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Abstract: Dental, oral, and craniofacial (DOC) regenerative medicine aims to repair or regenerate
DOC tissues including teeth, dental pulp, periodontal tissues, salivary gland, temporomandibular
joint (TMJ), hard (bone, cartilage), and soft (muscle, nerve, skin) tissues of the craniofacial complex.
Polymeric materials have a broad range of applications in biomedical engineering and regenerative
medicine functioning as tissue engineering scaffolds, carriers for cell-based therapies, and biomedical
devices for delivery of drugs and biologics. The focus of this review is to discuss the properties
and clinical indications of polymeric scaffold materials and extracellular matrix technologies for
DOC regenerative medicine. More specifically, this review outlines the key properties, advantages
and drawbacks of natural polymers including alginate, cellulose, chitosan, silk, collagen, gelatin,
fibrin, laminin, decellularized extracellular matrix, and hyaluronic acid, as well as synthetic polymers
including polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), poly (ethylene
glycol) (PEG), and Zwitterionic polymers. This review highlights key clinical applications of poly-
meric scaffolding materials to repair and/or regenerate various DOC tissues. Particularly, polymeric
materials used in clinical procedures are discussed including alveolar ridge preservation, vertical
and horizontal ridge augmentation, maxillary sinus augmentation, TMJ reconstruction, periodon-
tal regeneration, periodontal/peri-implant plastic surgery, regenerative endodontics. In addition,
polymeric scaffolds application in whole tooth and salivary gland regeneration are discussed.

Keywords: polymers; polymeric scaffolds; tissue engineering; regenerative medicine; bone regenera-
tion; sinus augmentation; periodontal regeneration; pulp regeneration; whole tooth regeneration;
salivary gland regeneration

1. Introduction

Tissue deficiencies of the dental, oral, and craniofacial (DOC) structures can result
from numerous diseases, disorders, and injuries, including infections, genetic disorders,
cancers, and trauma. According to the Global Burden of Diseases, Injuries, and Risk
Factors Study published in 2017 (GBD 2017), oral disorders combined for the greatest
age-standardized prevalence and incidence in the world [1].

Recent advances in biomaterials and manufacturing techniques have enabled the
development of various types of materials including natural and synthetic polymeric
scaffolding materials for clinical applications for the repair and regeneration of various
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deficiencies and deformities in DOC structures [2]. With a focus on understanding the
inherent properties of a biomaterial at the biological interface, various tissue engineering
strategies and surgical therapies have been developed to be translated into the clinical arena
in order to successfully restore both tissue morphology and function. Largely, the clinical
usage of polymeric scaffolds with or without additional cellular or biologic mediators are
well-documented in regenerative therapies of tooth structures, supporting periodontal
apparatus, alveolar bone, maxillary sinus, temporomandibular joint, and salivary glands.

Based on recent literature, this review presents an overview of key polymeric scaffolds
used in dental, oral, and craniofacial regenerative medicine including their properties,
benefits, drawbacks, and clinical applications.

2. Overview of Polymeric Scaffold Materials in DOC Regenerative Medicine

For decades, biomaterials have been extensively studied in biomedical applications.
Polymeric materials and polymeric films significantly impact dentistry applications used
as antimicrobial films and scaffolds (for cell expansion or a transplant, for instance) [3].
Polymers are organic materials composed of long chains of atoms joined by covalent bonds
that can be naturally derived or synthetic [4]. The ideal polymer for tissue engineering
should be (1) mechanically stable, (2) biocompatible and bioactive, and (3) biodegradable
(Figure 1).
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Figure 1. Polymeric Scaffolds for Dental, Oral and Craniofacial Regeneration. (A) Polymeric scaffolds can be classified
according to their appearance, charge, structure, composition, crosslinking and origin. (B) Polymeric scaffolds have a
wide range of mechanical properties that can be tuned to affect cellular behavior. (C) Polymeric scaffolds have various
applications in tissue engineering in the context of dental, oral, and craniofacial regeneration.

First, mechanical properties are crucial in the development of new biopolymers. A
scaffold should provide the stiffness of the tissue origin, ensuring its native mechanical
properties. Considering that different tissues require specific mechanical characteristics
due to multicellular composition, it is ideal to create tunable polymeric matrices that allow
mechanical changes inside of the construct through time [5].

Second, biocompatibility means cells or tissue can survive when interacting with
polymer, but not necessarily for them to duplicate or differentiate. Some biocompatible
polymers support cell viability, but cells are not able to self-duplicate, differentiate, or
migrate. This results in cell death within short period of time. In this context, polymeric
material must be both biocompatible and bioactive. When a polymer is bioactive, in general,
it is biocompatible and allows cell attachment, migration, differentiation, proliferation, and
the cell can perform its biological functions [6].
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Last, biomaterial should be biodegradable in a short (one month for soft tissue, i.e.,
salivary glands) or a long time (six months to one year for hard tissue like bone). In soft
tissue, this will allow the host to reabsorb the material once an artificially regenerated tissue
or organoid has been implanted, driving the interaction of artificial and host environments.
For hard tissue such as bone, the calcification process takes time, thus the polymeric scaffold
should provide mechanical support for a longer period, ensuring the host could accept the
new implant and allowing host cells to interact with the new, engineered graft [7].

2.1. Natural Polymers

The most common carbohydrates-based biopolymers used for hydrogels are cellulose,
chitosan, and alginate. From natural source polymers, protein-based hydrogels are attrac-
tive due to the bioactive molecules allowing cell attachment. Some of the most popular
biopolymers used include collagen, gelatin, fibrin, and laminin. This section provides
an overview of the various natural polymers used in DOC regenerative medicine. The
advantages and drawbacks of these natural polymers are summarized (Table 1).

2.1.1. Alginate

Alginate is a natural polymer isolated from algae [8]. This polymer is comprised
of 1-4-β-D-mannuronic acid (M) and α-L-guluronic acid (G), where the organization and
number of G and M blocks drive the formation of an “egg-box” by adding divalent ions
allowing to produce a stable and stiffer three-dimensional (3D) hydrogel [9]. Alginate can
be modified by incorporating the adhesion ligand (arginine-glycine-aspartic acid (RGD))
that promote cell attachment. Alginate is an excellent biomaterial that can be used to confer
specific cellular interactive properties allowing for the control of long-term gene expression
of cells encapsulated within the hydrogel [9]. Alginate hydrogels can be crosslinked with
metallic ions such as calcium, and can also be engineered to be enzymatically degradable
by cleavage enzymes produced by the encapsulated and surrounding cells [10]. Alginate
hydrogels can be designed with tunable mechanical properties such as stiffness and stress
relaxation to regulate stem cell fate and activity [11].

