 

to make up the difference between class sizes [52]. To preserve the chronological structure 

of the data during classification, the feature set was windowed before training and testing set 

labels were assigned. The supplemental feature set was then concatenated to the original 

feature set. Datasets with less than 20% non-task data were dropped from analysis (7 

recording sessions).

2.9.3. Construction of confidence intervals and chance classification 
performance.—Five-fold cross validation and class balancing was bootstrap-resampled 

1000 times with replacement for construction of confidence intervals. Accuracy, true 

positive rate (sensitivity), true negative rate (specificity), false positive rate, and false 

negative rate were calculated on each iteration of the five-fold cross validation strategy to 

gauge classifier performance. Task observations were designated as the positive class, while 

non-task observations were designated as the negative class. Classification performance due 

to chance was calculated by shuffling class labels before class sizes were balanced. Labels 

were randomly assigned in a way that preserved original class sizes before classes were 

balanced. The median accuracy across the 1000 repetitions of five-fold cross validation was 

reported for each participant for true and shuffled labels in figures 2(A)–(C).

2.9.4. Hypothesis testing.—The Wilcoxon Rank Sum test was used to compare 

median SVM accuracy across different feature types for each participant (α < 0.05). 

Bonferroni correction was used to adjust p-values with a factor of 21 (seven choose two, i.e. 

the number of possible pairwise comparisons). The Wilcoxon Rank Sum test was also used 

to test for separation from chance by comparing median SVM accuracy for true and shuffled 

Provenza et al. Page 9

J Neural Eng. Author manuscript; available in PMC 2019 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



labels for each feature type. The Bonferroni correction here was a factor of 7, i.e. the number 

of different analyses performed.

The binomial test was used to determine if optimal features in a particular frequency band of 

interest were more likely to occur than what would be expected by chance (α < 0.05). 

Assuming that optimal features in each of the five frequency bands of interest are equally 

likely to occur due to chance, binomial probability is 0.2.

3. Results

3.1. Participants accurately performed psychophysical tasks during invasive 
electroencephalography recordings

Local field potentials (LFP) were recorded from the brain via intracranial 

electroencephalography (iEEG) (table S1) while 17 participants performed the Multi-Source 

Interference Task (MSIT) (figures 1(A) and (B)), emotion conflict resolution (ECR) task 

(figures 1(C) and (D)), or both. The participants performed the tasks correctly with high 

accuracy (figures 1(E) and (F)), and showed expected conflict effects on behavior (figures 

1(G) and (H)) [38, 41]. Median accuracy for MSIT congruent and incongruent trials was 

100% ± 2.47% and 97.1% ± 5.52% respectively, and median accuracy for ECR congruent 

and incongruent trials was 93.0% ± 13.3% and 86.4% ± 21.8% respectively. LFP data was 

labeled according to whether the participant was engaged in MSIT, ECR, or non-task free 

behavior. Each iEEG electrode contact was assigned to an anatomic region of interest label 

(ROI, figure 1(I)), and fixed canonical correlation (FCCA) and fixed canonical coherence 

(FCHA) network features were extracted from the LFP. The dataset was balanced to ensure 

an equal number of observations in each class. FCCA and FCHA features were then fed to a 

support vector machine (SVM) classifier to distinguish task engagement from free behavior 

(figure 1(J)).

3.2. Fixed canonical correlation and coherence features distinguish task engagement 
from free behavior

We quantified SVM performance by how accurately, sensitively, and specifically the decoder 

detected task and non-task states. FCCA and FCHA features accurately decoded task 

engagement in humans performing two conflict tasks, MSIT (N = 14) and ECR (N = 12) 

(figures 2(A) and (B); table S2 and S3). FCCA time-domain features classified behavior 

significantly above chance. Classification performance was similar for FCHA, the 

frequency-domain analogue (tables S4 and S5), where we subdivided the frequencies into 

bands identified to be behaviorally relevant (4–8 Hz, 8–15 Hz, 15–30, 30–55 Hz, 65–200 

Hz). Median accuracy for MSIT versus non-task classification using FCCA and FCHA 

features across all frequency bands was 70.94% ± 6.41% and 74.10% ± 8.69%, respectively. 

