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Abstract
The visual cortex is able to extract disparity information through the use of binocular cells.

This process is reflected by the Disparity Energy Model, which describes the role and func-

tioning of simple and complex binocular neuron populations, and how they are able to

extract disparity. This model uses explicit cell parameters to mathematically determine pre-

ferred cell disparities, like spatial frequencies, orientations, binocular phases and receptive

field positions. However, the brain cannot access such explicit cell parameters; it must rely

on cell responses. In this article, we implemented a trained binocular neuronal population,

which encodes disparity information implicitly. This allows the population to learn how to

decode disparities, in a similar way to how our visual system could have developed this abil-

ity during evolution. At the same time, responses of monocular simple and complex cells

can also encode line and edge information, which is useful for refining disparities at object

borders. The brain should then be able, starting from a low-level disparity draft, to integrate

all information, including colour and viewpoint perspective, in order to propagate better esti-

mates to higher cortical areas.

1. Introduction
Disparity plays an important role in our perception of the environment, giving us precious
information for survival. Our brain extracts it from the information that reaches the hypercol-
umns of V1 via the Lateral Geniculate Nucleus (LGN), which relays information of the left and
right retinae. At this early stage, disparity is already key for broad and precise motor control
(e.g., walking/running while avoiding obstacles, eye-hand coordination while picking up a pen-
cil), low- and high-level Focus-of-Attention (FoA), object and background segregation, as well
as recognition, even with partial occlusions [1].

Computer vision research has significantly advanced the state-of-the-art in disparity estima-
tion models, with many different approaches and applications [2]. However, there is a signifi-
cant lack of biologically motivated models that computationally implement the Disparity
Energy Model (DEM), which integrates key biological evidence from research on the cat’s
visual cortex and pathways by [3], and more recently from the rhesus monkey’s visual cortex
[4]. Alternative models also exist for building and combining disparity energy neurons [5]. The
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DEM allowed to explain how neurons tuned to horizontal disparities can have the implicit abil-
ity to discriminate vertical disparities [6]. This ability is an emerging property from a neuronal
system tuned to horizontal disparities, by decoding vertical ones as a deviation from the
expected neuronal responses. This ability also illustrates how the neuronal system can encode
much richer information than would be expected and, at the same time, concentrate neuronal
resources on the most common cases while keeping the possibility of encoding rare ones.

Most DEM computational implementations found in the literature were unable to give
good results on real-world images. Therefore, we first focused on building upon a state-of-the-
art theoretical DEM implementation by [6] until we could reliably extract disparity estimations
from real-world data. This was documented in [7]. It is still the only DEM-based method
ranked on the Middlebury Stereo Evaluation Website [8], against 153 other disparity methods.

Some authors have proposed alternative biological models which are not based on the
DEM, e. g., [9] combining geometric information and local edge features, [10] using multiscale
lines and edges to retrieve a disparity wireframe model of the scene—the Line and Edge Dispar-
ity Model (LEDM) which is further explored in this paper in §5.1—and also du Buf et al. [11],
employing the phase differences of simple cell responses to the left and right views. The latter
model is often applied to real-world problems, although it has been shown to be very imprecise
in terms of localisation of depth transitions.

Most DEM research has considered theoretical or synthetic data, while biological models
applied to real-world scenes appeared only recently [7, 9, 10, 12]. This is mainly due to the fact
that computational DEM implementations are usually focused on evaluating theoretical results
using very specific stimuli, like bar/grating patterns or random-dot stereograms [6], or in psy-
chophysical experiments [4].

In this paper, we propose a disparity map composed of different cell maps built on top of
each other, each refining the previously extracted disparity. We also propose that the first,
rough disparity (disparity gist) is provided by the DEMmodel [7], after which refinements
based on colour, perspective correction (viewpoint) and border information are integrated to
achieve the final disparity map. Although the model is still feed-forward or bottom-up, in the
future it can be supplemented by feedback loops from higher visual areas V2 and V4 in order
to further improve results [1].

In our improved DEM implementation we use two neuronal populations for obtaining
disparities:

1. An encoding population which uses a set of binocular neurons with a diverse range of cell
parameters, e. g., horizontal disparities, spatial frequencies and orientations. This popula-
tion is trained on random-dot stereograms in order to learn activity codes for many differ-
ent disparities. The method is similar to that of [6], which is based on the DEMmodel of
[3], with proper normalisation to yield local correlations with neighbourhood weighting
[13–15]. Finally, the population is applied to real stereograms in order to obtain local activ-
ity codes. This is further explained in §3.1.

2. A higher-level decoding population which compares a local activity code, at each image posi-
tion, with all learned (trained) activity codes, for estimating local disparity. This is further
explained in §3.2. Basically, this second population implements a template-matching pro-
cess similar to those of [16] and Read [6]. This initial DEMmodel (disparity gist) is then
integrated with colour and different viewpoints (§4), and finally with object border informa-
tion retrieved from the multi-scale line and edge disparity model (LEDM) [10] and low-
level processes from object salience research [17] (§5).
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Our main contributions in this paper are: (a) Improving previous DEM results in real-world
images. (b) The integration of the DEMmodel with luminance, colour information and view-
point perspective correction. (c) The integration of two disparity models DEM and LEDM, to
improve object boundary precision of the DEM. (d) The integration of different layers of dis-
parity cell maps, with each layer improving the results from layer to layer. (e) The quantitative
evaluation of results with real-world scenes, showing that the model can compete with state-of-
the-art computer vision algorithms.

2. Disparity-sensitive cells
The primary visual cortex (V1) is composed mostly of simple, complex and end-stopped
(hypercomplex) cells arranged into ocular dominance hypercolumns. Computationally, the
receptive fields (RFs) of monocular simple cells can be modelled by Gabor wavelets [7, 18, 19],
with parameters to specify orientation θ, spatial frequency f (or the wavelength λ = 1/f ), recep-
tive field size σ and spatial phase ϕ, which will be discussed below. We can then model binocu-
lar simple cells using pairs ofmonocular simple cells with either a position- or phase-shift
between RFs (or a combination of both), signalling disparity when both RFs of the binocular
cell are fully excited. However, binocular simple cells are also sensitive to stimulus contrast and
pattern position within their RFs [3, 18], which makes them unsuitable as disparity detectors.

In contrast, binocular complex cells can solve these problems, as there are no separate excit-
atory and inhibitory subregions within their RFs, making them only sensitive to position, ori-
entation and stimulus size [20]. They also show other desirable properties like sensitivity to
fine disparities, immunity to anti-correlated stimuli [3] and they respond accurately to
dynamic random-dot stereograms [21]. Two binocular simple cells S1 and S2 can be combined
into a phase-independent binocular complex cell, provided that their phase difference
jϕS1 − ϕS2j equals π/2. Therefore, the response of a binocular complex cell can be obtained
by summing the responses of two binocular simple cells with phases in quadrature.