2.1.2. Cellulose

Cellulose is one of the most abundant polymers in nature, extracted from plants’ cell
walls and produced by certain bacteria [12,13]. However, its water-insoluble nature makes
it difficult to manipulate; its water-soluble derivatives can be obtained by etherification.
Cellulose is comprised of D-glucopyranose units linked by β-1,4-glycosidic bond, present-
ing abundant hydroxyl groups that can be used as moiety molecules to prepare hydrogels
by physical crosslink [13,14].

2.1.3. Chitosan

Chitosan is the second most abundant polysaccharide in nature, and it is obtained
from deacetylated chitin, which is isolated from the exoskeletons of crustaceans, fungi,
and insects [15]. Chitosan is a linear polymer composed of glucosamine and N-acetyl
glucosamine units linked by β-1,4-glycosidic bond, with free amino groups that provide
stronger reactivity and greater solubility than chitin [16]. Both chitin and chitosan can form
hydrogels due to a large number of functional groups (hydroxyl and/or amine groups)
available for chemical reactions [15–19].

2.1.4. Silk

Silk is another natural polymer used in tissue engineering of bone, cartilage, tendon
and ligament tissues. Silks are fibrous proteins produced by silkworms and spiders with
remarkable mechanical properties [20]. Silk can be chemically modified to immobilize
growth factors and adhesion factors. In addition, silk can be genetically tailored to allow
for production of recombinant silk that can be applied for cellular targeting and drug
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delivery [21]. Silk-based biomaterials have been studied in vitro and in vivo, in wound
healing and regenerative medicine [22].

2.1.5. Collagen

In mammalian organisms, collagen is the most abundant protein representing 25%
(dry weight) of total proteins. This protein is expressed by cells from the skin, ligament,
cartilage, tendon, and bone, representing the main structural element in these connective
tissues [23,24]. Among all collagen types, type I collagen is the most used to prepare
hydrogels. The triple-helical configuration of the collagen’s chain allows it to self-assemble
at physiological temperature and pH (37 ◦C and pH ≈ 7.2, respectively) to form a stable
3D structure, while at 4 ◦C it remains in a liquid state. Collagen is rich in RGD adhesion
ligand, which enables cell-biomaterial interaction leading to cell adhesion [24,25]. The
collagen′s mechanical properties can be tuned by using different crosslinked agents [24].
One benefit of collagen is that patients′ cells and enzymes can readily degrade and remodel
these materials. In addition, collagen can be processed into micro or nanoparticles can be
applied as delivery vehicle for other biological components such as biologics and growth
factors [4].

2.1.6. Gelatin

Gelatin is obtained by the acid or alkaline hydrolysis process of collagen [26]. This
protein presents the opposite behavior to collagen in gelation; temperatures lower than
25 ◦C allow gelatin gels to form, while physiological temperature (37 ◦C) leads to a liquid
state. The sol-gel transition occurs at ≈30 ◦C. The addition of chemical components such
as genipin or chemical modification in the gelatin’s structures (i.e., methacrylate) provides
stability of the 3D structure at physiological conditions. Gelatin can form copolymer with
alginate and benefit from the desired properties of both individual materials applicable to
the osteogenic differentiation of adipose-derived stem cells in 3D [27].

2.1.7. Fibrin

Fibrin is a natural tissue sealant and extracellular matrix (ECM) component. The easy
way to form fibrin hydrogels is by combining fibrinogen and thrombin at 37 ◦C, where the
ratio of these two components can tune the mechanical properties of the gel, regulating the
thickness of the internal fibers and the porosity of the hydrogel [28–30]. Fibrinogen is a
45-nm length dimeric glycoprotein made up of three pairs of distinct chains, Aα, Bβ, and γ

chains. The fibropeptides A (FPA) and B (FPB) are the ones involved in the polymerization
of the fibrin hydrogels when exposed to thrombin [30].

2.1.8. Laminin

Laminins are another important ECM proteins that play an essential role in ECM
architecture, cell adhesion, and molecules binding [31]. Laminins are basement membrane
multimeric glycoproteins formed from three chains α, β, and γ, and there are sixteen
isoforms with tissue-dependent distribution [31]. In general, laminins are incorporated
into synthetic of biological hydrogels to recapitulate the dynamic nature and biological
complexity of nerve niches [32,33]. Recently these laminin-based hydrogels have been used
as 3D platforms for salivary gland regeneration [29].

2.1.9. Decellularized Extracellular Matrix (dECM)

Decellularized ECM (dECM) has gained more popularity in using it as hydrogels for
tissue regeneration, in particular for organoid formation in vitro [34]. This complex network
of macromolecular substances has a crucial role in cell adhesion, migration, differentiation,
and functional expression regulating tissue development and homeostasis [35]. Matrigel®

is one of the commercial and most common ECM derived from mouse tumors, which
secrete abundant basement membrane proteins such as laminin, collagen IV, entactin,
heparan sulfate, etc. Matrigel® is liquid at 4 ◦C, and forms an irreversible gel with an
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increment in temperature (37 ◦C) [36]. dECM has been isolated from different tissue sources,
including human, porcine, bovine, mouse among others, by mechanical, chemical and/or
enzymatical process [37,38]. Generally, the dECM gels can be formed by temperature, salt
ion concentration, and pH change or by the addition of crosslinking agents [35].

2.1.10. Hyaluronic Acid (HA)

The precise chemical structure of hyaluronic acid (HA) contains repeating units of
d-glucuronic acid and N-acetyl-D-glucosamine [39]. HA is classified as a non-sulfated
glycosaminoglycan and is the main constituent of the ECM of connective tissue, synovial
fluid, and other tissues. It possesses various physiological and structural functions, in-
cluding cellular interaction, interactions with growth factors and regulation of the osmic
pressure. All of these functions help to maintain the structural and homeostatic integrity of
the tissue [40,41]. HA has shown anti-inflammatory, anti-edematous, and anti-bacterial
effects for the treatment of periodontal disease.

Table 1. Advantages and disadvantages of natural polymers for dental, oral and craniofacial regenerative medicine.