Median accuracy for ECR versus non-task classification using time domain features and all 

frequency domain features was 71.70% ± 5.97% and 69.68% ± 5.58%, respectively. There 

was no significant difference between time-domain and frequency-domain classification 

results when using all frequency bands of interest. Further, decoding from power (as 

opposed to FCHA) features was at chance performance (MSIT versus non-task and ECR 

versus non-task classification of 50.34% ± 3.58%, and 50.05% ± 3.41%, respectively, figure 
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3). This verifies that the effortful processes we sought to decode require a network-level 

analysis.

Limiting features to individual frequency bands of interest did not improve and in some 

cases decreased classification performance (figures 2(A) and (B)). Pertinent information for 

decoding task engagement is not encoded in any single frequency band, and the encoding 

appears to be idiosyncratic to each participant. Performance was greater for correctly 

identifying non-task states than task states, i.e. specificity exceeded sensitivity (figures 2(C)–

(F)). This may be explained by the relative frequency of the two states. The difference 

between sensitivity and specificity across participants had a positive, linear relationship with 

the number of observations in each class in the dataset before class balancing (figure 4). For 

datasets with close to an equal number of task and non-task observations before class 

balancing (e.g. Participant 14), the discrepancy was close to zero. Further, to correct for any 

possible distortion induced by our class resampling [52], we repeated the analysis shown in 

figure 2 using a balanced accuracy metric [53], which mitigates this limitation at the cost of 

lower statistical power. Bonferroni corrected P-values were overall closer to 1, but still above 

chance for MSIT versus Non-task classification using all FCCA and FCHA features, and 

ECR versus Non-task classification using FCCA features, and 4–8 Hz and 8–15 Hz FCHA 

features (tables S6 and S7).

3.3. A subset of optimal frequency domain features maintains decoder performance

Next, we were interested in isolating a small number of important features for classifying 

task and non-task activity without a significant loss in accuracy. We noted that some 

canonical features showed visible changes at task-state boundaries (figure 5(A)), and 

reasoned a small number of that these strongly modulated features might be sufficient for 

decoding. We identified features that strongly correlated with task-states through a 

principled approach involving iterative feature dropping (figure 5(B)). Classification with 

the optimal time-domain and frequency-domain features exceeded chance (MSIT versus 

non-task time: P = 7.8 * 10−18; MSIT versus non-task frequency: P = 4.0 * 10−13; ECR 

versus non-task time: P = 2.4 * 10−19; ECR versus non-task frequency: P = 6.4 * 10−21, 

Wilcoxon signed rank test) (figure 5(C)) and was equivalent to classification with all 

features. Frequency domain features yielded greater median performance than using time 

domain features, however this difference was not significant (MSIT time versus frequency: P 
= 0.22; ECR time versus frequency: P = 0.56, Wilcoxon signed rank test). Between one and 

five FCHA features per participant yielded optimal performance. Median accuracy for MSIT 

versus non-task classification and ECR versus non-task classification using up to five 

optimal FCHA features was 78.10% ± 7.39% and 78.97% ± 7.36%, respectively (figure 

5(D)). Next, we sought to identify trends in optimal features across patients for 

distinguishing MSIT and ECR from non-task.

Certain features were highly discriminative across both tasks (figure 5(E)). Each FCHA 

feature incorporates three variables: two ROIs, and the frequency band of connectivity 

between them. Trends in optimal features were assessed by (1) the number of optimal 

connections between region pairs pertaining to each individual frequency band, and (2) the 

degree of connectivity to each ROI, agnostic of frequency band. Across patients, the 4–8 Hz 

Provenza et al. Page 11

J Neural Eng. Author manuscript; available in PMC 2019 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



frequency band distinguished MSIT, while the 65–200 Hz frequency band distinguished 

ECR (figure 5(F)). After normalizing with respect to the average number of electrodes 

implanted in each ROI, we identified ROIs with a high degree of connectivity as measured 

by FCHA features (points beyond one standard deviation above the trendline, figure 5(G)). 

