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Fine-tuning of neuronal activity was thought to be a neuron-autonomous mechanism until
the discovery that astrocytes are active players of synaptic transmission. The involvement
of astrocytes has changed our understanding of the roles of non-neuronal cells and shed
new light on the regulation of neuronal activity. Microglial cells are the macrophages
of the brain and they have been mostly investigated as immune cells. However, recent
data discussed in this review support the notion that, similarly to astrocytes, microglia
are involved in the regulation of neuronal activity. For instance, in most, if not all,
brain pathologies a strong temporal correlation has long been known to exist between
the pathological activation of microglia and dysfunction of neuronal activity. Recent
studies have convincingly shown that alteration of microglial function is responsible for
pathological neuronal activity. This causal relationship has also been demonstrated in mice
bearing loss-of-function mutations in genes specifically expressed by microglia. In addition
to these long-term regulations of neuronal activity, recent data show that microglia can
also rapidly regulate neuronal activity, thereby acting as partners of neurotransmission.
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INTRODUCTION
Microglial cells are one of the glial cell populations of the brain. In
contrast to other glial cell types such as oligodendrocytes or astro-
cytes, the role of microglia in the regulation of neuronal activity
has been somewhat overlooked. Microglia are macrophages of the
nervous tissue and as immune cells they can detect and react to
infection, trauma, ischemia, degeneration, or any alterations in
brain homeostasis. Actually, most brain pathologies, if not all, are
associated with early microglial activation1. Thus, microglial acti-
vation was demonstrated based on histopathological data, in vivo
brain imaging or cytokine expression upon axotomy (Blinzinger
and Kreutzberg, 1968), during degenerative (Haga et al., 1989;
Cagnin et al., 2001; reviewed in Cameron and Landreth, 2010)
or neuropsychiatric diseases (review in Beumer et al., 2012). Of
note, the above-described disorders are also associated with early
synaptic dysfunction (Blinzinger and Kreutzberg, 1968; references
in Selkoe, 2002; Penzes et al., 2011; Peça and Feng, 2012). Such
a temporal correlation between microglial activation and synap-
tic dysfunction during brain pathologies suggests that regulatory
interactions exist between the activation of microglia and neuro-
transmission. In addition, the functional properties of microglia
are compatible with an involvement in the control of neu-
ronal activity. They express receptors for most neurotransmitters

1The notion of “activation” of microglia is quite a loosely-defined concept
adapted from the well-defined concept of macrophage activation (Taylor et al.,
2005; Perry et al., 2007). Activation is associated with pathology but is often
used to describe the consequences of any stimulation of microglia. Because
different stimulation can induce different responses in microglia, there is not
one single parameter that characterizes an “activation.” Therefore, various
parameters have been used to establish microglial “activation” such as changes
in density, morphology, or expression of proteins. Whenever possible, we have
used the notion of stimulation instead of activation and described the nature
of the stimuli.

(Kettenmann et al., 2011; Kaindl et al., 2012) and produce a large
repertoire of molecules known to modulate neuronal activity and
plasticity. In addition, microglia are highly ramified cells and their
ramifications rapidly scan the local environment and react to its
modification (Davalos et al., 2005). Finally, microglial processes
physically contact synaptic elements (Wake et al., 2009; Tremblay
et al., 2010; see also Schafer et al., 2012), allowing for an accurate
control of synaptic function.

In this review, we will highlight recent studies suggesting or
demonstrating the involvement of microglia in the control of
neuronal activity. Firstly, we will describe how microglial dys-
function is primarily responsible for the alterations in neuronal
activity under pathological situations. We will then show that
in the healthy brain microglia can be described as partners of
neurotransmission.

MICROGLIA DYSFUNCTION PERTURBS NEURONAL
ACTIVITY
Microglia were initially described as sensors of pathological events
(Kreutzberg, 1996). It is now widely accepted that microglia are
not only sensors but also active players of pathological states in the
brain. Understanding the consequences of microglial dysfunction
on neuronal phenotype is important to understand the etiology of
the disease state and to propose therapeutic strategies. In this first
section we will review studies in which microglia are the primary
cause of alterations in neuronal activity during non-physiological
states. Importantly, the information gathered from pathological
situations is relevant for the understanding microglial function in
the absence of pathology, as will be discussed in the second section
of this review.