Polymer Advantages Disadvantages Reference

Alginate
• Biocompatible & biodegradable
• Tunable Mechanical Properties
• Low cost of production

• Lack of bioactivity
• Low mechanical strength
• Rapid degradation rate

[8,9,11]

Cellulose

• Contain 3D porous structure
• Allow for cell adhesion
• Tunable chemical, physical and

mechanical properties

• Water insoluble
• Not biodegradable in humans [14]

Chitosan

• Biocompatible
• Hydrophilic structure promotes cell

adhesion, proliferation and
differentiation

• Costly production
• Inconsistent properties
• Environmentally unfriendly

[18,19]

Silk
• Remarkable mechanical properties
• Chemically modifiable to include cell

adhesion and growth factors
• Ecological concerns [20,22]

Protein-Based
(Fibrin, collagen,

laminin)

• Tissue regenerative
• Ability to convert bioinert scaffold into

bioactive scaffold as coating material

• Possible immunogenicity and
allergenicity [28,31,35]

dECM • Tissue regenerative
• Autologous

• Immune response from cellular
DNAs [34]

Hyaluronic Acid
• Bioactive and biocompatible
• Versatile for various applications after

chemical modifications

• Poor mechanical properties
• Rapid degradation in vivo [41]

2.2. Synthetic Polymers

Synthetic polymers have been widely used for different biomedical applications.
Some of the most common synthetic polymers used in tissue engineering are polylactic
acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), and polyethylene glycol
(PEG) [4,42,43]. The mechanical properties of synthetic polymers make them an attractive
material for different biomedical purposes. However, the lack of bioactive components
(limited cell anchoring sites) on synthetic polymer poses a significant challenge for tissue
engineering as cells cannot readily proliferate, differentiate, or migrate. The chemical
modification of synthetic polymers allows the incorporation of bioactive molecules to
produce biocompatible and functional materials that ensure cell biology performance like
the native environment.
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2.2.1. Polylactic Acid (PLA)

PLA is a good candidate polymer scaffold for DOC tissue engineering. PLA undergoes
hydrolytic degradation to form soluble lactic acid naturally present in the human body [4].
PLA can be combined with other degradation resistant polymers such as PEEK to fabricate
multi-material scaffolds via selective laser sintering (SLS) to enhance scaffold bioactivity,
biocompatibility, and cytocompatibility [44]. PLA can also be blended with PCL with 3D
electrospinning technique to enhance mechanical properties, bioactivity and osteogenic
differentiation [45].

2.2.2. Polyglycolic Acid (PGA)

PLGA, a co-polymer of lactic acid and glycolic acid, has tunable degradation rate
depending on the ratio of lactic acid to glycolic acid in the copolymer due to the difference
in hydrophilicity of the two monomers [46]. Several PGA-based polymers were used
and compared for in vitro tissue engineering including PGA-PLA, PGA-PCL, and PGA-
poly-4-hydroxybutyrate (P4HB). PGA-PLA and PGA-P4HB demonstrated enhanced tissue
formation compared to PGA-PCL scaffolds. This may be attributed to achieving a balance
between the rate of scaffold degradation and tissue formation for maintaining mechanical
integrity of the replacement tissue [47].

2.2.3. Polycaprolactone (PCL)

PCL has high mechanical strength and can be used as polymeric scaffolds for bone and
periodontal tissue engineering [48,49]. However, it undergoes very slow hydrolytic degra-
dation in vivo, thus may not be ideal for certain clinical indications where fast polymeric
scaffold degradation is desired. PCL lacks features that promote cell-adhesion. Neverthe-
less, its hydrophobicity and surface properties can be modified by polydopamine coating
to improve cell and therapeutic protein adhesion and serve as sites for hydroxyapatite
nucleation and mineralization [49].

2.2.4. Polyethylene Glycol (PEG)

PEG and derivates have been extensively used as scaffolds or injectable hydrogels.
Lu et al. created an injectable hydrogel comprised of PEG diacrylate (PEG-DA) and
fibrinogen as a scaffold for dental pulp tissue engineering [50]. The concentration of
PEG-DA modulated the mechanical properties of the hydrogel. The hydrogels showed
cytocompatibility with dental pulp stem cells (DPSCs), where cell morphology, odontogenic
gene expression, and mineralization were influenced by the hydrogel crosslinking degree
and matrix stiffness [50].

2.2.5. Zwitterionic Polymers

Given their unique material properties, zwitterionic polymers have shown promising
results as tissue scaffolds for regenerative medicine and as drug delivery vehicles [51]. By
definition, a zwitterionic polymer has both a positive and a negative charge. In nature,
proteins and peptides are examples of such polymers. Their 3D structure is therefore
determined by their charge distribution. This property can be used to design synthetic
polymers of the desired 3D structure by polymerizing charged zwitterionic monomers or
by making modifications after polymerization [52].

Thanks to the electrostatic interactions, they are capable of forming hydration shells.
This characteristic makes zwitterionic polymers great antifouling materials [53]. In a
study done in 2019, Jain exploited the low fouling characteristic of polycarboxybetaine
(PCB) polymers along with carboxybetaine disulfide cross-linker (CBX-SS) that facilitates
degradation. The cross-linked PCB/CBX demonstrated excellent non-fouling properties
and degradability, making it a promising material for future tissue engineering and drug
delivery [54].

As the distribution of charges along the polymer differs, they can display neutral,
anionic, or cationic characteristics. Under different environments, they can behave as
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antipolyelectrolyte or polyelectrolyte [52]. Factors such as pH and temperature are stimuli
to the polymer to modify its behavior. Using zwitterionic materials, researchers were able
to achieve more precise drug delivery. In one study, crosslinked L-glutamic acid (E) and
L-lysine (K) polypeptides hydrogels allowed for drug release and enzymatic degradation
in the presence of trypsin, an inflammatory marker. The release is also responsive to pH
due to the interactions of the charges [51].

Although zwitterionic hydrogels have good biocompatibility and respond to stimuli,
they lack mechanical strength to be an ideal tissue supporting material in direct contact
with blood. This problem was solved in a study done in 2020 by combining Electrospun
fiber scaffold to zwitterionic hydrogels to achieve biocompatibility and mechanical strength
to make long-term blood contact devices possible [55].

The combination of its great hemocompatibility, superior non-fouling properties,
charge-switching abilities, and resistance to protein adsorption make zwitterionic polymers
very attractive in regenerative medicine in the last decade, specifically in bone regeneration
and craniofacial tissue engineering [54]. Zwitterions have also been used in a variety of
other different clinical applications, such as in medical implants, dressings and tissue
scaffolds for wound healing, drug delivery caries, and biosensors.

Advancements in regeneration of craniofacial tissues such as bone, cartilage, muscle,
skin, PDL, and mucosa have been based on finding new ways to enhance and optimize
tissue engineering procedures while limiting negative side effects [56]. Specifically, the
field of bone tissue engineering constantly aims to find smarter scaffolds capable of avoid-
ing severe side effects associated with bone regeneration treatments by minimizing the
administration dosage. A recent study published in 2020 by Liu et al. combining PLGA
scaffolds with zwitterionic PSBMA found that this novel biodegradable composite scaffold
resulted in successful bone healing at an ultra-low dose [57]. The capacity of zwitterionic
polymers to maintain protein bioactivity in the preparation of scaffolds showcases this ma-
terial’s potential to improve the efficiency of bioactive drug therapies. Furthermore, it was
found that certain surface modifications of vascular grafts, like the addition of zwitterionic
polymers, enhanced hemocompatibility which prevented thrombosis on artificial vascular
grafts [58]. Zwitterionic hydrogels have also shown efficacy as drug delivery systems [51].
These promising features of zwitterionic polymers are the reason behind its increasing
popularity in regenerative medicine.