These ROIs by definition have unusually high influence over decoding. Connectivity to/ 

from the ventrolateral prefrontal cortex (vlPFC) distinguished both tasks from the non-task 

state. The amygdala and temporal lobe showed a greater degree of connectivity during the 

MSIT than the ECR task, while the lateral orbitofrontal cortex (lOFC) and hippocampus 

showed a greater degree of connectivity during the ECR task than the MSIT. Differing 

optimal features for detecting MSIT and ECR suggest that it is possible to distinguish 

between the two.

3.4. Decoder distinguishes two distinct modalities of conflict-based tasks

Changes in canonical coherence estimates can also distinguish between MSIT and ECR 

despite the similarity of these tasks. MSIT versus ECR versus non-task decoder accuracy 

using all FCHA features was significantly greater than chance performance (P = 0.028, 

Wilcoxon signed rank test). Decoding with a subset of 25 optimal FCHA features was again 

non-inferior in terms of accuracy to all features (P = 0.2, Wilcoxon signed rank test), and 

was numerically slightly better (figure 6(A)). The dlPFC and caudate were implicated across 

participants for distinguishing between these task states, however our sample size was small 

due to the unique alternating task design (N = 4). Median non-task detection rate, MSIT 

detection rate, and ECR task detection rate using optimal canonical coherence features was 

49.17% ± 6.80%, 75.18% ± 5.42%, and 87.60% ± 4.07%, respectively (figure 6(B) and table 

S10). In this way, the decoder could be applied across time to detect the type of mental 

activity in which a patient is engaged, moment to moment (figure 6(C)). The lag between 

state onset and detection for the transition to MSIT, ECR, and non-task states was quantified. 

The decoder successfully detected 82.2% ± 15.34% of the state transitions. Of the successful 

detections, the decoder detected state transitions within 1.30 s ± 2.15 s after state onset.

3.5. Subhead 5: decoder features and classification are stable between sessions

In addition to distinguishing between multiple tasks, another important consideration for a 

translatable decoder is stability over time. In a subset of participants (MSIT n = 4, ECR n = 

3), the same task was performed during two recording sessions separated by at least four 

hours. We extended our automatic feature selection approach to identify highly stable 

features, defined as those that discriminated task from non-task but did not change 

substantially between recording sessions (figures 6(D) and (E)). These ‘optimally stable 

features’ showed classification above chance on a held-out dataset containing data from both 

recording sessions (figure 6(F)), (MSIT versus non-task: P = 0.029; ECR versus non-task: P 
= 0.029, Wilcoxon signed rank test). Classification using all features, by contrast, did not 

exceed chance performance (figure 6(F)), (MSIT versus non-task: P = 0.51; ECR versus 

non-task P = 0.70, Wilcoxon rank sum test).
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4. Discussion

The ability to productively engage in and complete goal-directed behaviors is critical for 

mental function and is impaired for persons with mental illness [54]. Detecting when 

someone is engaged in a specific goal-directed behavior could be used as a control signal to 

trigger stimulation and augment executive function during that behavior [15, 55]. Here, a 

decoder was developed to discriminate free behavior from engagement in two distinct 

conflict-based tasks. A modified version of canonical correlation and coherence analysis, 

FCCA and FCHA, extracted neural features related to goal-directed behaviors during 

decisional conflict. These network-level neural features, particularly in the frequency-

domain, successfully distinguished periods of task engagement from free behavior. Network 

level analysis was necessary: band-power features at the single electrode level yielded 

decoding accuracies that were effectively at chance (50%) performance. Decoder 

performance was maintained even when using five or fewer optimal features per participant. 

The algorithm distinguished two very similar mental tasks within a single recording session 

in all four participants with available data for task comparison. Further, stable features were 

identified across two temporally separated recording sessions that enabled accurate detection 

over multiple days.

We propose that detecting distinct mental states related to task engagement is a viable 

approach for enabling aDBS for psychiatric illness. Here, we define task engagement as a 

global state that encompasses many well-studied, discrete processes, including perceptual 

judgement, object recognition, working memory, goal representation, and action selection. 