Mathematically, two monocular RFs can be used to model a binocular simple cell, with the
same size, orientation and spatial frequency, but with different phases ϕ and/or RF positions
on the retina (Δx, Δy) [22]. The left (ρL) and right (ρR) RFs of binocular simple cells are then
defined by

rL;Rðx; y; y; s; f ; �;D�Þ ¼ exp � _x2
L;R þ _y2

L;R

2s2

� �
cos 2pf _xL;R þ �� D�

2

� �
: ð1Þ

Since we will use phases in quadrature ϕ 2 {0, −π/2} and both ρL and ρR actually consist of two
RFs: the sine and cosine components. In Eq. 1, _x and _y are the coordinates relative to the binoc-
ular cell’s centre, which is (0, 0) at the fovea, and rotated according the cell’s preferred orienta-
tion θ:

_xL;R ¼ xL;R cos yþ yL;R sin y ð2aÞ

_yL;R ¼ �xL;R sin yþ yL;R cos y: ð2bÞ

The left disparity viewpoint is used as reference, requiring the use of binocular cells with left pre-
dominance. The main reason for using the left view is that it is often used for defining the
ground-truth of real scenes, thus allowing for a quantitative analysis of experimental results.
Mathematically, the offset coordinates Δx and Δy, which correspond to the cell’s preferred hori-
zontal and vertical disparities, are defined as follows: when the activity code is trained (learned)
with random-dot stereograms, the left RF is centred at (0, Δy) and the right one at (−Δx, Δy).
When the cells are applied at all input stereogram positions, then (xL, yL) = (x, y + Δy) and
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(xR, yR) = (x − Δx, y + Δy). We note that Δy = 0 is taken for all cells, as vertical disparity in the
fovea is zero [22]. For a detailed mathematical transformation frommonocular to binocular sim-
ple cells see [18].

3. Luminance Disparity-Energy Model
In this section, we describe the lL-DEM or L-DEM, and show how disparity maps can be
extracted by exploiting binocular cell responses and comparing them with previously learned
stimuli, using cells sensitive only to luminance variations. The L-DEM was first presented in
Martins et al. [7] and is adapted partly for this section, serving here to provide a performance
baseline. Understanding this model is also fundamental for understanding all further improve-
ments described in this paper.

For the L-DEM implementation, we use two neuronal populations: (1) an encoding popula-
tion and (2) a higher-level decoding population. As explained above, for presenting our stereo
results we use by default the reference viewpoint (image) of the left eye.

3.1 Disparity encoding population
For the encoding population’s binocular simple cells defined in Eq. (1), we selected RF parame-
ters based on [6]:

a. Orientations θi 2 (i × π)/Nθ, with the number of orientations Nθ = 8. Our empirical tests
showed that using more orientations yielded slightly better disparity estimates, but increases
the total cell population. Using eight orientations is a good compromise.

b. Receptive field sizes (scales) s 2 2
ffiffiffi
2

p
; 2;

ffiffiffi
2

p� �
. These are scaled by a factor of

ffiffiffi
2

p
, as is

the spatial frequency. Empirical results showed that bigger sizes increase the blur at objects’
border regions and smaller sizes lead to errors in disparity estimates.

c. Spatial frequencies f 2 ffiffiffi
2

p
=8; 1=4;

ffiffiffi
2

p
=4

� �
cycles per pixel. These values are proportional

to RF size by ωσ = π or f = 1/2σ. The frequency bandwidth for the three scales was 1.14
octaves.

d. RF phases ϕ 2 {0, −π/2}, since only two values are needed to build a phase-invariant binocu-
lar complex cell from two binocular simple cells [3].

e. RF horizontal position disparity Δx 2 {0, . . . ,59} in steps of 1 pixel.

f. RF phase disparity Δϕ = 0, implying no extra phase difference between the left and right RFs
of each simple cell (equal phases ϕ for both). It is to be expected that in naturally occurring
images, the maximum response of a phase-shift disparity neuron is elicited when there is a
different pattern of the same stimulus in the left and right RFs, something that never occurs
in the real world [4, 5]. Our empirical tests also showed that the use of phase differences—
odd-symmetric disparity tuning curves—did not add significant information and sometimes
even degraded the quality of disparity estimates. Other alternative roles for neurons tuned to
phase disparities are explained further in [23].

In total, the above selection yields a population of 8θ × 3σ, f × 2ϕ × 60Δx × 1Δϕ = 2880 binocu-
lar simple cells as inputs for 1440 binocular complex cells; see below. The values were chosen
to replicate physiological parameters of real cells, for yielding precise disparity estimates in
real-world images. The disparity encoding population is then built and trained as follows,
based on Read [6]:
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Stereo energy coding. Responses of the left and right RFs of binocular simple cells (vL and
vR) are obtained by convolving (�) the RFs with the corresponding left and right grayscale
images IL, R(x, y):

vL;Rðx; yÞ ¼ IL;Rðx; yÞ � rL;Rðx; yÞ: ð3Þ

To simplify notation, below we skip (x, y). IL, R are obtained from sampling an RGB colour ste-
reogram using physiologically perceived weights from the luminance Y channel of the CIE
XYZ colour-space, which closely resembles human colour perception: IL,R = 0.2989 � RL,R +
0.5870 � GL,R + 0.1140 � BL,R.

At each image position, the response S of a binocular simple cell combines the squared
responses of the left and right RF components [3, 18]:

S ¼ ðvL þ vRÞ2 ¼ v2L þ v2R þ 2 vLvR: ð4Þ

S can be split into the monocular termM ¼ v2L þ v2R and the binocular term B = 2 vL vR. Biolog-
ically, this can be realised by combining the outputs of two energy neurons with phase dispari-
ties π apart. If such neurons are identical except for their phase disparities, then the first one
computes (M + B) and the second (M − B). BothM and B are then available from the sum and
difference of the two responses, i. e., 2M and 2B [6].

For obtaining the local stereo energy E of a binocular complex cell which is invariant to the
phases of local patterns in the input, one can either sum the responses of (a) many binocular
simple cells with scattered phases ϕ in [0, 2π], or (b) only two cells with phases in quadrature.
We could therefore apply the second case with ϕ 2 {0, −π/2}: E = Sϕ = {0, −π/2} Sϕ. This stereo
energy E, for each frequency, orientation and disparity, can be related to the cross-correlation
between filtered and windowed images [15]. However, the local stereo energy E cannot be used
directly to estimate disparities, as it also reflects monocular energy (stimulus contrast inside
each RF) along with binocular energy (stimulus disparity between RFs). This shortcoming is
addressed below by using spatial pooling and effective binocular correlation.