2.3. Bioceramics

Given the thermal and chemical stability of ceramics, their high strength, wear resis-
tance and durability, bioceramics have found broad applications in hard tissue repair, such
as bone and teeth [59]. Bioceramics fulfill a unique function as biomedical materials as
with proper material selection and fabrication, they can be bioinert, bioactive which can
have interfacial interactions with surrounding tissues, or biodegradable [60].

Synthetic hydroxyapatite (HA) is bio-resorbable and can form strong chemical bonding
with bone in vivo by increasing the local concentration of Ca2+ [61]. HA can be employed
in forms of powder etc. to fill bone defects; this bone filler scaffold can encourage a rapid
filling of the void by integrating bone structures and supporting bone in growth. But its
poor fatigue properties render it to be unsuitable for long-term load bearing applications.

Calcium phosphate compounds are also resorbable and their dissolution products can
be assimilated by the human body [62]. Beta-tricalcium phosphate (β-TCP) is a promising
material for bone regeneration applications due to its biocompatibility, osteoconductivity
and osteoinductivity properties [63,64]. In periodontal and alveolar bone regeneration,
β-TCP is often used as part of a composite graft. One example is its usage with HA to
create a novel biomimetic material to regenerate bone. β-TCP can dissolve in the presence
of acids released by cells such as osteoclasts or macrophages [65].

Bio-Oss is a deproteinized bovine bone which has been used in dentistry for bone
augmentation due to its osteoconductive properties [66]. The material has shown its
effectiveness, safety, and high success rates regarding the quality and quantity of bone
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formation in grafting procedures. One clinical benefit is the elimination of the need to
harvest autogenous bone. In the sites grafted with Bio-Oss, newly formed woven and
lamellar bone can be found with an intimate interface with the Bio-Oss graft particles.

3. Clinical Applications
3.1. Craniofacial and Alveolar Bone Regeneration

Surgical periodontal therapies involving regeneration of alveolar bone, cementum and
periodontal apparatus are widely used to achieve adequate bone volume and attachment
level. Indications for hard tissue and periodontal attachment regeneration include ridge
preservation after tooth extraction, treatment of bony defects (i.e., fenestrations, dehiscence,
horizontal and vertical defects), and pre-prosthetic surgery prior to or at the time of
implant placement. To achieve morphological and functional repair of alveolar bone and
supporting periodontal apparatus, a variety of surgical modalities are available for bone
augmentation such as autologous grafts, bone substitute materials, natural and synthetic
scaffolds, biologics, etc.

Autologous bone materials contain a mature bony matrix, viable bone cells, mesenchy-
mal stem cells, endothelial cells, growth factors, and cytokines. Together, these components
provide osteogenic, osteoconductive and osteogenic properties, making autografts an excel-
lent filling material to regenerate larger bony defects. Donor sites can be either intraoral or
extraoral: mandibular ramus and symphysis, maxillary tuberosity, tori and exostoses, tibia
or iliac crest. For many decades, autologous bone grafting remained the gold standard of
augmenting edentulous areas. However, its recent comparisons with non-autologous bone
substitute materials reveal effective ways to avoid additional complications associated with
autologous bone harvesting [67].

Commonly used allogeneic bone materials include demineralized freeze-dried bone
allograft (DFDBA) and freeze-dried bone allograft (FDBA) derived from human cadavers.
DFDBA offers osteoinductive and osteoconductive potential; FDBA offers osteoconductive
potential with a slower resorption rate [68,69]. The decalcifying process of FDBA makes
bone morphogenetic proteins (BMP) available for effective bone regeneration [70], while
the freeze-drying process lowers the antigenicity. Bone turnover and integration of FDBA
or DFDBA at recipient site can be improved by directly administering biological mediators
like platelet-rich growth factors (PDGF), BMP, enamel matrix derivatives (EMD), vascu-
lar endothelial growth factor (VEGF), and fibroblast growth factor (FGF) at the time of
augmentation [68,71,72].

Xenogeneic bone substitute materials are of porcine or bovine origin containing anor-
ganic bone matrix. Alloplastic bone fillers include hydrogels of HA and bioactive ceramics
like β-tricalcium phosphate (β-TCP), calcium sulphate hemihydrate, and hydroxyapatite,
which are often selected in tissue engineering for their biocompatibility, ease of handling,
and similar structural and chemical composition of natural bone [73]. HA also offers
antimicrobial and anti-inflammatory effects that protect the filler material from bacterial
colonization [74]. The main goal of using xenogeneic or alloplastic substances is to provide
an osteoconductive matrix for new bone formation to fill critical-size defects. Successful
delivery and release of osteogenic and osteoinductive mediators as well as upregulation of
pro-angiogenic factors were also observed in the usage of bovine bone, HA, and calcium
phosphate as carriers [68,75,76].

Collagenous barriers are the most frequently selected scaffold in hard tissue regenera-
tion for their superior biocompatibility and direct effects on bone formation, periodontal
ligament (PDL) formation, and gingival fibroblastic activity. This natural protein-based
polymer can be obtained from pericardium, skin, and tendons of human, porcine or bovine
sources [68,77,78]. The degradation of resorbable natural scaffolds is driven by rapid enzy-
matic breakdown by macrophages and polymorphonuclear cells, or bacterial collagenases.
On the other hand, non-resorbable membranes require a second surgery to retrieve them,
which can lead to increased rates of post-operative complications and contamination with
bacteria. Examples include expanded polytetrafluoroethylene (e-PTFE), high-density poly-
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tetrafluoroethylene (d-PTFE), titanium-reinforced polytetrafluoroethylene, and titanium
mesh [71].

Synthetic polymer scaffolds include synthetically constructed PGA, PLA, polyesters,
and co-polymers, which consist of aliphatic polyesters [79]. Though they do not have
any inherent pro-angiogenic properties, synthetic polymers serve as effective carriers for
delivering pro-angiogenic agents via controlled release. Currently available resorbable
examples for maxillofacial and dental surgery include PGA and PLA scaffolds which are
degraded via hydrolysis to lactic and glycolic acid, respectively and then metabolized
to CO2 and H2O in Krebs cycle [71,80]. The usage of biodegradable synthetic polymers
proposes an alternative to other grafting techniques and their associated complications
such as a secondary retrieval surgery in non-resorbable membranes, donor site morbidity
in autografts, and host immune-mediated graft rejections in allografts [81]. Furthermore,
biological, and physical properties of synthetic polymers can be enhanced by adding
an inorganic component. Examples include hydroxyapatite, calcium nitrate, TCP, and
bioactive glasses [81]. These modifications serve to improve the osteointegration of the
polymer by promoting contact with native bone and controlling the degradation rate. In
a similar manner, antibiotics and medications can be delivered via synthetic scaffolds to
reduce infections at the recipient site [81–83].