We have provided a proof-of-concept demonstration using behavioral tasks related to 

decisional conflict. In future clinical applications, when a patient is engaged in mental 

efforts related to decisional conflict, our decoder could be used to trigger stimulation that 

would improve the chance of an adaptive, healthy response. Alternatively, our decoder could 

act as a higher-level controller, where detection of efforts to resolve decisional conflict 

would then trigger a second closed-loop algorithm that determined whether the ongoing 

behavior was more likely to be healthy or pathological. We have described prototypes of 

such ‘lower level’ closed-loop stimulation algorithms in other recent work [15, 56, 57].

The ability to make fine-grained discriminations is necessary for aDBS applications [16]. A 

critical feature of our work is that it can identify task engagement within seconds of onset, 

unlike past classifiers. Canonical correlation and coherence have been used to infer brain 

network connectivity during periods of speech and rest [58]. Cognitive states have been 

decoded from EEG with synchrony operators [59]. Neither of those prior efforts achieved 

time resolution—both worked only with blocked analysis of many trials. By adding a 

stabilized, fixed linear operator (the ‘F’ of FCCA and FCHA), we enable discrimination by 

repeatedly applying the same operator to successive neural data samples. During multi-state 

decoding, the decoder successfully detected 82.2% ± 15.34% of the state transitions within 

10 s of state onset. Further, of the successful detections, the decoder detected state 

transitions within 1.30 s ± 2.15 s after state onset. Fine-grained temporal resolution would be 

essential to successful aDBS, since individual decisions are usually made over the course of 

a few seconds.
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We found that network functional connectivity features at particular frequency bands of 

interest strongly distinguished task engagement from non-task states, while power frequency 

features computed at the single electrode level did not distinguish task from non-task 

behavior. Recent work has shown that network features are essential for distinguishing other 

complex behavioral states, specifically variation in mood over time [60]. During both tasks, 

discrimination was strongly driven by connectivity to and from the ventrolateral prefrontal 

cortex (vlPFC). vlPFC is implicated in cognitive control, task switching, and working 

memory. vlPFC shows fMRI activation during MSIT, along with the dACC, dlPFC, and 

superior parietal cortex [38, 61]. 4–8 Hz oscillations, which in our analysis discriminated 

MSIT from free behavior, are strengthened in vlPFC when patients receive DBS that 

enhances MSIT performance [55]. The amygdala and temporal lobe were highly 

discriminative during the MSIT, while the lateral orbitofrontal cortex (lOFC) was highly 

discriminative during the ECR task. The lOFC is implicated in making choices that involve 

response suppression, and is inhibited in response to presentation of angry faces. lOFC 

activation is not typically associated with the ECR task via fMRI [41, 62], but has recently 

been shown to be involved in emotion processing through acute neurostimulation studies 

[63]. These results suggest that by virtue of its coarse temporal resolution, non-invasive 

imaging may not fully capture neural dynamics important to task processing. However, like 

fMRI, FCCA and FCHA are not directed connectivity metrics. Future studies could explore 

directed connectivity metrics akin to recent results studying feedback learning during MSIT 

[34].

One might expect that optimal features would align with oscillatory activity that has been 

implicated in conflict resolution (e.g. mid-frontal theta band activity) [64–67]. FCHA 

features in the theta band were particularly prevalent among the identified subset of optimal 

features for MSIT detection. However, FCHA features in the high gamma band (65–200 

Hz), and not the theta band, were prevalent in the optimal features for discriminating ECR. 

Thus, the neural signature of task engagement is broader than the neural signature for 

conflict resolution during high interference trials. Further, our analysis was not designed to 

identify neural signatures of conflict. A decoder focused on that problem would specifically 

try to discriminate high-from low-conflict trials (a ‘contrast’ approach). We created decoders 

that detect the activity common to high- and low-conflict trials, i.e. that detect the general 

state of focus on decisional conflicts. This is a different approach than the classic contrast 

analysis used in cognitive electrophysiology, and thus we expect it to yield different results.

