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Abstract

In the Adirondack Park region of northern New York, USA, white-tailed deer (Odocoileus vir-

ginianus) and moose (Alces alces) co-occur along a temperate-boreal forest ecotone. In this

region, moose exist as a small and vulnerable low-density population and over-browsing by

white-tailed deer is known to reduce regeneration, sustainability, and health of forests.

Here, we assess the distribution and abundance of white-tailed deer at a broad spatial scale

relevant for deer and moose management in northern New York. We used density surface

modeling (DSM) under a conventional distance sampling framework, tied to a winter aerial

survey, to create a spatially explicit estimate of white-tailed deer abundance and density

across a vast, northern forest region. We estimated 16,352 white-tailed deer (95% CI

11,762–22,734) throughout the Adirondack Park with local density ranging between 0.00–

5.73 deer/km2. Most of the Adirondack Park (91.2%) supported white-tailed deer densities

of�2 individuals/km2. White-tailed deer density increased with increasing proximity to

anthropogenic land cover such as timber cuts, roads, and agriculture and decreased in

areas with increasing elevation and days with snow cover. We conclude that climate

change will be more favorable for white-tailed deer than for moose because milder winters

and increased growing seasons will likely have a pronounced influence on deer abundance

and distribution across the Adirondack Park. Therefore, identifying specific environmental

conditions facilitating the expansion of white-tailed deer into areas with low-density moose

populations can assist managers in anticipating potential changes in ungulate distribution

and abundance and to develop appropriate management actions to mitigate negative con-

sequences such as disease spread and increased competition for limiting resources.
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Introduction

Given that climate change and anthropogenic alterations to landscapes threaten the persis-

tence of many species, there is a growing need for landscape-scale research and monitoring to

investigate relationships between species abundance and landscape characteristics. Under-

standing key wildlife-habitat relationships is necessary for implementing effective manage-

ment to minimize the negative impacts that climate change will have on cold-adapted species,

particularly on populations experiencing declines along the southern edges of their species

ranges. For example, warming winters caused by climate change can affect specific physiologi-

cal (i.e., thermoregulation) and biotic (i.e., competition and epizootics) processes known to

influence the abundance and distribution of ungulates [1–3]. When ungulates respond to

changing conditions on the landscape, they shift their population distribution in response to

the distribution of favorable conditions [4, 5].

Shifts in the distribution of ungulates, such as white-tailed deer (Odocoileus virginianus), in

the northern forests of North America are attributed to decreased severity of winter condi-

tions, reduced snow cover, and extended growing seasons [1, 4, 6, 7]. However, white-tailed

deer exhibit chronic winter mortality at northern latitudes, so they respond to severe winter

weather and deep snow by congregating in wintering areas known as deer yards [8–12]. These

areas are typically characterized by forest types offering shelter and browse (e.g., coniferous

forests), low elevation, and contain a network of corridors used by deer for movement and for-

aging. Warming winters associated with climate change have reduced overwinter mortality of

white-tailed deer in areas along their northern range and facilitated increased deer presence in

northern forests well above their historical levels [4]. Increasing densities of white-tailed deer

in northern forests are known to support greater densities of large predators [13–15] and facili-

tate the spread of parasitic pathogens [16–19] that have negative consequences for other ungu-

lates, such as elk (Cervus canadensis), moose (Alces alces), and woodland caribou (Rangifer
tarandus caribou). Therefore, quantifying the influence of land cover on the distribution and

abundance of white-tailed deer is essential for anticipating future changes in ungulate numbers

and for informing management plans to mitigate the negative consequences of increasing deer

densities.

In the Adirondack Park region (hereafter “the Park”) of northern New York, white-tailed

deer and moose co-occur along an ecotonal temperate-boreal forest region where deer are

expanding their range [20] and moose exist as a stable, low-density population [21]. Mild win-

ters associated with climate change have allowed white-tailed deer to winter in land cover that

formerly could only sustain them in the summer [3, 4]. White-tailed deer in the Park respond

positively to anthropogenic landscape features by concentrating their winter yards along corri-

dors of residential development and roads for shelter, forage, and movement corridors during

winter [12]. Moose in the Park are non-migratory and most of the low-density population

inhabits the northern region where large-scale forestry operations provide concentrated

patches of regenerative forest [21]. Both species rely on timber harvest forest regeneration for

forage and ongoing timber management in the northern areas of the Park has the potential to

further concentrate moose and white-tailed deer in that region. Additionally, warmer winters

will increase transmission risks for parasitic pathogens and threaten long-term persistence of

moose in the region. Therefore, given the complexity of how white-tailed deer exploit land

cover and the impact of increasing deer densities on moose recovery in the Park, assessing the

distribution and abundance of deer at a broad spatial scale is relevant for deer management

that requires integrating information across different spatial scales.