In addition to grafting, biologic agents and cellular therapy can be employed to
accelerate the bone remodeling process and enhance osteogenic, osteoconductive and/or
osteoinductive potential of augmentation procedures. However, the high cost of biologics
remains a challenge in clinical usage.

In this section, the clinical applications of bone substitute materials (autografts, al-
lografts, alloplasts, and xenografts) and barrier scaffolds (natural and synthetic) will be
discussed in the context of alveolar ridge preservation, vertical and horizontal ridge aug-
mentation, maxillary sinus augmentation, and periodontal regeneration will be discussed.
The parameters of selecting surgical modalities are dictated by physicochemical, mechani-
cal and biological properties of polymers for tissue engineering [48]. Additionally, biologic
agents and cellular therapy can be employed to enhance osteogenic, osteoconductive
and/or osteogenic potential of augmentation procedures.

3.1.1. Alveolar Ridge Preservation

Following tooth extraction, a local inflammatory response predominates after blood
clots within the socket. In the first week, endothelial cells proliferate to restore the soft
tissue integrity. New bone formation can be observed as early as at two months and con-
tinues up to six months post-extraction. Without masticatory forces on the periodontium,
resorption of the alveolar bone occurs in both horizontal and vertical dimensions, leading
to invagination of overlying soft tissues. Most statistically significant reduction of alveolar
bone occurs during the first month [84,85].

The purpose of alveolar ridge preservation after tooth extraction is to minimize or
prevent resorptive bone remodeling and to maximize bone and/or soft tissue availability
before the placement of a definitive prosthetic restoration. In the esthetic zone of non-
molar areas, changes in the buccal bone and soft tissues are of high concern [84]. Socket
grafting and socket sealing are examples of treatment modalities that use biomaterials and
barrier materials to fill the extraction socket by primary or secondary intention healing.
In comparison to natural socket healing without intervention, socket grafting with bone
substitute materials with or without socket sealing with a barrier membrane was superior
in preventing horizontal and vertical bone resorption and improved successful implant
placement without additional bone grafting at the time of re-entry [84,86,87]. Histologically,
higher new bone content was observed in sockets with alveolar ridge preservation after
extraction versus natural healing [88].

Among natural socket grafting materials, a composite graft of xenogeneic and allo-
geneic bone materials covered by a collagenous barrier showed the highest preventive effect
in changes of horizontal dimension and height [86,87]. In preserving ridge width, Iocca
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et al. showed that autologous bone marrow, followed by FBDA plus membrane, achieved
the greatest success. Early exposure of the membrane will compromise the effectiveness of
guided tissue regeneration [87].

For synthetic filler materials, bioabsorbable PLGA sponges showed histological ev-
idence of well-structured mature bone formation and complete remodeling without the
presence of grafting particles at six months after ridge preservation. In comparison to spon-
taneous healing, less bone resorption was observed with adequate bone quality suitable for
implant insertion [89]. These findings are significant that particles of FBDA, deproteinized
bovine bone material (DBBM), and bioactive ceramics require longer time to integrate
fully as graft particles were found at 6-9 months after insertion. In one canine study by
Salamanca et al. (2014), hydroxyapatite/β-TCP ceramic mixed with homogenous collagen
solution showed slightly higher success in new lamellar bone formation and reabsorp-
tion in addition to comparable osteoconductivity to bovine-derived bone (Bio-Oss®) plus
collagen membrane [90].

Regardless of which biomaterials are employed, bone resorption is not totally pre-
vented and some loss in ridge width and height is expected [84]. High heterogeneity in
healing patterns was also observed with socket grafting and can be possibly explained
by tooth type, presence or absence of adjacent teeth, level of bone at adjacent teeth, and
number of roots and socket morphology of extracted tooth. In addition, the method to
measure dimensional changes may contribute to this heterogeneity [84]. Therefore, no
definitive conclusions can be drawn regarding which biomaterial is superior [84,88].

3.1.2. Vertical and Horizontal Ridge Augmentation

Guided bone regeneration (GBR) with a membrane is the most frequently employed
surgical technique to regenerate atrophic residual ridges and operates on the triad of
biological principles: (1) cell occlusivity, (2) wound stabilization, and (3) space making and
maintenance. In comparison to other surgical techniques such as distraction osteogenesis,
bone inlay, or block grafting, GBR achieved the highest reliability in achieving vertical
bone gain with the lowest complication rate and minor overall resorption [91,92]. The main
complication was membrane exposure. Moreover, greater defect reduction was observed in
using non-exposed barrier membranes [93,94]. Several different combinations of surgical
modalities in GBR may be used to treat bony defects (i.e., fenestration, dehiscence, vertical
defects, horizontal defects) and to obtain adequate bone volume for staged or simultaneous
implant placement.

Resorbable polymeric membranes are preferred in predictably regenerating non-
critical-size defects, improving soft tissue healing and cost-effectiveness, and lowering sur-
gical stress and complications. To improve their mechanical stability and space-maintaining
ability, fixation screws and tenting screws can be placed, respectively. In comparison, non-
resorbable membranes, like those including a titanium framework, perform more reliably
in regenerating larger defects for their intrinsic space-making properties and controlled bar-
rier effect over time. Membrane porosity plays an important role in directing angiogenesis
and the proliferation of bone progenitor cells over the competing soft tissue cells [71].

The usage of composite grafts consisting of bone allografts or xenografts with
a resorbable membrane showed comparable clinical outcomes to autologous bone
grafts [75,93,95–97]. In the staged approach of GBR prior to implant placement, the com-
bination of particulate xenograft, autologous bone and resorbable membrane achieved
the maximum bone width gain; in the simultaneous approach, the combination of partic-
ulate xenograft with a resorbable membrane was most frequently used and achieved
significant reduction in defect height changes [94]. The use of autologous bone and bone
substitute materials together can (1) combine osteogenic and osteoinductive properties
of autografts and osteoconductive properties of bone substitute materials, and (2) reduce
the total harvested autologous bone volume [98].

These results support that composite grafts can serve as a good alternative that
overcomes the major complications associated with autogenous bone harvesting such
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as donor site morbidity and limited supply of autogenous bone. Differences in surgical
techniques and experience of operator should be considered in calculating clinical outcomes
of using different combinations.