Likewise, one might expect that optimal features for detecting task engagement would align 

with the brain regions involved in the default mode network. Task and rest are distinguished 

in fMRI studies by the activity of the default mode network, a resting-state network with 

hubs in posterior cingulate cortex, the medial prefrontal cortex (mPFC), parietal lobe, and 

medial temporal nuclei [68, 69]. Optimal features did not overlap with default mode 

network, as it is typically defined by periods of explicit quiet rest. Non-task periods here 

were freely chosen behaviors that consist of mostly non-effortful mental activities, e.g. 

watching television or light conversation. No electrodes were implanted in the vACC during 

our study, however, and connectivity to the posterior cingulate or mPFC did not distinguish 

task engagement.
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Task engagement could be accurately decoded with a small number of optimal features. We 

show that the method we propose can be implemented with as few as five FCHA or FCCA 

features per participant (figure 5(C)) that span a total of four to nine ROIs (tables S8, S9 and 

S11). When we consider that a single linear lead/shank can easily sample 3 to 4 brain 

structures (figure 1(I)), the proposed method could easily be implemented with two–three 

total leads per brain hemisphere. The use of two implanted leads per hemisphere is now a 

common research practice and has been used to produce additional clinical benefit in some 

patients [33, 70–72]. Feature selection could reduce the decoder’s computational 

requirements to a level suitable for real-time use, including in an implanted system. The 

reduced-feature decoders shown in figure 5 could process a single four-second window of 

data on a mid-grade commodity desktop PC in 50 ms. Existing closed-loop systems are 

limited, but next generation neural implants will likely have more computing power and 

capability and may be able to implement an algorithm that detects mental states based on 

network connectivity [73–75].

Also relevant to the design of future untethered systems, the optimal features differed across 

tasks and participants. The former was an expected result, as the MSIT and ECR tasks are 

similar, yet distinct. The ECR tasks involves substantial additional emotional processing and 

regulation components that the MSIT does not elicit [38, 39, 41]. The differences in optimal 

features among participants may be due to variability in the numbers of electrodes and their 

precise location within each brain region. Decoder performance was not, however, 

dependent on any one implant scheme. Successful decoder performance across participant 

specific electrode montages suggests that the networks involved in task-related brain states 

are broad and specific types of mental activity needed to perform conflict-related tasks is 

only present at the network level. In other words, a standard clinical implant montage with 

sufficiently broad coverage should support FCCA and FCHA decoding of a variety of goal-

directed efforts. Moreover, while electrode placement was clinically variable, it is still quite 

possible to map electrodes to homologous regions across subjects, as we demonstrated here 

using our previously published electrode localization algorithm. We have successfully 

deployed this approach in other investigations, e.g. [76], as have other research groups using 

different approaches to assign electrodes to homologous regions [77].

Decoder stability is also important for translation; the ideal decoder would not require 

manual, daily re-calibration. Simply training on data from two temporally separated 

recording sessions was not sufficient to predict task engagement above chance levels. 

Identifying stable features through a principled statistical approach, however, recovered 

performance above chance. The multi-session classification was still slightly less accurate 

than single-session classification. This suggests that non-stationarities may exist in the data. 

These could arise from physical movement of electrodes, dropped signals, changes in 

recorded neural activity due to the evolving foreign body response, or variance in task 

performance on different days. Such non-stationarities may not present such a challenge in 

patients receiving a chronic implant, where the device-tissue interface can stabilize over 

weeks [78]. Further, training a classifier on more temporally separated data should improve 

stability. In the motor brain computer interface (BCI) field, iEEG recording sessions 

collected over tens to hundreds of days produce more robust and stable decoders [79–82]. 
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The motor BCI field has already developed several approaches to decoder stabilization, 

adaptation, and long-term recalibration [83–85].

In addition to improving decoder stability, expanding the breadth of non-task related brain 

states used to train the classifier could strengthen classification performance over a wide 

range of activities and potentially improve stability. Here, our non-task periods involved free 

behavior that was not standardized across participants. This variability may have led to 

variability in results across participants. However, despite the non-uniform activities during 

non-task periods, the classifier was able to distinguish task engagement with high accuracy 

both within sessions and across days. Further, we expect that training the classifier during a 

wide array of non-task related brain states will strengthen the stability of the classifier over 

time. That is, when considering whether to activate an aDBS algorithm that may 

dramatically alter a patient’s learning or self-regulation capabilities, it is critical to know 

when not to deploy that algorithm. Our approach leads to classifiers that emphasize 

specificity of detecting the task state, exactly what is needed for this application. That 

specificity is evident in the greater accuracy of classifying the non-task periods relative to 

the task periods, despite the fact that non-task is both more heterogeneous and the minority 

class in this dataset. One challenge in including a wide array of non-task data is that task-

related networks may spontaneously reactivate during rest. Capturing a wide variety of 

activities during non-task state recordings will likely be important for training and 

stabilizing the classifier over time.