Our primary objective was to assess the winter population size and distribution of white-

tailed deer in the Park using the 2-stage density surface modeling (DSM) approach [22]. This
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entailed developing spatially explicit models of white-tailed deer abundance in the Park by

coupling conventional distance sampling (CDS) with multivariate regression modeling to pro-

duce a density surface map (deer/km2) predicted from environmental covariates [22, 23]. The

DSM approach uses the spatial variability of white-tailed deer abundance to model abundance

at finer resolutions than CDS alone, provide additional insight into species-environment rela-

tionships within survey areas, and predict abundance in neighboring areas that were not sur-

veyed. Our secondary objective was to compare winter distribution and density of white-tailed

deer in the Park to those previously estimated for moose [21].

Material and methods

Study area

The Adirondack Park was located between the temperate and boreal regions of northern New

York and consisted of approximately 24,280 km2 of private and public lands characterized by

mountainous terrain (Fig 1). Elevation in our study area ranged between 30–1,600 m. Mean

Fig 1. Our study area in the Adirondack Park of northern New York where we conducted aerial surveys of white-tailed deer using distance

sampling methods during winter 2016. The rectangular grids represent the 30-km2 (10 km x 3 km) survey units available for distance sampling of

white-tailed deer and moose. The grids outlined in yellow represent survey units that were randomly surveyed during 2016 to estimate parkwide

abundance of white-tailed deer.

https://doi.org/10.1371/journal.pone.0273707.g001
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monthly temperatures in the Park varied between -12 and 6˚C and between 20 and 26˚C for

winter and summer, respectively. Mean monthly precipitation varied between 8–10 cm and

annual snowfall between 152 and 356 cm. Predominant vegetation communities in the Park

consisted of northern hardwood (~60% of total forest cover) and conifer forest, followed by

boreal upland forests and northern swamp. Predominant canopy cover for northern hardwood

stands consisted of sugar maple (Acer saccharum), red maple (Acer rubrum), yellow birch

(Betula alleghaniensis), white birch (Betula paperyfera), and American beech (Fagus grandifo-
lia). Boreal stands of red spruce (Picea rubens), black spruce (Picea mariana), balsam fir (Abies
balsamea), and eastern hemlock (Tsuga canadensis) dominated poorly drained lowland areas,

riparian bottomlands, and subalpine forests at elevations above 760 m. More detail of the

study area can be found in Kramer et al. [24].

In the Park, publicly owned lands (~48% of the Park) consist of mostly second-growth forest

with remnants of original growth because the New York State constitution has protected those

areas as “forever wild forest lands” since 1892 [24]. Privately owned lands comprised the remain-

ing areas of the park and were a patchwork of partially cut, uneven-aged forests resulting from

timber management [24]. Although timber harvest played a large role in maintaining early seral

stages across the Park, the restrictive use of public lands and long rotation age of northern hard-

wood forests has ensured the dominance of older and thick canopy cover [24–26].

Survey design

During 2015–2019, monitoring of the low-density moose population in the Park was under-

taken via aerial distance sampling [21]. Given the interest in how white-tailed deer may nega-

tively influence moose abundance through competition and disease, deer were also recorded

in a winter aerial survey to gain a contemporary, non-harvest-based assessment of their distri-

bution and abundance and compare spatial patterns in moose-deer co-occurrence across the

Park.