Analyses of mice bearing loss-of-function mutations in
genes involved in microglia-specific pathways exemplify the link
between microglial dysfunction and neuronal activity. CX3CR1 is
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the microglial receptor for the neuronal chemokine fractalkine
(CX3CL1). This complementary expression of ligand and recep-
tor on neurons and microglia respectively, suggests that their
interaction may play a role in modulating neurotransmission.
Mice with a CX3CR1 loss-of-function mutation exhibit an
impairment of hippocampal long-term potentiation (LTP) as well
as cognitive deficits (Rogers et al., 2011). The CX3CL1/R1 signal-
ing pathway also appears to be involved in synaptic maturation
since CX3CR1 deficiency leads to a delay in the maturation of
glutamatergic thalamocortical synapses, as well as a transient
immature connectivity in the developing hippocampus (Paolicelli
et al., 2011; Hoshiko et al., 2012). Of note, these latter alterations
might be secondary to a decreased recruitment of microglia and
not to a direct involvement of CX3CR1 signaling in the regula-
tion of neurotransmission (Paolicelli et al., 2011; Hoshiko et al.,
2012). Another example of a neuronal-microglial interaction is
provided by the analysis of CD200-deficient mice. CD200R is a
membrane protein exclusively expressed by microglia. Its ligand,
CD200 is expressed by neurons, oligodendrocytes and astrocytes
(Costello et al., 2011). It was demonstrated that LTP is inhibited
in CD200-deficient mice, further supporting the notion that the
integrity of microglial signaling is crucial for neurotransmission
homeostasis (Costello et al., 2011). Finally, synaptic alterations
have also been demonstrated upon the loss-of-function muta-
tion of DAP12, a transmembrane protein associated with various
lymphoid and myeloid receptors such as TREM2 (Tomasello
et al., 2000). In the brain, DAP12 and TREM2 are exclusively
expressed by microglia and DAP12 loss-of-function results in an
enhanced hippocampal LTP and major changes in glutamater-
gic transmission (Roumier et al., 2004, 2008). As for CX3CR1-
and CD200-deficient mice, the molecular mechanisms linking
microglial deficiency to synaptic alterations in DAP12KO mice
are not known. Interestingly however, the DAP12-mutant mouse
is a model for Nasu-Hakola disease in which patients display pro-
gressive presenile dementia associated with bone cysts (Hakola,
1972), together with leukodystrophy and astrogliosis in the brain
(Satoh et al., 2011). Nasu-Hakola disease is caused by mutations
in the genes encoding microglial DAP12 or TREM2 (Paloneva
et al., 2000), and because of this restricted expression, it has been
described as the first microgliopathy (Bianchin et al., 2010). Thus,
dysfunction of DAP12 signaling, which is exclusively expressed by
microglia impacts synaptic transmission (Roumier et al., 2004),
mouse behavior (Kaifu et al., 2003), and higher brain functions
in human (Paloneva et al., 2000).

A link between microglia and higher brain function has also
been proposed in the case of the mouse model of obsessive-
compulsive disorder. Disruption of the Hoxb8 gene, expressed
by a subpopulation of microglia, caused mice to groom com-
pulsively (Chen et al., 2010; see however Holstege et al., 2008).
Transplantation of wild type bone-marrow cells into Hoxb8
mutant mice rescued the phenotype (Chen et al., 2010) lead-
ing to the hypothesis that the pathological grooming behavior
observed in Hoxb8 mutant mice may result from deficient mutant
microglia.

Rett syndrome is another example of microglial involvement
in psychiatric disease. Rett syndrome is an autism spectrum dis-
order caused by mutations in the gene encoding the methyl CpG

binding protein-2 (MeCP2). Rett syndrome patients exhibit den-
dritic and synaptic abnormalities in selected regions (references
in Chahrour and Zoghbi, 2007). MeCP2 deficient mice mimic the
human syndrome (Chen et al., 2001; Guy et al., 2001; Shahbazian
et al., 2002). Transplantation of wild type bone marrow into irra-
diated MeCP2-null hosts was recently shown to lead to engraft-
ment of MeCP2-expressing microglia in the brain parenchyma
and to a rescue of the brain phenotype (Derecki et al., 2012).
Involvement of microglia in Rett syndrome is strengthened by
in vitro observations showing that MeCP2-null microglia release
high levels of glutamate, which induced changes in dendritic
morphology and a reduced number of postsynaptic densities
(Maezawa and Jin, 2010). Thus, microglia have an active role in
this disorder by a mechanism that remains to be described.