The decoding methods we have described may apply to many more contexts than the two 

specific tasks analyzed here (e.g. reward evaluation, evidence accumulation, learning, 

arithmetic, etc) as the decoder performs well for multiple conflict tasks and distinguishes 

between tasks. The generalizability of this approach will, however, need to be demonstrated 

in future studies using a broader cognitive task battery with emphasis on non-conflict tasks. 

Beyond aDBS, effortful cognitive state detection could be useful for monitoring of coma or 

states of altered consciousness, rehabilitating cognitive function after strokes, or 

performance monitoring in high stakes operational environments. While more development 

is required before clinical translation, stable, sensitive, and specific detection of goal-

directed efforts could ultimately be used to drive DBS or other time-dependent interventions 

and improve the lives of psychiatric patients.
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Figure 1. 
Behavioral setup/outcomes, neural recording montage, and classification pipelines for real-

time task detection. (A) MSIT congruent trial. The value of the target matches its position, 

and the value of the distractor, ‘0’, is not a response option. (B) MSIT incongruent trial. The 

value of the target does not match its position, and the value of the distractor, ‘1’, is a 

response option. (C) ECR congruent trial. The overlaid text, ‘HAPPY’, matches the emotion 

on the face. (D) ECR incongruent trial. The overlaid text, ‘HAPPY’, does not match the 

emotion on the face. (E) MSIT accuracy decreased during cognitive interference (P = 7.2 * 

10−3, Wilcoxon signed rank test). (F) ECR accuracy did not change during cognitive 

interference. (G) MSIT reaction time increased during cognitive interference (P = 4.1 * 10−5, 

Wilcoxon signed rank test). (H) ECR reaction time increased during cognitive interference 

(P = 2.1 * 10−3, Wilcoxon signed rank test). (I) Reconstruction of electrode placement in 13 

regions of interest (ROIs) for Participant 14 (NAcc: nucleus accumbens, amyg: amygdala, 
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caudate, hipp: hippocampus, dACC: dorsal anterior cingulate cortex, dlPFC: dorsolateral 

prefrontal cortex, dlPFC: dorsomedial prefrontal cortex, insula, lOFC: lateral orbitofrontal 

cortex, mOFC: medial orbitofrontal cortex, postCC: posterior cingulate cortex, temporal 

lobe, vlPFC: ventral lateral prefrontal cortex). (J) Classification pipeline. Neural recording is 

labeled as either non-task, MSIT, or ECR. Functional connectivity between regions is 

assessed via fixed canonical correlation analysis (FCCA) and Fixed Canonical Coherence 

Analysis (FCHA). FCCA and FCHA features are computed across the entire recording on 

windowed neural data. A support vector machine (SVM) is trained to predict whether the 

participant was engaged in MSIT, ECR, or non-task.
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Figure 2. 
Canonical correlation and coherence features enable task versus non-task classification for 

the MSIT and ECR task. (A) and (B) Boxplots show decoder performance in terms of 

accuracy for MSIT versus non-task classification and ECR versus non-task classification for 

true labels and shuffled labels. Colored points show individual participant results. Gray 

shaded area represents the confidence interval for chance classification performance. 

Asterisks indicate bands where classification significantly exceeded chance after correcting 

for multiple comparisons. SVM classifier performance was assessed by training the 

classifier with FCHA features from different frequency bands of interest (4–8 Hz, 8–15 Hz, 

15–30, 30–55 Hz, 65–200 Hz), features from all the frequency bands of interest, and time-

domain FCCA features. P-values from significance testing are included in tables S4 and S5. 