We partitioned the Park into 10-km × 3-km grid of survey units (N = 784) and surveyed 80

units during winter 2016 (28 Dec 2015–15 Jan 2016; Fig 1). Survey units were oriented at 41.6˚

to follow the prevailing terrain gradient. Within each survey unit, we surveyed 3, 10-km tran-

sects spaced 1 km apart. We sampled survey units once and began surveys at either the north-

east or southwest endpoints of a transect in the selected unit, at an altitude of 60 m, and

proceeded at a speed of 50–60 kph. Surveys were conducted from either a Bell 430 (Bell Heli-

copter, Fort Worth, TX, USA) or Robinson 44 (Robinson Helicopter, Torrance, CA, USA)

helicopter with a survey crew that included a pilot, a navigator, and 2–3 additional observers

with rear-seated observers responsible for recording data. The front passenger (navigator) was

equipped with a Windows 8.1 tablet with external antenna (Microsoft Corporation, Redmond,

Washington, USA) that was pre-loaded with transect endpoints and displayed and recorded

the entire flight path using Quantum GIS [27]. The navigator was also equipped with a hand-

held GPS unit to save waypoints as a backup. Flights followed all Federal Aviation Administra-

tion regulations and were conducted under safe flying conditions (e.g., wind speed <16–24

km/h) after sunrise with consistent snow on the ground. Surveys were conducted for 3–6

hours of flight time/day during the morning through early afternoon.

The survey crew collected distance data on white-tailed deer by directing the pilot off the

transect to the location of first detection for each deer group encountered. After a GPS location

was acquired directly overhead of the initial sighting point for each white-tailed deer group,

the pilot returned to the transect and continued the survey. With the detection locations

recorded, we quantified perpendicular distances later using ArcGIS 10.8 [28]. When

approached by helicopters, white-tailed deer often flushed and ran short distances, but others
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also remained bedded or standing. However, the timing and distancing between transect lines

ensured fleeing white-tailed deer were unlikely to have been detected more than once in survey

units. Although some white-tailed deer likely responded to approaching helicopters by fleeing

to cover and escaping detection, CDS allows 60–80% individuals to be missed during surveys

and still obtained robust (i.e., unbiased) estimates of the true population size [29].

For each detection, we recorded white-tailed deer group size, time of day, percent cloud

cover, and canopy cover type. Canopy cover was classified into 3 types: open (areas with open

canopy vegetation or those where canopy was removed due timber harvest), mixed (coniferous

and deciduous canopy or conifer only), or hardwood (deciduous canopy). Our survey was

approved by the State University of New York College of Environmental Science and Forestry

Institutional Animal Care and Use Committee (Protocol Number 140901).

Statistical analysis

In stage 1 of our analysis, we evaluated the influence of cover type (e.g., open, mixed, hard-

wood), observer fatigue (e.g., number of preceding survey hours that day), white-tailed deer

group size, air temperature (˚C measured by embedded sensor on helicopter), and percent

cloud cover (measured at start of transect) on deer detection probability using multiple covari-

ate distance sampling (MCDS) using the Distance package [30] in R [31] with either a hazard

rate or half-normal key function [32]. We ranked models using Akaike’s information criterion

(AIC) and goodness-of-fit tests to guide model selection. Competing models were denoted as

those within 2 ΔAICs of the top model [33]. After selecting the top ranked MCDS model, we

predicted white-tailed deer abundance in each surveyed unit using the Horvitz-Thompson-

like estimator [34–36].

In stage 2 of our analysis, we conducted a DSM analysis using the package dsm in R [22] in

which the spatial variation in distance-corrected abundances of white-tailed deer were mod-

eled using GAMs. We fit a GAM with a Tweedie distribution over the more widely used nega-

tive binomial distribution because it allows for more flexible modeling of zeros and extreme

values [37]. Coefficient of variation for the abundance estimates of the DSM analyses were

obtained through the variance propagation method [38]. When fitting the DSM, this proce-

dure uses an additional random effect term that characterizes uncertainty estimated in the

detection function and propagates it through to estimates for the spatial model [22, 23, 39].

For our DSM, we divided each 10-km survey transect (3 transects per 30-km2 survey unit)

into four 2.5-km segments to measure heterogeneity in land cover types within survey units.

We then intersected each survey segment with the GPS locations for each white-tailed deer

group detected. Segment-level spatial covariates included a bivariate smooth of geographic

coordinates (Universal Transverse Mercator [UTM]) to account for spatially autocorrelated

whited-tailed deer detections and land cover types known to influence deer abundance such

as distance from agriculture cover (m) [40–43], distance from developed cover (m) [42–45],

distance from forest cover (m) [42, 46, 47], distance from shrub cover (m) [43, 48, 49], distance

from timber cuts (m) [48, 50], distance from wetland cover (m) [43, 51, 52], distance from

water (m) [51, 53], elevation (m) [12, 54, 55], and days with snow cover [56, 57]. Land cover

such as agriculture, developed, forest, shrub, timber cuts, wetland, and water were identified

using an updated land cover map of the Park for 2016 that combined Landsat 8 satellite imag-

ery (30 m resolution) acquired from the USGS Global Visualization Viewer for imagery, Nor-

malized Difference Vegetation Index, National Land Cover Dataset, the Adirondack Park