3.1.3. Maxillary Sinus Augmentation

Maxillary sinus augmentation can be achieved via lateral window technique or tran-
screstal approach with the purpose of creating a space between the sinus floor and Schnei-
derian membrane to fill with biomaterials that promote new osseous tissue formation
(Figures 2 and 3) [99]. A variety of autologous bone, and allogeneic, xenogeneic, or allo-
plastic bone substitute materials have shown success in achieving the desired outcome of
increased vertical bone height for future implant placement.
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Figure 3. Transalveolar Approach for Maxillary Sinus Augmentation. (A) A full thickness mucoperiosteal flap is raised
on the edentulous ridge. (B) After marking the location of the future implant, the site is prepared with implant drills to
approximately 1.0–1.5 mm below the sinus floor. Osteotomes are used to fracture the sinus floor and elevate the membrane.
(C) The sinus compartment is gradually filled with grafting material until the appropriate depth for implant placement is
achieved. Reprinted from [99] with permission from Elsevier.

In a systematic review by Al-Nawas et al., no statistically significant differences were
observed in implant survival among bone autografts and bone substitute materials [96].
Theoretically, the superior osteogenic and osteoinductive capacities of autogenous bone
could be beneficial in short-term healing. Clinically, no significant differences in new bone
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formation were observed in using allogeneic, xenogeneic, or synthetic bone substitutes with
or without autogenous bone [67,96,100]. Possible clinical considerations of usage of bone
substitutes over autografts include reducing invasiveness of surgery and surgical time [67].
Similarly, a histomorphometric analysis revealed that though higher mineralized bone was
evidenced in early healing for autologous bone, total bone volume after 9 months appeared
comparable with using bone substitute materials [101]. Conflicting findings exist in regard
to comparing healing periods between these two groups and if the success of the maxillary
sinus augmentation is dependent on the graft materials used [96]. Overall, regardless of
which biomaterials are used, maxillary sinus augmentation is safe and well-tolerated by
patients [100].

The success of maxillary sinus augmentation is heavily indicated by anatomic dif-
ferences of the sinus cavity rather than which graft material is used. New bone can be
predictably generated only in narrow sinuses with at least two walls contacting the grafting
material. This is possibly explained by the innate osteogenic potential of sinus walls, sinus
floor and Schneiderian membrane when in contact with grafting material [102].

3.1.4. Temporomandibular Joint Reconstruction

TMJ consists of two articulating anatomic components: the temporal bone and the
mandibular condyle. The condylar fibrocartilage is covered by a dense fibrous layer and
consists of cellular layers that contains collagen type I primarily, minimal amounts of
collagen types II, III, IV, IX, and X, and glycosaminoglycans (aggrecan and versican) [103].
The articulating disc, which is attached to the temporal bone and the condyle, is also rich
in collagen type I but lacks inherent vascularization or innervation. The non-collagenous
ECM of both the fibrocartilage and disc are made of dermatan sulfate and chondroitin
sulfate-based proteoglycans [104].

A degenerative disease process of the TMJ can involve the disc, fibrous tissue covering,
proliferative and hypertrophic layers of the fibrocartilage, or condylar bone. If non-invasive
and minimally invasive treatments are ineffective in improving symptoms or function of
the joint, partially or totally replacing the TMJ should be considered [105]. Currently, the
consensus of treatment modalities indicates a reconstructive procedure with autologous
tissues in young patients and metallic prostheses in adult patients are preferred [106].
However, these conventional strategies fail to provide long-term efficacy in forms of
poor condylar remodeling, continuous erosion of the articular surfaces, or osteophyte
formation [104].

To achieve better clinical outcomes and long-term prevention of ossifications and
adhesions, regenerative TMJ therapies have been proposed. Current methods to regenerate
the TMJ involve biphasic cartilage and bone engineering with ex-vivo cell seeding and
bioactive molecules on an acellular scaffold. Of many multipotent cell types that were
tested for condylar cartilage regeneration, DPSCs have been well-documented for their high
availability and multi-lineage proliferation into chondrogenic cells, osteoblasts, and other
crucial cell types [103,104]. For disc regeneration, dermal fibroblasts induced with insulin-
like growth factor 1 (IGF-1) have shown success in their high availability and chondrogenic
potential. Other growth factors of interest include transforming growth factor-βeta 1
(TGF-β1), FGF, and PDGF; their oncogenic potential in the context of craniofacial tissue
regeneration require further investigation [104].

For TMJ disc regeneration, natural materials like collagen, fibrin, chitosan, and dECM
sheets have been widely used [107]. These natural products possess similar mechanical
properties to the native disc such as cell adhesion and infiltration, cell proliferation, and
proteoglycan deposition [103,108].

Synthetic polymers have been proposed to produce artificial ECM for TMJ fibrocar-
tilage regeneration with superior mechanical strength and biodegradability to natural
materials [109]. One example that is approved by the FDA for clinical usage is poly-L-lactic-
co-glycolic acid (PLGA). PLGA is effective at chondrogenesis by promoting colonization
and proliferation of mesenchymal stem cells and interacting with chondrocytes and other
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TMJ discal cells [110]. PCL fibers is a type of pro-regenerative biomimetic nanofiber that
is also approved by the FDA for clinical applications [111]. After being processed by
electrospinning, successful results for osteochondondral regeneration were reported. In
addition, PCL has recently gained popularity in craniofacial reconstruction for its excellent
biocompatibility and low degradation rate [104,108,111,112].

For biofabrication methods, 3D printing provides an effective method to produce
personalized prostheses with a spatiotemporal delivery of bioactive molecules and cells
for tissue regeneration [111]. Living cells can be employed within the fibers during the
manufacturing stage or be seeded onto the matrix for colonization. The ability to tune
3D-printed scaffolds to achieve optimal biomechanical properties and mimic natural ECM
makes 3D printing has been evidenced to positively impact the performance of their
implantation [104,108,112]

3.2. Periodontal Surgery
3.2.1. Periodontal Regeneration

Periodontal regeneration aims to regenerate alveolar bone, periodontal ligament and
cementum around teeth affected by periodontitis. Periodontal regeneration using guided
tissue regeneration (GTR) allows selecting bone cells, fibroblasts, and PDL cells to populate
the periodontal wound. In 1976, Melcher developed the concept of using barrier membrane
to guide the biological process of wound healing. More specifically, these membranes
exclude epithelial cells from infiltrating into the bony defects [113]. Any combination
of bone fillers, membranes, and biologics can be directly administered in the defect to
regenerate new alveolar bone, cementum and PDL [72]. The ideal properties of membrane
should respect several key principles: (1) biocompatibility, (2) cell exclusion, (3) space
maintenance, and (4) clinical handling [71,72].