Spatial pooling. Complex cells are normally modelled by taking the square root of the
sum of the squared responses of the sine and cosine components of the simple cells. This
implies that the RF size of such complex cells is equal to that of the simple cells: the same
Gaussian. However, RFs of real binocular complex cells are larger than those of simple cells
[18]. Therefore we apply this property by averagingM and B, using grouping cells with a
Gaussian RF: Gsp(x, y) = k exp (−(x2 + y2)/2σ2). The normalisation factor k = 1/(2πσ2) and σ

equals the RF size of the corresponding simple cells: s 2 2
ffiffiffi
2

p
; 2;

ffiffiffi
2

p� �
. This yields, for the

two phases,Msp
� ¼ Gsp �M� and B

sp
� ¼ Gsp � B�. This pooling operation involves using simple

grouping cells with a dendritic field size defined by σ and it is crucial to stabilise results in case
of real-world images with noise and non-uniform disparity ranges.

Effective binocular correlation. In order to differentiate monocular energy from binocu-
lar energy, it is necessary to use normalised binocular correlation detectors [6, 13–15]. These
detectors respond maximally (+1) when the left and right RF views are identical, and minimally
(−1) when one RF view is an inverted-contrast version of the other. They are implemented by
dividing the pooled binocular term by the pooled monocular term, after which the result is
pooled once more for increasing robustness:

csp ¼ Gsp �
P

�¼f0;�p=2gB
sp
�P

�¼f0;�p=2gM
sp
�

 !
: ð5Þ

LCVB Enhanced Disparity Energy Model

PLOS ONE | DOI:10.1371/journal.pone.0129908 June 24, 2015 5 / 24



The value of ψsp relates to the correlation between local, filtered regions of the left and right
views [23]. The population of binocular correlation detectors ψsp is used for encoding disparity
in the model. Disparities estimated by using the effective binocular correlation instead of the
local stereo energy E are immune to the detrimental effect of monocular contrast, allowing the
extraction of disparity from peaks in the population’s activity code. ψsp has also the useful
property that it exactly equals 1 when the actual disparity matches a cell’s preferred disparity
[6]. Please recall that ψsp is the short notation for csp

f ;y;Dxðx; yÞ, i. e., there are three scales, eight
orientations and 60 horizontal position disparities, hence 1440 binocular correlation cells
which are later applied at all image positions.

Learning the population code. We trained the energy model to discriminate horizontal
stimulus disparities (Δxstim) ranging from 0 to 59 pixels with a stepsize of 1 pixel. Population
activity codes were gathered from cell responses to stimuli with known disparities: random-dot
stereograms with an uniform disparity, sampled randomly from a Gaussian distribution with
zero mean and unit standard deviation, with a Δxstim horizontal offset between the left and
right images. Offset gaps were also filled with randomly sampled pixels; see Fig 1. For each
Δxstim step we generated 1000 random-dot pairs. Hence, training involved 60,000 stereograms;
for details see Martins et al. [7]. For each stereogram, with IL,R the left and right views, we
applied Eq (3) and Eq (4), but only at the centre of the left and right images of each stereogram.
The values of ψ were computed without spatial pooling, i. e.,

c ¼
P

�¼f0;�p=2gB�P
�¼f0;�p=2gM�

; ð6Þ

because the results are pooled over 1000 random-dot stereograms for each disparity.
During training, and later when applying the population to real images, the effective binocu-

lar correlations ψ and ψsp are encoded as amean spike count,

C ¼ ð1þ cÞ u; ð7Þ

Fig 1. Example of a 15 × 15 random-dot stereogram used in training, with a uniform 2-pixel shift and thus horizontal disparityΔxstim of 2.

doi:10.1371/journal.pone.0129908.g001
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where u = 8 is the average number of spikes elicited by a binocularly uncorrelated stimulus
within the temporal discrimination window. We used parameters similar as [6], with typical
values of u around 8 spikes, assuming a firing rate for the optimal disparity of 100 Hz and a
temporal window of 160 ms. This yields values ofC in the range [0,2u], where 2u represents
the mean number of spikes that neurons tuned to a specific disparity will fire in the presence of
a perfect binocular stimulus of that disparity (maximum correlation).

Finally,C was averaged [A(�)] over the 1000 different stereograms for each Δxstim, which
serves to eliminate random stimulus-dependent noise. This yields an activity code for each
trained horizontal disparity Δxstim:

WDxstim
f ;y;Dx ¼ AðCDxstim

f ;y;Dx Þ: ð8Þ

In summary,W represents the number of spikes produced by neurons tuned to frequencies f,
orientations θ and horizontal disparities Δx, averaged over all 1000 stimuli with the same uni-
form disparity Δxstim. The population code thus consists of 1440 binocular correlation cell
responses (3 scales, 8 orientations and 60 horizontal position disparities) for each of the 60 dif-
ferent horizontal stimulus disparities Δxstim of the random-dot stereograms. The adaptation
and learning of the encoding cell population to discriminate disparities can be thought of as
kin to visual learning in early childhood, assuming that basic neural circuitry is the result of
evolution, or, at least, needs adequate training to reach its full potential.

3.2 Disparity decoding population
As mentioned before, learning is done only once and in the centre of the random-dot stereo-
grams. After training, the encoding population can then be applied at all pixel positions (neigh-
bourhoods) of real world input stereograms, excluding the border region. The disparity at each
position is estimated by comparing the activity code there with all learned codes. This is done
by a second, higher-level decoding population. The disparity assigned to each pixel position is
the disparity of the best-matching code. Local disparity estimation is a simple matching process
[16]: the input code of 1440 responses is matched or correlated with the 60 sets of 1440 trained
codes. The final output is selected by the decoding population by a winner-takes-all strategy.
Biologically, this probably involves associative memory, which can also be based on a training
process [24].

The matching process uses 60 correlation cells (“Corr”) which compareCsp
f ;y;Dxðx; yÞ with

WDxstim
f ;y;Dx , i. e., the 1440 spike counts at each image position with all previously learned 60 sets of

1440 spike counts:

rDxstimðx; yÞ ¼ CorrðCsp
f ;y;Dxðx; yÞ;WDxstim

f ;y;Dx Þ
h iþ

; ð9Þ

where [�] + is half-wave rectification. This avoids the problem of disparity in anti-correlated
stereograms by setting any negative correlations to zero [25]. Note that rΔxstim is a vector of 60
correlation values, each related to a specific Δxstim disparity that the population was trained to
recognise, from 0 to 59. The maximum correlation yields the luminance-disparity map

DLðx; yÞ ¼ argmax
Dxstim

rDxstimðx; yÞ
h i

. Biologically, this corresponds to the activation of a single

disparity cell at each position, inhibiting the other 59 cells. Mathematically, the implemented
matching process (Corr) is the Pearson product-moment correlation coefficient with A[�] the
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average, σC and σW the standard deviations of all 1440 responses:

rDxstimðx; yÞ ¼
A½Cspðx; yÞW� � A½Cspðx; yÞ�AðWÞ

sCspðx;yÞsW

" #þ

: ð10Þ

3.3 Experimental results
The obtained results for this method were first published in Martins et al. [7], where we tested
the Luminance Disparity Energy Model (L-DEM) on various reference stereograms from the
Middlebury stereo evaluation set. These are: tsukuba, venus, teddy and cones [26, 27], aloe and
cloth3 of the 2006 dataset, and dolls,moebius and reindeer of the 2005 dataset [28].