(C)–(F) Diagnostic tables show median true positive rate, false positive rate, true negative 

rate, and false negative rate for MSIT versus non-task classification and ECR versus non-

task classification using FCHA features from all frequency bands (C) and (D) and FCCA (E) 

and (F).
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Figure 3. 
Power-frequency feature inputs do not distinguish task versus non-task engagement for 

either MSIT or ECR. (A) and (B) Boxplots show decoder performance in terms of accuracy 

for MSIT versus non-task classification and ECR versus non-task classification for true 

labels and shuffled labels. Colored points show individual participant results. Gray shaded 

area represents the confidence interval for chance classification performance. Classification 

was not significantly different from chance after correcting for multiple comparisons. SVM 

classifier performance was assessed by training the classifier with power-frequency features 

at each individual electrode from different frequency bands of interest (4–8 Hz, 8–15 Hz, 

15–30, 30–55 Hz, 65–200 Hz).
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Figure 4. 
Difference between specificity and sensitivity has a linear relationship with the ratio of task 

to non-task observations present in the original dataset. Difference between sensitivity and 

specificity for MSIT versus non-task and ECR versus non-task frequency domain 

classification results is plotted across participants against the ratio between the number of 

non-task to task observations present in the dataset before class balancing (linear regression: 

R2 = 0.72).
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Figure 5. 
Optimal feature selection maintains decoder performance across participants. (A) Example 

optimal FCHA feature traces are plotted over time. Ground truth (MSIT, ECR, and non-task 

labels) is indicated by background color on the plot. (B) Curves show SVM accuracy for 

individual participants as features are dropped. Up to five frequency domain features for 

each participant were used to achieve optimal decoder performance, indicated by points. (C) 

Boxplots show classification accuracy for MSIT versus non-task classification and ECR 

versus non-task classification for true labels and shuffled labels using all FCHA features and 

optimal FCHA features. Formatting is identical to figures 2(A) and (B). (D) Diagnostic 

tables show optimal classification performance. Formatting is identical to figures 2(C)–(F). 

(E) Optimal region pairs for MSIT versus non-task classification (red) and ECR versus non-

task classification (blue) across participants are shown via connected nodes on the network 

graph. Opacity of the edges corresponds to the number of times each region pair occurred as 
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an optimal feature across participants. (F) Bar plot shows the number edges that 

corresponded to activity in each frequency band of interest for MSIT versus non-task 

classification (left) (4–8 Hz: P = 7.6 * 10−3, Binomial test) and ECR versus non-task 

classification (right) (65–200 Hz: P = 3.0 * 10−6, Binomial test). (G) Plot shows connectivity 

degree of each ROI node versus the average number of electrodes implanted in each ROI 

across participants for MSIT versus non-task classification (left) and ECR versus non-task 

classification (right). Gray shaded area shows one standard deviation above and below the 

line of best fit. Linear trend line is shown in black (left: R2 = 0.54, right: R2 = 0.68).
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Figure 6. 
Canonical coherence can distinguish between multiple task states and is stable over time. 

(A) Boxplots show decoder performance in terms of accuracy for MSIT versus ECR versus 

non-task classification using all FCHA features and up to 25 optimal FCHA features for true 

labels and shuffled labels. Formatting is identical to figures 2(A) and (B). (B) Diagnostic 

table shows classification performance for multi-task classification. Formatting is identical 

to figures 2(C)–(F). (C) Example multi-task classification performance on test set. Black 

solid line shows the ground truth state, while blue dotted line shows the classifier prediction. 

(D) P-value between task and non-task FCHA distributions from session two plotted against 

that of session one. Dotted lines indicate significance threshold, α = 0.05. Points indicate 

individual features. Red points indicate feature distributions that are significantly different 

from null distributions in both session one and session two. Red points are carried over into 

panel (F). (E) P-value between task session one and task session two FCHA distributions, 
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plotted against the similar P-value for non-task FCHA distributions of the two sessions. 

Dotted lines indicate significance threshold, α = 0.05. Red points indicate feature 

distributions that are not significantly different across sessions for task and non-task, and 

thus remain highly discriminating between sessions. (F) Inter-session classification results 

for MSIT versus non-task classification and ECR versus non-task classification using all 

features and optimal features. Formatting is identical to figures 2(A) and (B).
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