Agency’s wetlands data, and timber treatment data provided by regional timber companies

[24]. We acquired elevation data from a 30-m raster digital elevation model (DEM) [58]. We

acquired the number of days with snow cover for each 250-m survey segment from the
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National Operational Hydrologic Remote Sensing Center’s (NOHSRC) Snow Data Assimila-

tion System Data Products [59]. We considered anthropogenic land cover as landscape fea-

tures created by humans (e.g., timber cuts, developed cover, and agriculture).

We used principal components analysis (PCA) to compress our highly dimensional spatial

dataset into the dominant, underlying gradients of variation (principal components [PCs]).

We used the latent root criterion (PCs with eigenvalues�1) as a stopping rule to determine

the number of significant PCs to retain and interpret [60]. We then based our interpretation of

each PC on those variables with loadings�0.40 or�-0.40 and placed most emphasis on those

with loadings�0.60 or�-0.60 [60]. We used the variables with the strongest loadings to inter-

pret the ecological meaning of each PC. The PCs were then used as indicators of land cover

complexes and variables of landcover gradients existing in our study areas, in which white-

tailed deer abundance either increased or decreased with the value of each of the latent envi-

ronmental variables.

For our GAM models, we used restricted maximum likelihood (REML) to optimize param-

eter estimates along with a thin-plate spline shrinkage approach to modify the smoothing pen-

alty for model selection purposes [61]. In addition to environmental predictors, we included a

UTM bivariate term to provide a spatial estimator, which acted as a proxy for unmeasured var-

iables that influence abundance not accounted for by the other predictors. We explored all

possible subsets of the 4 predictor variables including the null model as candidate models and

evaluated model sets using Akaike’s information criterion (AIC) to guide model selection. In

addition to AIC, we also compared estimates among models by the ability to include informa-

tive covariates and produce reliable population estimates (i.e., coefficient of variation [CV]).

We considered the model with the lowest AIC as the best approximating model. However,

when model sets had�2 models that were within 2 ΔAIC of the top model, we selected the

most parsimonious model.

To map predicted white-tailed deer density, we created a grid of 1-km2 cells across the Park

(n = 23,998 cells), calculated UTM coordinates at cell midpoints, and extracted spatial covari-

ates for each cell. As noted by Miller et al. [22], prediction grid cells that are smaller than the

resolution of the spatially referenced data have no effect on abundance or density estimates.

Applying the selected model to that grid enabled a spatially explicit estimate of deer abun-

dance, density (deer/km2), and coefficient of variation [22]. Total white-tailed deer abundance

for the Park was then obtained by summing predicted deer abundance across all relevant cells.

To correlate winter densities of white-tailed deer and moose in the Park, we used a Spearman

rank-order correlation to compare our deer density surface map to a moose density surface

map previously derived from the same aerial surveys [21].

Results

During 10 survey flights, we recorded 200 observations of white-tailed deer groups after sur-

veying 2,400 km of transects in the Park, comprising a total of 645 individuals (0.083 detec-

tions/km). Deer group size ranged 1–30 animals and averaged 3.21 (SD = 2.89; n = 200

groups). The maximum distance to which a deer group was observed was 414 m, but observa-

tions were truncated to 350 m when fitting the detection function (yielding n = 193 groups).

We detected no difference among our top 5 ranked detection models and therefore selected

the most parsimonious one which included a hazard rate function with canopy cover as the

only covariate indicating that white-tailed deer detection probability was greatest under hard-

wood and open cover compared to those under conifer cover (Tables 1 and 2). On average,

survey teams observed ~58% of the deer estimated to occur along survey transects

(p̂ ¼ 0:58� 0:03 SE; Table 1).
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The first 3 principal components (PC1, PC2, and PC3) explained 31.6%, 23.2%, and 11.9%

of the cumulative variation in our land cover predictors, respectively and were the only PC

scores with eigenvalues�1 (Table 3). Since the first 3 axes explained 66.8% of the total vari-

ance, we deemed the 3-dimensional solution adequate. PC consisted of positive loadings for

elevation, distance from agriculture cover, distance from developed cover, distance from tim-

ber cuts, and number of days with snow cover—these variables contributed 97.4% of PC1’s

quality of representation (Table 3). Therefore, we interpreted decreasing PC1 scores as land

Table 1. Summary of the top 6 candidate detection function models with hazard rate key functions for white-tailed deer in the Adirondack Park, 2016. Indicated

for each model are the model covariates, number of estimated parameters (K), Cramer von Miser goodness of fit P-value, average probability of detection (p̂) with standard

error (SE), and ΔAIC comparing models.