For reference, Fig 2(a)-2(e) shows the L-DEM results for the tsukuba stereo pair [7, 27].
This algorithm was able to obtain good results for the Middlebury evaluation test (ranked there
as “BioDEM”) [7], which are detailed in §6. We will compare further disparity improvements
using these results as baseline.

4. Luminance, Colour and Viewpoint DEM
This section addresses an improved disparity model, the Luminance, Colour and Viewpoint
Disparity Energy Model(LCV-DEM), which integrates colour and viewpoint (perspective)
information to increase accuracy of the L-DEM.

Research involving the chromatic representation in area V1 has shown that cone responses
from the retina turn into three relatively independent spatio-chromatic colour channels after
the LGN [29], which are then transformed in several neural pathways, mixing colour responses
with those of other cells [30]. The majority of neurons in V1 seem to respond to pure isolumi-
nant stimuli (i. e., they are colour sensitive even in the absence of luminance changes), and
around 50% of all neurons are sensitive to both luminance and isoluminant stimuli. They are
classified as either “colour-luminance” or “luminance-preferring” cells with a varying degree of
cone opponency [31]. There is also evidence that chromatic features are useful for binocular
correspondence in complex images, suggesting the possibility of independent contributions
from both luminance and colour channels [32, 33]. In addition, it has been reported that there
exist V2 neurons of macaques that are sensitive to both colour and disparity, supporting the
notion that the primate visual system combines disparity and colour as early as in area V2 [34].

For the LCV-DEM implementation we initially chose the LMS colour space, which mimics
the trichromatic neuronal encoding of cone responses after the LGN [30]. However, the results
obtained with the LMS colour space were not significantly better than those with a simple vari-
ation of RGB (each channel codes both luminance and colour). This is not surprising. Since
neuronal cells have so many different combinations of luminance or colour predominance, the
system is able to be independent of the colour method used, as long as there is enough variety
of weight predominance between the different colour channels. We did, however, get better
results when using physiologically perceived colour weights for encoding luminance (the Y
channel of the XYZ colour space), suggesting that not only disparity is heavily luminance
based, but also that it depends on luminance being perceptually representative of the scene
being observed.

4.1 Disparity encoding population
The extended model uses the same population parameters as L-DEM, defined in §3.1, with, in
addition to points (a) to (f), point
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Fig 2. Disparity results in the cell map layers for the tsukuba [27] stereo pair. (a): Tsukuba’s left view. (b): Ground-truth. (c): DL (L-DEM) result. (d): Bad
pixels (black) with an absolute disparity error� 0.5 and (e): signed disparity error returned by the Middlebury evaluation test [8]. (f): Left–viewpoint DLC

Left. (g):
Centre–viewpoint DLC

Centre. (h): Right–viewpoint D
LC
Right. (i): Left-viewpoint corrected D̂LCV. (j): Background and occlusion corrected DLCV. (k): Line and edge

region enhanced D̂LCVE. (l): Object border enhancedDLCVE. (m): The final disparity map DLCVB, after median smoothing. (n): Bad pixels (black) with absolute
disparity error� 0.5. (o): Signed disparity error of DLCVB. Images (a) and (b) are reprinted from [26] under a CC BY license, with permission from Daniel
Scharstein, original copyright 2002.

doi:10.1371/journal.pone.0129908.g002
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g. RF dominance μ 2 {Left, Centre, Right}: three values of binocular RF dominance, represent-
ing three possible configurations for RF organisation around a centre point, as further
explained below.

We can improve disparity estimates by using two more RF dominances. As previously men-
tioned, the binocular simple cell RFs are defined by ρL,R in Eq (1), where ð _x; _yÞ are offset coordi-
nates relative to the centre (0,0) and rotated to the cell’s preferred orientation according to Eq
(2). For μ = Left we use (xL, R, yL, R) as shown in §2, representing both RFs centered around
−Δx/2. For μ = Centre the RFs are equidistant from (0,0) and their coordinates are (xL, yL) = (x +
Δx /2, y + Δy/2) and (xR, yR) = (x−Δx/2, y − Δy/2). For μ = Right the RFs are shifted to the right
and centered at Δx/2, resulting in coordinates (xL, yL) = (x + Δx, y + Δy) and (xR, yR) = (x, y).

Stereo energy coding. The LCV-DEMmodel also employs pairs of binocular simple cells
in quadrature in order to construct phase-invariant complex cells. The responses of simple
cells are obtained similarly to Eq (3), but now with the previous DEM luminance-only channel
(l) complemented by three new luminance/colour channels: c 2 {l, r, g, b} with r = R + G/4+B/
4, g = R/4+G + B/4, b = R/4+G/4+B and l as in L-DEM (see §3). This represents luminance-col-
our sensitive cells with different RGB component predominance, with the l channel represent-
ing luminance-predominant cells using physiologically perceived colour weights
(corresponding to the Y channel of the XYZ colour space). Responses of the left and right RFs
of binocular simple cells (vm;cL and vm;cR ) are obtained by convolving (�) the RFs with the corre-
sponding left and right images IcL;Rðx; yÞ:

vm;cL;Rðx; yÞ ¼ IcL;Rðx; yÞ � rm;c
L;Rðx; yÞ: ð11Þ

The augmented parameter set results in an encoding population of 8θ × 3σ, f × 2ϕ × 60Δx × 1Δϕ
× 3μ × 4c = 34, 560 binocular simple cells (17,280 complex cells), twelve times larger than
L-DEM due to the three different viewpoints μ and four luminance/colour channels c.

4.2 Disparity decoding population
The implementation uses the same decoding method as L-DEM, as specified in §3.2. However
we are processing each of the four colour channels c independently—this allows us to show the
benefits of colour without having to train the population again.

For each (x, y), the correlation (Corr) coefficient is now calculated betweenCsp
m;c andW

Dxstim
f ;y;Dx .