These examples of psychiatric phenotypes induced primarily
by deficiencies of microglial function support the notion that
microglia can actively modulate neuronal functions, including
learning and memory (Blank and Prinz, 2013). Yet, it cannot be
excluded that microglial dysfunctions induce a general change
of brain homeostasis resulting in non-specific defects in neu-
ronal activity. However, in some instances, such as chronic pain,
it could be shown that pathological effects on neuronal activity
are due a deregulation of local microglial mechanisms that might
be dedicated to the control of neurotransmission. For instance,
stimulation of microglial P2X4 receptors induces the release of
pain mediators such as PGE2 (Ulmann et al., 2010) or BDNF
(Coull et al., 2005) and is necessary for the induction of allodynia
after nerve injury (Tsuda et al., 2003). In addition, upon neu-
ropathic pain, the dorsal horn microglia produces BDNF, which
stimulates the neuronal TrkB receptor and induces a shift in the
chloride gradient in nociceptive neurons (Coull et al., 2005). Such
shift increases the excitability of the neurons through GABAA

receptor-mediated depolarization (Coull et al., 2003).
These examples show that local and specific interactions

between microglia and neurons can be responsible for the altered
neuronal activity observed in pathology. However, microglia and
neurons functionally interact in healthy conditions (Tremblay
et al., 2011) as well, and several studies have now established
that microglia can rapidly modulate neuronal activity in basal
conditions.

MICROGLIA AS GENUINE PARTNERS OF SYNAPTIC
ACTIVITY
Under physiological conditions, microglia react rapidly to neu-
ronal activity by modulating the physical contacts that their
numerous processes continuously establish with synaptic ele-
ments (Wake et al., 2009; Tremblay et al., 2010). Microglia are
thus potentially accurate sensors of neuronal activity and a recip-
rocal control of neurotransmission by microglia can be expected.
The ability of microglia to rapidly modulate synaptic activity
was initially exemplified by treating cultured neurons or acute
brain slices with medium conditioned by cultured microglia.
Microglia conditioned-medium was shown to increase both the
amplitude and duration of the NMDA-receptor induced currents
(Moriguchi et al., 2003; Hayashi et al., 2006). The nature of the
signaling molecules involved in this process is still unknown and
were proposed to be a secreted protein(s) (Moriguchi et al., 2003)
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or glycine (Hayashi et al., 2006). In fact, microglia produce a
broad spectrum of signaling molecules known to regulate synap-
tic function, including cytokines (Elkabes et al., 1996; Hanisch,
2002), neurotransmitters (Piani and Fontana, 1994; Hayashi et al.,
2006; Flierl et al., 2007; Pascual et al., 2012), and extracellular
matrix proteins (Chamak et al., 1994). A direct regulation of
synaptic properties by microglia is therefore expected. Amongst
the microglial molecules with a putative role in neurotransmis-
sion, TNFα deserves specific attention. This cytokine was shown
to control basal synaptic functions (Santello et al., 2011) as
well as plasticity (Stellwagen and Malenka, 2006; Kaneko et al.,
2008; Costello et al., 2011; Santello et al., 2011), and this role
was attributed to TNFα produced by astrocytes (Stellwagen and
Malenka, 2006). However, the astrocytes have often been thought
to express TNFα because cultures of astrocytes are consistently
contaminated by microglia (Saura, 2007; Barres, 2008). In addi-
tion, the transcriptome analysis from purified astrocytes reveals
no TNFα-encoding transcript in astrocytes (Sharma et al., 2007;
Cahoy et al., 2008; Doyle et al., 2008; Meissner et al., 2008; Foo
et al., 2011; Zamanian et al., 2012). Thus, the TNFα that con-
trols several aspects of synaptic transmission might, in fact, be
produced by microglial cells, but this has not yet been firmly
established.