Model K C-vM P-value p̂ SE ΔAIC

Canopy cover + cloud cover 4 0.703 0.66 0.030 0.00

Canopy cover 3 0.612 0.66 0.030 0.77

Canopy cover + temperature + cloud cover 5 0.630 0.67 0.029 1.17

Canopy cover + group size + cloud cover 5 0.711 0.66 0.030 1.79

Canopy cover + fatigue + cloud cover 5 0.721 0.66 0.030 1.92

Canopy cover + group size 4 0.629 0.66 0.030 2.04

https://doi.org/10.1371/journal.pone.0273707.t001

Table 2. Parameter estimates for the most parsimonious detection model for surveying white-tailed deer via helicopter during 2016 in Adirondack Park, New York.

Cover was a categorical variable and, when significant in a model, hardwood cover served as the reference category. Shown are β coefficients and standard error (SE).

Model Key function Parameter β SE

Canopy cover Hazard rate Intercept -1.680 0.094

Mixed 0.054 0.112

Open 0.321 0.112

https://doi.org/10.1371/journal.pone.0273707.t002

Table 3. Factor loadings and percent contribution for each of the top 3 principal components (PC) for land cover measured across the Adirondack Park, New York.

Land cover Principal component 1 (Thermal cover and

forage)

Principal component 2 (Preserved state

land)

Principal component 3 (Distance to bodies

of water)

Loading % Contribution Loading % Contribution Loading % Contribution

Agriculture1 0.67 15.43 0.00 0.00 -0.22 4.48

Developed1 0.76 20.05 0.30 4.35 -0.16 2.22

Forest1 -0.29 2.87 0.85 34.87 -0.14 1.75

Shrub1 -0.06 0.13 0.67 21.79 0.19 3.40

Timber1 0.69 16.63 0.38 6.94 -0.05 0.20

Wetland1 -0.12 0.47 0.80 31.43 -0.12 4.20

Water1 0.15 0.82 -0.06 0.16 0.94 82.38

Elevation 0.83 23.66 -0.09 0.40 0.19 3.34

Snow2 0.76 19.96 -0.04 0.06 -0.19 0.03

Eigenvalue 2.88 2.06 1.08

% of total variance 31.96 22.88 11.99

1Distance-based variables
2Number of days with snow cover

Also included are eigenvalue, percent of total variance explained, and descriptions of principal components. Interpretation of PCs are parenthesized. Variables with

significant loadings shown in bold.

https://doi.org/10.1371/journal.pone.0273707.t003
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cover that provided thermal cover (areas with lower elevation and fewer days with snow cover)

and food resources (decreased distances from agriculture cover, developed cover, and timber

cuts). PC2 consisted of large positive loadings for distances from forest cover, wetland cover,

and shrub cover—contributing 91.0% of PC2’s quality of representation (Table 3). PC3 con-

sisted of a single large positive loading for distance from water and contributed 84.4% of

PC3’s quality of representation (Table 3). Collectively, the PC scores indicate that once PC1

accounted for anthropogenic land cover, elevation, and number of days with snow cover, PC2

and PC3 accounted for preserved state land and bodies of water, respectively.

According to AIC, our best GAM model indicated that geographic coordinates and PC1 to

be informative for predicting local white-tailed deer density (Table 3, Fig 2). White-tailed deer

abundance was predicted to decrease in areas with increasing elevation and number of days

with snow cover as well as areas with increasing distance from timber cuts, developed cover,

and agriculture (PC1; Tables 4 and 5, Fig 3). Overall white-tailed deer density for the Park

was estimated from the GAM to be 0.70 deer/km2 (95% CI 0.50–0.97). Our DSM approach

revealed local densities ranging 0.00–5.47 deer/km2 with specific regional concentrations (Fig

4). We estimated 16,352 deer (95% CI 11,762–22,734) across the Park and achieved a 16.8%

CV, which fell below the desired 20% threshold (see Buckland et al. 2008 [29]). Spearman’s ρ =

-0.61 was estimated between the relative densities of our white-tailed deer and those reported

previously for the Park’s moose [21] (Fig 5).