The correlation vector rΔxstim, μ, c now holds 60 × 3 × 4 cell responses, 60 for each μ and c combi-
nation. At this step, three viewpoint–based DLC

m disparity maps are built independently (exam-

ples are shown in Fig 2f-2h). The disparities assigned to each position (x, y) will be the values

dμ of the maximum correlations, where dm ¼ argmaxDxstim rDxstim ;cÞm
�

, over all Δxstim and c values,

for each μ. This yields three different disparity maps DLC
m ðx; yÞ ¼ dm. Biologically this corre-

sponds to an activation of a single disparity cell per pixel and per viewpoint μ.
Viewpoint correction layer. Outputs from cell layers DLC

m are combined in a viewpoint

correction layer, where the information from the three viewpoint disparity maps is used to
select the most accurate information. This can be seen as a fusion of the disparity maps relative
to the perspective of an observer with a left-side viewpoint. It is done by shifting the maps to
the right accordingly (each pixel’s shift distance depends on its disparity value) and by
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computing the median M[�, �, �] of the three maps:

D̂LCVðx; yÞ ¼ M
h
DLC

Leftðx; yÞ;
DLC

Centreðx þ 0:5DLC
Centreðx; yÞ; yÞ;

DLC
Rightðx þ DLC

Rightðx; yÞ; yÞ
i
:

ð12Þ

The resulting map can be seen in Fig 2(i). Combining viewpoints effectively increases the accu-
racy of disparity estimates at the left and right borders of objects, which are usually inaccurate
due to viewpoint occlusion (i. e., each eye will see some information that the other does not).
This leads to a correspondence problem, which is greater when the distance between left and
right images of the pair is larger. For illustration purposes, Fig 3 shows a better example of the
benefits of combining viewpoints, for the cones stereo pair. Here, the left and right images are
more separate, with a maximum disparity of 59 pixels vs. only 15 pixels for tsukuba. Cones’ dis-
parity maps highlight the greater differences between viewpoints. The fusion of all three maps
is shown in image (i), where black pixels represent uncertain disparity regions, which we
address below.

Background and occlusion correction layer. The map D̂LCVðx; yÞ needs to be corrected
in order to eliminate uncertain/unknown disparities due to incorrect disparity assignments in
background regions or from occluded regions where disparities were shifted. To remove these,
we use a two-step approach: First, we determine which disparity is the probable background

and assign it as the farthest disparity in D̂LCVðx; yÞ. Computationally, this process is done in
four steps:

(a) Count how many cells (Nd) are activated per disparity value d 2 {0, . . . ,59};

(b) normalise the counts by dividing each value by the square of the respective disparity: N̂ d ¼
Nd=d2 (this gives less priority to the nearest/highest disparities, since it is expected that the
background should be farthest);

(c) the background disparity is chosen as dbck ¼ argmaxd N̂ d

� 	
; and

(d) to every disparity value D̂LCVðx; yÞ < dbck is assigned the value dbck.

Afterwards, remaining inactive disparity cells receive the minimummedian cell value of the
closest active disparity cells in the epipolar plane, yielding DLCV(x, y). Results for tsukuba are
shown in Fig 2(j). The result is much better when compared to Fig 2(i).

4.3 Experimental results
We tested the LCV-DEM on the same Middlebury stereograms used in L-DEM [26–28]. Fig 2
(f) to 2(h) illustrate disparity maps for tsukuba—the DLC

Left, D
LC
Centre and D

LC
Right images show

results after luminance/colour grouping with three different viewpoints: Left, Centre and

Right. The D̂LCV shows the integration of the three viewpoint maps into a single Left viewpoint
(Fig 2i), and DLCV shows the final LCV-DEMmap after the background and occlusion correc-
tion layer (Fig 2j).

The quantitative results from the Middlebury stereo evaluation are discussed in §6, compar-
ing L-DEM with LCV-DEM. We can visually verify (see Fig 2c and 2j) that there are several
improvements from DL to DLCV, nevertheless, the edges and regions around objects still lack a
precise boundary definition. In the next section we will explain a complementary stereo model
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to assign disparity to line and edge features, and show how the integration of both disparity
maps can be achieved.

5. Boundary enhanced LCVB-DEM
Another role for monocular simple and complex cells in V1 is the ability to extract multiscale
lines and edges that are significant for object categorisation and recognition [19]. If lines and
edges are extracted in V1, where left and right retinal projections are close together, one might

Fig 3. Example of viewpoint correction results for the cones [27] stereo pair. (a): Cones left view of the pair. (b): Left viewpoint ground-truth. (c): Right
viewpoint ground-truth. (d): Left–viewpoint DLC

Left. (e): Centre–viewpoint D
LC
Centre. (f): Right–viewpoint D

LC
Right. (g): Centre to Left viewpoint disparity shift. (h): Right

to Left viewpoint disparity shift. (i): Fusion of the three Left (shifted) maps into D̂LCV. Images (a), (b) and (c) are reprinted from Scharstein and Szeliski [26]
under a CC BY license, with permission from Daniel Scharstein, original copyright 2003.

doi:10.1371/journal.pone.0129908.g003
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even assume that depth is attributed to them. In other words, a “3D wire-frame representation”
could be built in V1 for handling 3D objects and scenes. Although this idea is speculative,
many V1 cells have been found to be tuned to different combinations of frequency (scale), ori-
entation, colour and disparity. If not coded explicitly, disparity could be coded implicitly. This
allows us to develop an alternative disparity model, where we assume that lines, edges and dis-
parity are coded explicitly—the Line and Edge Disparity Model (LEDM).

Since disparity along object borders is the biggest problem for the presented DEMmodels,
we also integrate at this step a low-level object salience model [17] that complements line and
edge information from LEDM. This allows us to combine edge conspicuity with line/edge dis-
parity information readily available in V1/V2. Using both on top of the LCV-DEM allows us to
correct disparity values astride object borders. This yields our final model, the Luminance, Col-
our, Viewpoint and Boundary enhanced Disparity Energy Model (LCVB-DEM).

5.1 Line and Edge Disparity Model
Line and edge detection is based on responses of even and odd monocular simple cells, corre-
sponding to the real and imaginary parts of a Gabor filter [19]. These responses are denoted by

Rs;i
E ðx; yÞ and Rs;i

O ðx; yÞ, with scale s given by λ and orientation i according to θ. We used the
same 8 orientations as for the binocular cells in the previous models, and scales s corresponding
to 4� λ� 24 with a step size Δλ = 2. Positive/negative lines are detected where RE has a local
maximum/minimum and RO has a zero crossing. For edges, the even and odd responses are
swapped. In total, there are four possibilities for positive and negative Line/Edge features (L/E).
An improved scheme [19] consists of combining responses of monocular simple and complex
cells, i. e., simple cells serve to detect positions and L/E types, whereas complex cells are used to
increase confidence. Monocular complex cell responses are modelled by the modulus

Cs;iðx; yÞ ¼ fRs;i
E ðx; yÞg2 þ fRs;i

O ðx; yÞg2

 �1

2. Spurious cell responses beyond line and edge termi-

nations are suppressed by lateral and cross-orientation inhibition, and assemblies of grouping
cells serve to improve L/E continuity in the case of curved L/Es. We denote the line and edge
cell map by LEs(x, y). Fig 4 shows in (a) and (b) the multiscale line and edge coding for the tsu-
kuba stereogram, at fine (λ = 4) and coarse (λ = 24) scales. Different grey levels, from white to
black, show detected L/Es: positive/negative lines and positive/negative edges, respectively. We
can see that many small L/Es are detected at fine scales, whereas coarse scales highlight global
structures.