It has also been shown that microglia can shed micro-
vesicles a few seconds after ATP stimulation, most proba-
bly by a P2X7-dependent mechanism (Bianco et al., 2005).
When these vesicles were harvested from cultured microglia
and applied to cultured hippocampal neurons, they induced
an increased frequency of miniature excitatory post-synaptic
currents (mEPSC), supposedly through presynaptic regulation
(Antonucci et al., 2012). Analysis of the regulatory pathway
between microglia and synaptic activity led the authors to pro-
pose that microglial micro-vesicles regulate mEPSCs through a
phosphatydil-dependent regulation of presynaptic vesicle release
(Antonucci et al., 2012). The functional relevance and speci-
ficity of this mechanism remains to be established but it raises
the provocative hypothesis that physical contacts, or membrane
exchange between microglia and neurons, could actively and
rapidly regulate neurotransmission.

The above-described studies suggest, but do not demonstrate,
that microglia can rapidly modulate synaptic function. Several
studies have specifically stimulated microglia and analyzed the
consequences on neuronal activity in a similar way to what
was done to investigate the role of astrocytes in neurotrans-
mission. Application of fractalkine onto neuron cultures was
shown to induce a strong and rapid modulation of calcium cur-
rents in neurons (Meucci et al., 1998). Such modulation was
actually the first demonstration that stimulation of microglia
could rapidly modulate the activity of neurons (although it was
at first incorrectly attributed to a direct stimulation of neu-
rons by fractalkine). This modulation has also been confirmed
in acute hippocampal slices, in which stimulation of microglia
by fractalkine induces a significant and transient reduction of
the amplitude of evoked EPSCs in CA1 pyramidal neurons
(Ragozzino et al., 2006; see Figure 1A). It was further demon-
strated that this reduction involves adenosine, supposedly acting
on neuronal A3R receptors (Piccinin et al., 2010). The probable

mechanism of regulation is that fractalkine induces the microglial
release of adenosine, which in turn inhibits the presynaptic release
of glutamate (Figure 1A). Alternatively, microglia could produce
ATP that is rapidly degraded into adenosine by ectonucleotidases.
The involvement of other cell types such as astrocytes has not yet
been ruled out.

An alternative rapid regulation of neuronal activity by
microglia has recently been established upon application of
lipo-polysaccharide (LPS—Pascual et al., 2012; Figure 1A). LPS
is a ligand of TLR4 that mimics bacterial infection and can
reveal pathological pathways. TLR4 is exquisitely expressed
by microglia and can also be stimulated by several endoge-
nous ligands (Habich et al., 2005; Gondokaryono et al., 2007;
Midwood et al., 2009; Milanski et al., 2009; references in Lucin
and Wyss-Coray, 2009). Therefore, the mechanisms revealed
by LPS application probably have a physiological relevance.
Stimulation of microglia by addition of LPS onto acute hip-
pocampal slices induces a rapid and transient increase in the
frequency of spontaneous synaptic AMPAergic post-synaptic cur-
rents in CA1 neurons. This effect does not occur in slices pre-
pared from Pu.1 deficient mice that lack microglia, showing
that the effect of LPS requires microglia. It was then demon-
strated that upon LPS stimulation, microglia rapidly produce
ATP, which recruits astrocytes. Astrocytes subsequently release
glutamate, and this leads to increased excitatory transmission
via a metabotropic glutamate receptor-dependent mechanism
(Pascual et al., 2012).

The above-described studies show that stimulation of
microglia modulates neuronal activity in vitro. The occurrence
of regulating interactions between microglia and neuronal activ-
ity has recently been demonstrated in vivo in the zebrafish larva
(Li et al., 2012; Figure 1B). In this system, microglia moni-
tor spontaneous or visually evoked neuronal activity, and send
bulbous processes toward the most active neurons, as detected
by their production of ATP. These contacts between microglial
endings and active neurons induce a rapid decrease in both fre-
quency and amplitude of neuronal calcium events (Li et al.,
2012). This study confirms and extends the data obtained
upon stimulation of microglia and further demonstrates that
microglia are genuine partners of neuronal activity in the healthy
brain.