Discussion

Our DSM approach allowed us to assess the spatial variation in the abundance of white-tailed

deer across the Park during winter using environmental predictors to detect significant

changes in local abundances. Unlike the CDS methods, DSM use observations to model the

effect of predictor variables on abundance. Therefore, these methods can improve manage-

ment strategies for white-tailed deer, identifying primary land cover (e.g., timber cuts and

roads) and environmental conditions (e.g., snow conditions) influencing white-tailed deer

abundance. Our abundance estimate and density surface map provide valuable insights into

several relevant areas for the management of white-tailed deer in the Park.

Annual hunter harvests have been the primary source of information regarding the white-

tailed deer population in the Park. For example, prior to our winter survey, the 2015 white-

tailed deer hunting season (27 Sep–13 Dec 2015) resulted in 8,566 deer harvested (0.35 deer/

km2) across the 7 WMUs (5C, 5F, 5G, 5H, 5J, 6F, 6J) that made up the study area [62]. Given

that our selected model estimated an overall abundance of 16,352 white-tailed deer (0.70 deer/

km2) across the Park immediately following the 2015 hunting season, a simple intuitive inter-

pretation of both datasets suggests that approximately 24,918 white-tailed deer (1.03 deer/

km2) may have occupied the Park prior to the 2015 deer hunting season by which up to 34.4%

of the population was harvested by hunters. Furthermore, the greatest density of white-tailed

deer occurred in the eastern and southern regions of the Park (Fig 4) which coincided with the

wildlife management units (WMUs) where deer harvest was greatest in the Park.

Much of the predictive power from our selected model was derived from the bivariate spa-

tial predictor (geographic coordinates) and PC1 (elevation, days with snow cover, and dis-

tances from timber cuts, developed cover, and agriculture). Spatial variation in white-tailed

deer was most strongly correlated with geographic coordinates and, given the large influence

that geographic coordinates had in our model, the bivariate spatial predictor likely accounted

for important unmodelled environmental and social characteristics not captured by PC1. For

example, geographic coordinates may have captured the latitudinal influence that the Park’s

transition between northern-temperature and southern boreal biomes had on white-tailed
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Fig 2. Observations of white-tailed deer made during aerial surveys (yellow circles), roads (blue lines), and timber cuts (red

polygons) overlaid on a surface map of PC1 representing thermal cover and foraging areas for deer across the Adirondack

Park, New York, USA, during winter 2015–2016. Low PC1 values represent areas with low elevation, decreasing days with snow

cover, and increasing proximity to timber cuts, developed cover, and agriculture.

https://doi.org/10.1371/journal.pone.0273707.g002
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Table 4. Top GAM models and the null model for white-tailed deer abundances in the Adirondack Park, New York, USA. For each area and period, we provide the

estimated deer abundance (N), 95% confidence interval (CI), coefficient of variation (CV), and ΔAIC.

Model Estimated deer abundance (N̂ ) 95% CI for N̂ CV ΔAIC

Geographic coordinates + PC11 16,352 11,762–22,734 0.169 0.00

Geographic coordinates + PC1 + PC32 16,801 12,121–23,287 0.168 3.48

Geographic coordinates + PC1 + PC23 + PC3 16,802 12,121–22,290 0.168 3.48

PC1 + PC3 12,105 9,170–15,979 0.142 19.43

PC1 11,905 9,082–15,603 0.139 22.28

Geographic coordinates 15,771 11,723–21,209 0.152 47.82

Null 11,455 9,100–14,419 0.112 72.73

1Thermal cover and forage
2Distance from large bodies of water
3Preserved state land

https://doi.org/10.1371/journal.pone.0273707.t004

Table 5. Summary of the generalized additive model describing factors influencing white-tailed deer abundance

in Adirondack Park, New York, USA, 2016. We present the estimated degrees of freedom (edf), reference degrees of

freedom (Ref.df), F statistic, and P-value for each term.