Keypoint maps are also exploited in the LEDMmodel, as these code line and edge crossings,
singularities and points with large curvature. They are built from two types of end-stopped
cells, single and double, which are modelled by the first and second derivatives of Cs, i. End-
stopped responses are refined by tangential and radial inhibition to obtain precise keypoint cell
maps KPs(x, y) [35]. Fig 4(c) shows the tsukuba keypoint map at a coarse scale (λ = 24).

The disparity assigned to each L/E is based on a left–right correspondence over scales:

1. First, we suppress L/Es which may be due to noise: at each scale s of the left and right maps
LEs

L;Rðx; yÞ, we compute the maximum response of the monocular complex cells Cs, i where

L/Es have been detected. Any L/Es with a small amplitude (Cs, i below 5% of the maximum

response) are inhibited, yielding cLEs
L;Rðx; yÞ. The 5% threshold is necessary to eliminate

detected L/Es at small gradients that do not represent region transitions. This value depends
on the noise sensitivity of the Gabor responses and it was empirically determined. We
found 5% to be consistently stable across many cases.
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2. In the left map, at each L/E position (xL, yL) and at the finest scale (s = 1), cLE1
L is used to

define regions of interest which are centred on each L/E position (xL, yL). These regions are
formed by grouping cells with circular RFs. At the same position (xL, yL), other grouping
cells are activated at all other scales, still in the left cell map, with RF sizes depending on the
scale: 2 λs. This scale space of the left cell maps (or hierarchical set of grouping cells with RFs
at all L/E positions from s = 1) is used to accumulate displacement evidence of similar L/Es

at similar scales, but with relative (shifted) positions in the right cell maps, cLEs
R; see below.

Basically, the RFs serve to compare L/Es in the left and right cell maps as a function of the
shift along the epipolar plane. This is done at all individual scales, after which the scales are

combined. The right scale space cLEs
R can shift Δx (epipolar line) with a step size δx = 1, such

that 0� Δx� 59, for a total of 60 shifts, at which the L/Es in both scale spaces are binocularly
compared, according to specific rules: the Δx with the maximum L/E correspondence (defined
below) is then assigned to the disparity map DLE(x, y), where (x, y) still corresponds to L/E

positions (xL, yL) of cLE1
L (Left viewpoint).

Computationally, at each scale and within each RF, four correspondencemeasures are com-
bined with different weight factors:

(M1) Counting all line/edge L/Es with the same position, the same type (L or E) and the
same polarity (+ or –);

(M2) As inM1 but only counting matching L/Es irrespective of type and polarity;
(M3) Counting the number of complex cells with similar amplitudes at all L/E positions, i.

e., j Cs;i
L � Cs;i

R j� 2;
(M4) Counting the number of keypoints with about the same coordinates inKPs

L;R, i. e., in

small cell clusters of size 3 × 3.

Fig 4. Line and edge disparity, and conspicuity results. (a, b): Multiscale line and edge coding at λ = 4 and λ = 24. (c): Keypoint map at λ = 24. (d): DLE

map with brightness-coded disparities. (e): Bad pixels (black) with an absolute disparity error� 0.5 [8]. (f): Conspicuity map cCo after applying lNMS.

doi:10.1371/journal.pone.0129908.g004
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Before combining the four measures, they are first normalised:M1,M2 andM3 are divided

by the number of L/Es in cLEs
L, whereasM4 is divided by the number of keypoints inKPs

L, each
number being computed within each respective RF. The normalised numbers are denoted by

Mi and the final correspondence is determined by combining the weighted and normalised
measures over all scales:

ĈDx ¼
X

s

ð4M1 þM2 þM3 þ 4M4Þ: ð13Þ

The weights for each factor were empirically determined after several trials. Finally, the hori-

zontal disparity Δx belonging to the maximum Ĉ value is stored in the depth map DLE(x, y).
For more implementation details see Rodrigues et al. [10].

LEDM was applied to the Middlebury stereo pairs, exemplified with tsukuba in Fig 4. The
results were very good, with disparities correctly assigned to object borders in image (d). The
disparity error image (e) displays the incorrect values as black pixels, showing that almost all
lines and edges have a correctly assigned disparity (80.7% at a 0.5 max error and 90.6% at a 1.0
max error).

5.2 Line and Edge region enhancement
To enhance disparity accuracy in line and edge regions and to remove small gaps we combine

LCV-DEM with LEDM into an intermediate representation D̂LCVE, similar to Rodrigues et al.
[10]. For each L/E pixel in the DLE map we define a small cluster at the L/E position plus its N4

neighbourhood (left, right, top and bottom neighbours) and compare its median to the median
of a similar cluster in DLCV, at the same position. If the clusters have similar median values

(less than a threshold t), the DLCV cluster response at the L/E position is propagated into D̂LCVE

as detailed below. Mathematically, 8(x, y),���medðN4½DLEðx; yÞ�Þ �medðN4½DLCVðx; yÞ�Þ
��� � t ; ð14Þ

where t 2 {1,. . .,5} is an integer value that represents the maximum allowed difference and
med(�) the median. If Eq (14) is false, then the DLCV cluster response is assumed to be wrong,

and its region is filled in D̂LCVE using the value of DLE(x, y). This way, we correct the LCV-DEM
results using the LEDM responses. This process starts with t = 1 and it is applied in several cell

layers, recursively, on top of the newly created D̂LCVE map, i. e., if it is not possible to fill it any
more, but there are still gaps, we increment t by 1 and repeat the same procedure. In our exper-

iments 5 was the maximum value. Biologically, this could correspond to 5 layers of D̂LCVE that
activate neighbouring “idle” cells. The result can be seen in Fig 2(k), where many small regions
have been corrected.

5.3 Object Boundary enhancement
Despite the above process to correct ambiguous regions, some boundaries can still be
improved. In real scenes, disparity borders are mostly found at the contours of real objects, so
we use a disparity sharpening process based on local contrast of disparity values, conspicuity
information and line/edge boundaries to reach the final stage of this whole process, yielding
DLCVB—Luminance, Colour, Viewpoint and Boundary enhanced Disparity Energy Model
(LCVB-DEM). This process requires three steps:

Edge conspicuity. In general, object borders are perceptually salient in a scene. In order to

detect them, we first define edge conspicuity fCoðx; yÞ as a low-level V1 process. Mathematically,
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it is the maximum difference between colours in IcLðx; yÞ, with c 2 {l, r, g, b}, at four pairs of

symmetric positions with pixel distance k~d ik ¼ 1 from point (x, y), i. e., on horizontal, vertical

and two diagonal lines [17]. Conspicuity fCoðxÞ is the maximum Euclidean distance of all four
colour pairs,

fCoðxÞ ¼ max
4

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
c
½IcLððx; yÞ �~d iÞ � IcLððx; yÞ þ~d iÞ�2

q
: ð15Þ

In order to remove low responses due to small colour gradients that do not represent edges,

responses lower than 10% of maxðfCoÞ are inhibited. A value of 10% for this threshold was
found to be a consistently good choice for many cases. This value is linked to the perceptual
nature of differentiating colours and is an empirically determined constant. We can think of
this inhibition process as following the Weber-Fechner law (just-noticeable differences) in psy-
chophysics, with this threshold being Weber’s constant. The remaining active cells are selected

by Non-Maximum Suppression (NMS), which yields conspicuity edge positions cCo. Fig 4(f)
shows the tsukuba cComap after NMS.