THE RIGHT TOOLS TO TARGET THE RIGHT CELLS
The role of microglia in the regulation of neurotransmission is
far less studied than that of astrocytes. This might be due to a
lesser involvement of microglia in such regulation. Alternatively,
this could also be due to the fact that the characterization of
microglia as regulators of neurotransmission has been hindered
by the lack of tools to specifically stimulate or block their func-
tion. Such tools are available for astrocytes and their function has
been blocked by application of pharmacological inhibitors such
as Fluoroacetate or calcium chelators (Henneberger et al., 2010).
Stimulation of astrocytes has also been achieved, mechanically
(see e.g., Liu et al., 2011) or by local application of synthetic ago-
nists or local uncaging of calcium or glutamate (Pascual et al.,
2005; Agulhon et al., 2010). Although the physiological relevance
of such treatments is still debated (Hamilton and Attwell, 2010),
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FIGURE 1 | Microglia are genuine partners of synaptic transmission.

(A) In acute rodent brain slices, stimulation of microglia by LPS induces the
rapid release of ATP, which recruits astrocytes. Upon purinergic stimulation,
astrocytes release glutamate, inducing a mGluR-dependent release of
presynaptic glutamate (Pascual et al., 2012). Stimulation of microglia by

fractalkine induces the release of adenosine, which decreases neuronal
activity (Meucci et al., 1998; Ragozzino et al., 2006; Piccinin et al., 2010).
(B) In zebrafish larva, active neurons release the ATP that attracts microglial
bulbous processes. These processes decrease neuronal activity by an as yet
unknown mechanism (Li et al., 2012).

these protocols allowed the characterization of astrocytes as reg-
ulators of the normal function and plasticity of neural circuits
in vitro and in vivo. Comparable tools to tune the function
of microglia are lacking, mostly because of a specificity issue.
For instance, minocycline is known to block microglial function
(Yrjänheikki et al., 1998), but its molecular and cellular tar-
gets remain unidentified and its specificity remains to be firmly
established. Moreover, microglia can be stimulated by a large
variety of inflammatory molecules such as cytokines or inter-
leukins, but their receptors have also been detected on neurons
and astrocytes, preventing accurate interpretation of their puta-
tive effects. In addition, as mentioned previously in relation to
the cellular origin of TNFα, the consistent contamination of
neuronal and astrocyte cultures by microglia has made it diffi-
cult to address the correct expression of microglial molecules.
For instance, CX3CR1, the fractalkine receptor that was initially
thought to be expressed by neurons (Meucci et al., 1998, 2000;
Hughes et al., 2002; Ragozzino et al., 2006), is now demon-
strated to be exclusively expressed by microglia (Cardona et al.,
2006; Lauro et al., 2008). Similarly, TLR4, the LPS receptor,
was mistakenly detected in astrocytic (Bowman et al., 2003;
Alfonso-Loeches et al., 2010) and neuronal cultures (Tang et al.,
2007). Indeed, when microglia were efficiently depleted from

astrocyte cultures, TLR4 was no longer detected (Lehnardt et al.,
2002; Pascual et al., 2012). In addition, expression of TLR4
has never been found in healthy neurons or astrocytes. Finally,
data mining of Gene Expression Omnibus DNA array exper-
iments performed on purified cells confirmed that TLR4 is
exclusively expressed by microglia (Pascual et al., 2012). Thus,
CX3CR1 and TLR4 expression is limited to microglia and, as
described above, can be used to specifically stimulate these cells
and study their involvement in biological processes. We spec-
ulate that the future development tools to specifically block
microglial function will also be instrumental to understand
the involvement of these cells in wide variety of physiological
processes.

CONCLUSION
The biological relevance of microglia as active sensors of
brain parenchyma was until recently, principally recog-
nized in pathological tissues. The role of microglia in the
healthy brain is now acknowledged (Graeber, 2010; Pont-
Lezica et al., 2011; Tremblay et al., 2011). Here we have
reviewed studies indicating that microglia are able to con-
trol neuronal activity, from synaptic transmission to higher
brain functions. Microglia have often been described as
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“good” or “bad” cells (Kempermann and Neumann, 2003;
Kettenmann, 2007; Watkins et al., 2007; Aguzzi et al., 2013).
Considering microglia as partners of neuronal function will cer-
tainly help to provide a more accurate and integrated under-
standing of their roles, beyond the primary “beneficial vs.
detrimental” dichotomy. It will also extend our understand-
ing of non-cell autonomous regulation of neuronal activity and

shed new light on the role of microglia in the pathological
brain.
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