edf Ref.df F P-value

Geographic coordinates 4.985 9 3.422 <0.001

PC11 2.483 9 4.971 <0.001

1Thermal cover and forage

https://doi.org/10.1371/journal.pone.0273707.t005

Fig 3. Partial effects of statistically significant predictors on winter abundance of white-tailed deer in the Adirondack Park, New York during

2016 according to the best fitting generalized additive model (GAM). A) Two-dimensional plot of the bivariate geographic coordinates. The solid

black lines represent the smooth functions. The locations of each 2.5-km2 survey segment are plotted as small dots. The dotted red and green lines

represent −1 standard error and +1 standard error, respectively. The number on the lines indicate whether geographic coordinates had a positive effect

(e.g., +1), a negative effect (e.g., −1), or were neutral (0) on deer abundance. B) Smooth function for the mean effect of the first principal component

(PC1) (thermal cover and anthropogenic cover). The shaded area represents the 95% confidence intervals for the mean effect. The rug ticks at the

bottom of the plot indicate the coverage of the range of values of each variable in the units surveyed. The number in parentheses on the y-axis indicate

the effective degrees of freedom (a measure of flexibility) of each term.

https://doi.org/10.1371/journal.pone.0273707.g003
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deer abundance and distribution. Additionally, white-tailed deer have historically occupied

the peripheral areas of the Park and geographic coordinates may have represented proximity

of deer to source populations adjacent to the Park. Furthermore, geographic coordinates

accounted for the spatial autocorrelated distribution of white-tailed deer that could be attrib-

uted to yarding behavior and other social characteristics of deer important for reducing winter

mortality.

Regardless, our objective for using a DSM was to identify and describe where white-tailed

deer densities were greatest in the Park. The correlation between white-tailed deer abundance

and PC1 indicated that abundance increased in areas characterized by fewer days with snow

cover, lower elevation, and proximity to timber cuts, developed cover, and agriculture. This

was characteristic of areas along the Park’s southern and eastern borders where we observed

the greatest white-tailed deer densities. Conversely, white-tailed deer densities were lowest in

the central and northern areas of the Park that experienced increasing elevation and days with

snow cover and were farther from timber cuts, developed cover, and agriculture. The remain-

ing white-tailed deer in the Park occurred at moderate densities in narrow, linear distributions

that highlighted potential movement corridors for deer in the region, as these potential

Fig 4. A) Predicted white-tailed deer density (individuals/km2) for 1 km2 grids across the Adirondack Park, New York, USA, from a density surface

model using distance sampling data via aerial surveys conducted during winter 2016. B) Map of the coefficients of variation for the selected model. High

uncertainty occurs in areas where there was low sampling effort (Fig 1).

https://doi.org/10.1371/journal.pone.0273707.g004
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movement corridors experienced less snow cover and were closer to roads and timber cuts

than the surrounding areas with lower deer density.

Our findings support Hurst and Porter’s [12] conclusion that snow cover influenced white-

tailed deer movements during winter, roads and waterways facilitated their movements

among winter yards, and forest regeneration associated with timber cuts provided them

forage. Reduced snow cover and increased growing seasons caused by warming winters will

likely increase white-tailed deer abundance and distribution in the Park, as deep snows

increased winter mortality for deer and contained them to specific winter yards in peripheral

areas of the Park [12]. As climate becomes more favorable, white-tailed deer will experience

improved winter survival rates, body conditions, and dispersal capabilities that will increase

their abundance and allow them to spread into other areas of the Park during milder winters.

This should be expected as climate change and anthropogenic land use are known to facili-

tate the range expansion of white-tailed deer [3, 4, 63]. Dawe and Boutin [4] reported that cli-

mate, as an index of winter severity, was the most important factor determining white-tailed

deer distribution at northern latitudes whereas anthropogenic land use was determined to be a

secondary factor. Our findings align with these previous studies, as white-tailed deer density in

the Park was positively correlated with low elevation, fewer days with snow cover, and greater

Fig 5. A) Predicted white-tailed deer density (individuals/km2) for 1 km2 grids across the Adirondack Park, New York, USA, from a density surface

model using distance sampling data via aerial surveys conducted during winter 2016. B) Predicted moose density (individuals/km2) for 1-km2 grids

across the Adirondack Park, New York, USA, from a density surface model using distance sampling data via aerial surveys, 2016–2019 [21].