Border Detection. We use a specific binary border-detection cell layer Bd that combines

cell responses from cCo, DLE and DLCV. Bd(x, y) cells are only active when the following condi-

tion is true: 8ðx; yÞ : cCoðx; yÞ > 0 _ DLEðx; yÞ > 0 ^ j DLEðx; yÞ � DLCVðx; yÞ j> 0½ �, i. e., at
conspicuous borders and at lines/edges when they correspond to object borders and not to
homogeneous disparity regions. Then, we devise two approaches to detect and correct bad dis-
parity estimations by analysing regions that are far or near Bd active cells:

• The far case will cover regions where there are no active Bd cells nearby, i. e., regions that
should have a homogeneous disparity value. Here we analyse relationships between small
disparity peaks or bumps and their surrounding areas. For peaks, if the inside median dispar-
ity of a small cell cluster (10px radius)Min is different from that of its border (outside perim-
eter)Mout, and ifMin >Mout then the cell cluster disparity is reduced to the valueMout,
eliminating the disparity peak. For bumps, ifMin <mout, withmout the minimum value of
the border region (perimeter), then the cell cluster disparity is increased tomout, slightly
bumping the disparity depression to a coherent region background value (usingMout here
could lead to wrong results near regions with objects, as bumps could wrongly be raised to
their disparity instead).

• For regions near active Bd cells, i. e., near object borders, every active border in Bd activates a
filling in process. We assume that the entire disparity map DLCV is covered by overlapping F
cells with RFs of 3 × 3 pixels and one pixel distance between their centres, which compute
the median disparity in their RF. On each side and orthogonal to a Bd edge, a cluster of three
orthogonal neighbouring F cells starts close to the edge and moves until a maximum dis-
tance of 25 pixels. If the three neighbouring cells are denoted by F1 (closest to border), F2

(middle) and F3 (farthest from border), then disparity F2 is propagated to the border at the
first position where |F2 − F3|� 2 and F2 = F1. Hence, a stable disparity value (before the
first significant disparity transition) is propagated until a Bd edge. In this process we apply
median disparities in order to skip disparity changes which do not likely correspond to true
object borders.

The completion of both approaches returns an enhanced disparity map DLCVE; see Fig 2(l).
Median smoothing. Finally, the last step serves to correct all locally inconsistent dispari-

ties by assigning to each (x, y) position the most probable disparity within a small RF. This pro-
cess is similar to a median smoothing filter and is achieved by applying circular cell clusters to
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DLCVE(x, y) (6px radius; slightly bigger or smaller sizes do not affect the global ranking in the
Middlebury test, despite slightly improving/degrading individual images). This yields the final
disparity map LCVB-DEM denoted by DLCVB, shown in Fig 2(m).

5.4 LCVB-DEM Experimental Results
Fig 2 shows the DLCVE map in (l) and the final disparity map DLCVB in (m). By subjecting the
last result to the Middlebury evaluation test we obtain the “Bad pixels absolute disparity
error� 0.5” and “Signed disparity error” of DLCVB, respectively shown in (n) and (o). When
comparing (m) with the results obtained from L-DEM in (c) we can observe significant
improvements. Nevertheless, the number of pixels with wrong disparity estimates, although
reduced, is still significant (see Fig 2n, at regions near depth discontinuities) and the biggest
errors are located at the border of the desk-lamp and its support (Fig 2o).

Fig 5 details schematically all intermediate disparity maps needed to create the LCVB-DEM
model, divided into three big layers. Our first DEM implementation fromMartins et al. [7]
(detailed in §3 as the L-DEM) is highlighted in grey. In the next section we will show results for
other images and discuss the different disparity models qualitatively and quantitatively.

Fig 5. Summary of the different features and disparity maps leading to the LCVB-DEM.

doi:10.1371/journal.pone.0129908.g005
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6. Results
As mentioned in §3.3, we also tested the model at the different implementation steps on vari-
ous stereograms, including tsukuba, venus, teddy, cones, aloe, cloth3, dolls,moebius and reindeer
[26–28]. Fig 6 shows the left view of the pair along with the left groundtruth and our final
LCVB-DEM result.

Fig 7 shows the evolution of error results, using the Middlebury evaluation page [8], for tsu-
kuba, venus, teddy and cones, at different steps of the model which correspond to the final dis-
parity maps in each layer (see Fig 5). In the bottom table of Fig 7, top to bottom are shown: (1)
L-DEM; (2) Luminance and Colour Disparity Energy Model (LC-DEM) which includes colour
but not viewpoint correction; (3) LCV-DEM with colour and viewpoint; (4) LCVE-DEM with
colour, viewpoint and LEDM; and finally (5) LCVB-DEM which integrates all above steps with
object border enhancement. The results show improvements in all layers of the model, with the
number of error pixels mostly decreasing consistently.

We can see that our model performs best in non-occluded regions but it is not as good near
depth discontinuities. This was expected, because L-DEM and LCV-DEM struggle at border
transitions, which is why the LEDMmodel is used to improve the LCV-DEM; it improves
results but without yet achieving outstanding results—still, the error for regions near depth dis-
continuities decreases more than a factor of two in the venus case. The all regions columns refer
to entire images, even regions which are half-occluded. Avg % bad pixels gives a general indica-
tion of how well the methods perform, as it shows the average percentage of bad pixels (wrong
estimates) over all twelve columns. In all cases, the bad pixels were counted by applying the
smallest error criterion possible: a disparity difference with the ground-truth greater than 0.5;
for details see Scharstein and Szeliski [8].

Overall, best results were obtained for images without many small details. This is related to
the size of the RFs in the cell population; smaller RFs are required to resolve the smallest details,
but unfortunately they also increase binocular correspondence errors. Fig 8 shows our result
when compared to the ranked results of other methods, which can include more sophisticated
post-processing and top-down methodologies, like image segmentation, for yielding massively
improved pixel-to-pixel correspondences. This table was replicated from the Middlebury
online evaluation webpage, applying the smallest available error threshold (� 0.5) to emphasise
that a biologically-inspired algorithm can achieve competitive results.