Historically, non-resorbable polymeric membranes such as polytetrafluoroethylene
(PTFE) were used for guided bone regeneration. However, due to their rigidity, these mem-
branes are rarely used in periodontal regenerative surgery because the use of minimally
invasive surgical techniques does not allow for predictable barrier membrane insertion and
adaptation. Instead, resorbable membranes made from collagen are indicated. In addition,
the chemical bonds between collagen membrane can be reinforced through cross-linking,
which lead to slower resorption time and decrease in risk of membrane exposure in the oral
cavity and potential for complication such as bacteria infiltration and graft contamination.

Bioabsorbable scaffolds like collagen membranes have been developed to avoid the
second surgical trauma to the healing process associated with non-resorbable membranes.
The usage of regenerative biomaterials in GTR is well-documented (Figure 4) [114]. A
systemic analysis of outcomes of GTR with a collagen membrane demonstrated that pocket
depth reduction is predictably achieved with or without a bone substitute [115].

Scaffolding materials are typically applied to defect sites in addition to membranes.
The ideal properties of graft material for periodontal include (1) osteoconduction, (2) os-
teoinduction, and (3) osteogenicity. However, only autogenous materials from patients
have all three properties. In contrast, polymeric scaffold materials are typically osteo-
conductive, providing space maintenance to enable cells to migrate into the defect site.
Since the 1980s, various polymeric matrices and scaffolds have been used for periodontal
regeneration of intraosseous defects.

Similarly, 3D-printed scaffolds have been recently developed to improve upon the
existing supporting matrices. In contrast to the brittleness, poorly processed porosities,
and generic structures of the conventional grafts, 3D scaffolds can be tailored to the specific
needs of patients [48,116]. Compartmentalization, internal topographies, and pore sizes
and angulations can be designed with precision to optimally regenerate each tissue type of
the periodontium [116,117]. Cell therapy can be employed within the scaffold architecture
via two methods: (1) cell seeding into a pre-made scaffold, and (2) cell encapsulation during
scaffold fabrication in the form of biodegradable hydrogel polymer matrix [48]. A case
report demonstrated that the use of 3D printed PCL scaffold for periodontal regeneration.
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However, the graft failed due to slow degradation rate of PCL compared to surrounding
tissue, which resulted in graft exposure [48].
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Recent advances in additive manufacturing technology allow for the fabrication of
nanoscale scaffolds with controllable properties including fiber diameter, porosity, morphol-
ogy, and surface characteristics [118]. More specifically, electrospinning utilizes polymeric
solution to generate nanofibrous scaffolds with high surface area to volume ratio, enhanced
protein absorption, activation of specific gene expression and intracellular signaling to
potentiate cell behavior towards regeneration. Nano-composite electrospun fibers can be
manufactured by blending various polymers and functional components together. These
scaffolds have the ability to natural ECM to improve cell survival, attachment and organiza-
tion by promoting protein absorption, activating specific gene expression and intracellular
signaling pathways [118]. Various additives can be incorporated into these electrospun
constructs including bioceramics, carbon-based components, metal components to enhance
the scaffold’s physical-chemical-biological properties and regenerative capabilities. In
addition, growth factors, proteins and drugs can be incorporated into these polymeric
matrices to regular cellular reactions and tune local inflammatory microenvironment to
promote periodontal regeneration [118]

Systematic reviews and randomized controlled clinical trials provide evidence that the
combined use of EMD and human recombinant platelet-derived growth factor (rhPDGF-BB)
with beta-tricalcium phosphate can provide regenerative results comparable to bone graft
materials [119]. Future research and clinical translation are required to make polymeric
materials predictable for periodontal regeneration.

3.2.2. Periodontal and Peri-Implant Soft Tissue Regeneration

Soft tissue grafting around natural teeth and dental implants have been increasingly
used in clinical practice since its introduction in the 1960s [120–122]. The main goals of
periodontal and peri-implant plastic surgery are to augment tissue thickness and width,
correcting mucogingival deformities, improve esthetics in patients with gingival recession
or lack of keratinized tissue [123]. Although the use of autogenous soft tissue grafts is
considered the gold standard for achieving complete root coverage and adequate soft tissue
augmentation, patient morbidity has been reported as one of the major shortcomings of an
autologous soft tissue graft harvesting procedure [124].

Extracellular matrix scaffold biomaterials have gained significant popularity for peri-
odontal and peri-implant soft tissue augmentation in the recent years. The main advantages
of ECM scaffolds compared to autogenous grafts harvested from the patient’s palatal donor
site include material availability, avoidance of surgical harvest of donor tissue, reduction
of surgical time and patient preference (Figure 5) [125]. Current scaffolds used can be
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classified based on their origin including allogenic, xenogeneic, alloplastic, and living cell
constructs with their respective advantages and drawbacks. The ideal properties of such
scaffolds include (1) biocompatibility, (2) space maintenance, (3) blood clot stabilization,
(4) promotion of cellular migration and proliferation, (5) ease of manipulation during
surgical procedure, (6) ease of adaptation and positioning to surgical site [125].

Several alternative graft materials are used by clinicians including natural and cadav-
eric scaffolds and polymeric matrices. Natural and cadaveric scaffolds include decellular-
ized human dermis and human amniotic membrane, which can promote cellular migration
and revascularization [126–128]. Other ECM scaffolds include xenogeneic collagen matrices
which includes bilayered collagen matrix, volume-stable collagen matrix and xenogeneic
acellular dermal matrix which can support the proliferation of fibroblasts and keratinocytes
(Figure 6) [128–130]. In addition, biologics including EMD, PDGF, platelet concentrates
and FGF-2, can be applied to these ECM scaffolds to promote regeneration [125].

Polymeric matrices are widely used as biomaterials in tissue engineering and regen-
erative medicine for scaffold fabrication [131]. As these materials are devoid of cells and
signaling molecule, their primary purpose is space maintenance to allow for fibroblast
and keratinocyte migration and proliferation [125]. Polymeric matrices have shown good
potential for drug delivery and may be useful in the context of periodontal plastic surgery
for biologics delivery. However, there is limited evidence on the use of synthetic polymeric
biomaterials including PCL, PLGA and PLLA for periodontal and peri-implant soft tissue
augmentation in humans as a stand-alone scaffold because they do not potentiate cell
function towards new tissue formation or neovascularization. Future research should
explore the combination of polymeric scaffolds in combination with biologics.
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3.3. Regenerative Endodontics

Polymeric scaffolds have been used in Regenerative Endodontic Procedures (REP) to
provide a suitable physiological environment for biologically replacing damaged dentin-
pulp complex and root structures. In the endodontic literature, regeneration can also be
referred to as revascularization or revitalization [132,133]. The main goals of regenerative
endodontics are to close the root apex, increase root length, thicken root canal walls, and
achieve pulp regeneration, all while maintaining biocompatibility. REP was originally
developed to treat immature necrotic teeth, but recently, they have also been performed on
necrotic permanent teeth, vital mature permanent teeth, and resorbed teeth with a history
of trauma [134].