https://doi.org/10.1371/journal.pone.0273707.g005
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anthropogenic land cover. White-tailed deer use some land cover, such as roads and riparian

areas, as movement and dispersal corridors [44, 45, 64, 65] while exploiting timber cuts, albeit

a land cover type that is less stable spatially in terms of winter forage availability than are roads

and riparian areas [10, 66, 67]. Despite timber cuts accounting for only ~9% of the Park’s area,

white-tailed deer aggregated in and around timber cuts suggesting that local distribution of

deer during winter were influenced by food resources provided by regenerative growth. Con-

sequently, improved food resources allow white-tailed deer to enter harsher periods of the

winter with better body conditions, improves their winter survival, and permits females to

accumulate fat during winter to meet the energetic demands of lactation and reproduction

during spring [67–69].

Although over-browsing by white-tailed deer was documented to reduce forest regenera-

tion, sustainability, and health in the region [20, 70–72] and is a serious concern for wildlife

managers, parasite-mediated competition between deer and moose is the primary concern

in the Park [21]. For example, white-tailed deer density in areas of the Park’s southeastern

region approach or exceed the>4 deer/km2 where meningeal worm is likely to pose as threat

to moose [73, 74] and in the northern region moose density approaches the lowest densities

(range = 0.29–3.1 moose/km2) reported for populations that experienced outbreaks in winter

tick (Dermacentor albipictus) [75–77]. Currently, white-tailed deer and moose exhibit some

spatial segregation in the Park. According to our predictions and distribution maps, white-

tailed deer density was�2 individuals/km2 for 91.2% of the Park with some of the lowest

deer densities (0–0.25 deer/km2) occurring in the northern region where moose densities were

reported to be the highest [21] (Fig 5). Furthermore, we found a moderate negative correlation

(ρ = -0.61) between white-tailed deer density and moose density throughout the Park. How-

ever, climate-favored expansion of white-tailed deer into regions of the Park that were histori-

cally moose-only may reduce reproduction and survival of moose via parasite transmission.

White-tailed deer abundance was positively correlated with timber cuts, as was moose

abundance [21], but deer abundance responded positively to areas near roads and that experi-

enced fewer days with snow cover. This suggests that snow conditions may serve as an impor-

tant mechanism promoting co-occurrence in the region by facilitating differential accessibility

to patchy resources by white-tailed deer and moose resulting in spatial segregation of both

species at local scales. However, changes to white-tailed deer distributions in the Park caused

by milder winters may allow greater densities of deer to persist throughout the region, leading

to detrimental effects on moose through food competition and disease spread. In particular,

anthropogenic cover such as residential areas may inflate deer densities encountering each

other and these could allow spread of parasites or prions (e.g., chronic wasting disease

[CWD]) [65, 78, 79]. Road networks across the Park would then serve as disease transmission

corridors because deer routinely use roads as movement corridors into areas occupied by

moose [12, 44, 45]. Shared habitat and food resources could spread parasites and CWD to

moose. Therefore, correlating land cover with the distribution and abundance of white-tailed

deer and moose will shed light on which factors facilitate contact, competition, and co-occur-

rence between deer and moose at different scales and will require a more sophisticated suite of

predictor variables than those used in this study.

Conclusions

Since 1954, white-tailed deer populations in the Park have been monitored through harvest

records at the spatial scale of WMUs [80]. However, harvest records are insufficient for quanti-

fying relationships between white-tailed deer abundance and land cover characteristics that

are essential for predicting future changes in the distribution of deer as the climate becomes
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more favorable to them. Aerial surveys combined with CDS and DSM resolves this problem by

allowing wildlife managers to readily track change in the distribution and abundance of deer

over time and across spatial scales independent of WMUs. Therefore, DSMs can play an essen-

tial role in developing future monitoring and management strategies with contemporary, non-

harvest-based assessment of white-tailed deer distribution and abundance. Indeed, distribu-

tion and density maps resulting from DSMs enables easily interpretable results and will ease

the access to scientific information essential for management plans. This will allow wildlife

managers to devise strategies for mitigating key threats to moose in the region, such as epizoot-

ics [81–83]. Furthermore, when disentangling factors responsible for the observed distribu-

tions of white-tailed deer, future surveys and analyses should consider density of potential

competitors (e.g., moose), disturbance and mortality factors, prevalence of pathogens, effects

of climate change (e.g., winter severity), and summer forage availability.
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