We can also see that the LCVB-DEMmethod improves the results achieved with the
L-DEM (BioDEM) method. Overall, we achieved a good position in the average ranking table:
rank 95.6 between 5.4 (best) and 159.5 (worst), on a total of 162 evaluated methods. With
LCVB-DEM we significantly rise 31 positions, from position 126.6 to 95.6 (table retrieved on
13th January 2015) relative to BioDEM. If we average the rankings of individual results in the
columns devoted to non-occluded regions, our method would rise 20.6 positions, to rank 75.
This confirms that the biggest improvement can be achieved by even more accurate estimates
near depth discontinuities. Finally, to the best of our knowledge, our method is ranked highest
when compared with other biologically inspired methods [12–36].

7. Discussion
We presented a hierarchical model of four disparity estimation methods, based on the biologi-
cal lDEM. It can achieve good results if compared with computer vision methods [8] and it
advances the state-of-the-art of biologically inspired methods [12, 36]. The advantage of the
proposed DEM approach is that it does not rely on extrinsic knowledge of cell parameters to
estimate disparities, requiring only trained cell populations. All used DEM-like models rely on
two neuronal populations: (1) an encoding population that learns to discriminate disparities
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Fig 6. LCVB-DEMMiddlebury dataset results. Each row shows the left view of each stereogram, its
ground-truth, and final disparity result. Top-to-bottom:venus, teddy, cones, aloe, cloth3, dolls,moebius and
reindeer stereograms. Images in the first and second columns are reprinted from Scharstein and Szeliski [26,
27], Scharstein and Pal [28] under a CC BY license, with permission from Daniel Scharstein, original
copyright 2002–2006.

doi:10.1371/journal.pone.0129908.g006
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Fig 7. Evaluation of disparity errors, for the different model layers. Error bars represent the standard error of the mean for each model layer and are
specified between brackets in the last column.

doi:10.1371/journal.pone.0129908.g007

Fig 8. Middlebury Stereo Evaluation table [8], with methods ordered by total Average Rank using the strictest error threshold (0.5). LCVB-DEM is
listed as “YOUR METHOD ” and the original L-DEMmethod is listed as “BioDEM”. The small blue numbers beside each column indicate the Average Rank of
each individual result against all other methods. The table was retrieved on 13th January 2015.

doi:10.1371/journal.pone.0129908.g008
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from repeated presentations of random and binocularly uniform stimuli, resulting in a popula-
tion activity code (i. e., a mean spike count) for each stimulus disparity; and (2) a decoding pop-
ulation that associates each code to a specific disparity value, using synaptic weights that store
the mean activity of the population [1]. After foveal training, the populations are ready to eval-
uate disparities at any retinotopic (image) position, each local activity code being decoded into
a single disparity value. Although not explored here, we also expect the decoding population to
have some degree of neural plasticity and context-awareness, dynamically adapting itself to
correlate the decoding weights to local image content.

All proposed models use a large number of cells: the L-DEMmodel starts with 2880 binocu-
lar simple cells which are combined into 1440 complex cells, at each retinotopic (image) posi-
tion; LCVB-DEM increases that number to 17,280 complex cells. Nevertheless, these are trivial
numbers when compared to total V1 size, estimated at about 190 million cells [37], but that
number could well be near 243 million (average volume of V1 of 5,405 mm3 × 45,000 cells/
mm3).

The role of colour in biological disparity models is still rather speculative [32], with little
research into biological disparity models that employ colour, even in view of already existing
evidence that disparity-sensitive neurons can also be isoluminant-sensitive [33, 34]. Mean-
while, our empirical evidence suggests that mixing colour weights may definitively play a sig-
nificant role in improving the luminance discrimination of cells, which can significantly
improve disparity estimations. Empirically, using different Y-channel luminance formulas in
the XYZ colour space significantly affected the accuracy of the disparity maps, suggesting that
the brain’s luminance pathway (where L- and M-cone responses are combined) plays a key
role in the stereo matching process by maximising the differences between regions of a scene.
This is expected evolutionarily, since the brain needed to develop a robust disparity system that
worked well for various survival-related tasks, especially in the dark, when scotopic colour per-
ception is unreliable. Nevertheless, colour can still play an important role in defining disparity
transitions by highlighting conspicuous object borders [17].

The role of perspective correction, to shift the viewpoint of disparity maps in order to yield
better estimates, is also biologically plausible: even uV1 cells display the ability to shift their
RFs [38]. Basically, this process increases the robustness of binocular correspondence (i. e., ste-
reo-matching) by combining the responses of three binocular RF perspectives, instead of just
one, at each image position. This is especially useful for scenes with many occlusions or peri-
odic textures. The method chosen for perspective shifting, shown in Eq (12), could also be par-
ticularly useful for combining many different perspectives in multi-view stereo. In this paper
we considered the left view, but this was because of a practical reason. In biological vision mod-
els this should be the central view in order to mimic cyclopean vision and minimise object bor-
der occlusions between left/right perspectives.

A big advantage of the models is that they exploit cell types that are already available in the
cortex: monocular simple cells can be paired to construct binocular cells. They are also useful
for coding lines and edges, as in the lLEDM, or even for object segregation or brightness per-
ception [19]. Also, as shown by Pugeault et al. [9], different spatial structures can be linked
both in 2D and 3D by using constraints like good continuity. These structures can be comple-
mented with other features, like optical flow, colour and texture, to help in object recognition.
The LEDM exploits the structural organisation of V1 hypercolumns, with very close left and
right retinal projections, associating depth to detected lines and edges at a low level, i. e., a sort
of “wireframe” representation [1]. This is useful for post-processing of DEM estimates in
occluded regions, where some detail is visible in one projection but not in the other. This allows
the LCVB-DEM to use LEDM and conspicuity edges to steer and correct disparity estimations
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on both edge sides, while smoothing disparities in regions without edges. The role of phase tun-
ing in sharpening edge disparities is also yet to be explored [11].

Finally, we propose and illustrate that the classical DEM (L-DEM) and LEDM can be used
to create a disparity “gist”map, i. e., they are robust enough to quickly draft the environment,
either from binocular energy complex cells or from object contours (the bottom layer of Fig 5).
Such maps are sufficient for person or robot navigation, as they are based on quickly extracted
visual features in a very low-level layer. In a second layer, the DEM is combined with colour
and perspective correction, giving a more accurate disparity map, but still lacking well-defined
borders around objects. In the third layer, information about edges is integrated into the
LCVE-DEM disparity map. The fourth and final layer sharpens object borders using saliency
data on top of LCVE-DEM, yielding LCVB-DEM. In summary, we have two disparity gist-like
maps, one with localised edge information (LEDM) and one with spatially inaccurate, but pre-
cise region information (L-DEM), which are later combined with colour and viewpoint to form
a more robust map (LCVB-DEM).

For further research, it makes sense to explore some alternative and promising combina-
tions of binocular cells that proved to yield more biologically accurate disparity tuning curves
in rhesus monkeys [4, 5]. The role of phase-tuned cells is also an interesting topic [19, 23], as
their use can be seamlessly integrated into our model, signalling false disparity matches that
can be immediately corrected at a low-level.
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