The scaffold reported to be used the most during REP is blood clot. This technique
generally involves canal preparation and disinfection, followed by induction of blood clot
from the periapical region. However, there is an increasing number of scaffolds that have
showed to be clinically successful, namely platelet-rich plasma (PRP) scaffolds, platelet-rich
fibrin (PRF) scaffolds, collagen membranes, collagen-hydroxyapatite scaffold, collagen-
gelatin hydrogels with and without fibronectin, chitosan hydrogels with and without
microparticulate dentin, alginate-laponite hydrogels incorporated with DPSCs and VEGF,
angiogenic hydrogels, gelatin methacryloyl (GelMA) hydrogels with and without human
DPSCs, and GelMA hydrogels with and without odontoblast-like cells and endothelial
colony forming cells.

Some of the scaffolds that allowed for continued root formation, such as apical closure,
increased root length, and thickened root canal walls, include PRF scaffolds, PRP scaf-
folds, collagen membranes, and collagen-hydroxyapatite scaffold, known as SynOss putty.
PRF scaffolds have shown evidence of apical closure, resolution of apical radiolucency,
continued root lengthening, and thickening of dentinal walls in immature permanent
teeth with necrotic pulps [135–138]. Similarly, PRP scaffolds showed the same outcomes
as PRF scaffolds, with no statistically significant differences between the two [137,139].
Bio-Gide collagen membranes (Geistlich, Wolhussen, Switzerland) have shown to promote
the development of dentinal wall in the middle third of the root, thus reinforcing the root
to prevent cervical root fractures [140]. SynOss putty used with blood as scaffold had
contradictory findings. One study showed that the use of SynOss putty in combination
with blood as scaffold in REP lead to the formation of an intracanal mineralized tissue
that solidified with the newly formed cementum-like tissue on dentinal walls, essentially
improving the integrity of immature non-infected human teeth [141]. However, another
study showed that there was no tissue regeneration present in the non-infected ferret teeth
samples using SynOss putty as scaffold [142].

Polymeric scaffolds are also used to improve the biological performances of the REP,
and can influence cell spreading, proliferation, release, recruitment, viability, and degrad-
ability. These include GelMA hydrogels with and without additional cells, injectable HA
hydrogels, alginate-laponite hydrogels, collagen-gelatin hydrogels, chitosan hydrogels, and
chitosan-based scaffolds. Higher-stiffness GelMA hydrogels seeded with odontoblast-list
cells (OD21) are shown to have higher spreading, proliferation, and viability near dentinal
walls. Similarly, endothelial colony forming cells (ECFC) incorporated on stiffer GelMA
hydrogels exhibited higher spreading and a tendency to form endothelial monolayers
with active angiogenic sprouts in fabricated microchannels [143]. In addition, GelMA
microspheres laden with hDPSCs showed capability to support multiple cell functions as
well as cryopreservation of hDPSCs in vitro and showed even better degradability and
pulp tissue regeneration in vivo compared to bulk GelMA hydrogels [144]. Photopolymer-
izable cell-laden GelMA hydrogels have been developed to be light cured using dental
curing light (Figure 6) [145]. Injectable HA hydrogels reinforced with platelet lysate (PL)
have shown to promote hDPSC recruitment and stimulate chemotactic and pro-angiogenic
activity in both in vivo and ex vivo models [146]. There are many more scaffolds that have
been designed to support other cell functions, such as differentiation and mineralization
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of human apical papilla cells (hAPC), while also enhancing antibacterial properties and
providing dentinal disinfection [147].

Molecules 2021, 26, x FOR PEER REVIEW 17 of 27 
 

 

scaffolds, collagen membranes, and collagen-hydroxyapatite scaffold, known as SynOss 

putty. PRF scaffolds have shown evidence of apical closure, resolution of apical radiolu-

cency, continued root lengthening, and thickening of dentinal walls in immature perma-

nent teeth with necrotic pulps [135–138]. Similarly, PRP scaffolds showed the same out-

comes as PRF scaffolds, with no statistically significant differences between the two 

[137,139]. Bio-Gide collagen membranes (Geistlich, Wolhussen, Switzerland) have shown 

to promote the development of dentinal wall in the middle third of the root, thus reinforc-

ing the root to prevent cervical root fractures [140]. SynOss putty used with blood as scaf-

fold had contradictory findings. One study showed that the use of SynOss putty in com-

bination with blood as scaffold in REP lead to the formation of an intracanal mineralized 

tissue that solidified with the newly formed cementum-like tissue on dentinal walls, es-

sentially improving the integrity of immature non-infected human teeth [141]. However, 

another study showed that there was no tissue regeneration present in the non-infected 

ferret teeth samples using SynOss putty as scaffold [142]. 

Polymeric scaffolds are also used to improve the biological performances of the REP, 

and can influence cell spreading, proliferation, release, recruitment, viability, and degra-

dability. These include GelMA hydrogels with and without additional cells, injectable HA 

hydrogels, alginate-laponite hydrogels, collagen-gelatin hydrogels, chitosan hydrogels, 

and chitosan-based scaffolds. Higher-stiffness GelMA hydrogels seeded with odonto-

blast-list cells (OD21) are shown to have higher spreading, proliferation, and viability near 

dentinal walls. Similarly, endothelial colony forming cells (ECFC) incorporated on stiffer 

GelMA hydrogels exhibited higher spreading and a tendency to form endothelial mono-

layers with active angiogenic sprouts in fabricated microchannels [143]. In addition, 

GelMA microspheres laden with hDPSCs showed capability to support multiple cell func-

tions as well as cryopreservation of hDPSCs in vitro and showed even better degradability 

and pulp tissue regeneration in vivo compared to bulk GelMA hydrogels [144]. Photopol-

ymerizable cell-laden GelMA hydrogels have been developed to be light cured using den-

tal curing light (Figure 6) [145]. Injectable HA hydrogels reinforced with platelet lysate 

(PL) have shown to promote hDPSC recruitment and stimulate chemotactic and pro-an-

giogenic activity in both in vivo and ex vivo models [146]. There are many more scaffolds 

that have been designed to support other cell functions, such as differentiation and min-

eralization of human apical papilla cells (hAPC), while also enhancing antibacterial prop-

erties and providing dentinal disinfection [147]. 

 

Figure 6. Photopolymerizable Cell-Laden Gelatin Methacryloyl Hydrogels for Regenerative Endodontics. Example of ap-

plication of GelMA hydrogel in regenerative dentistry. (A) Synthesis of GelMA macromer (B) Cell encapsulation (C) Ex-

ample intracanal hydrogel loading and photopolymerization (D) The resulting cell-laden hydrogel material. Note that 

although the schematic depicts an example for regenerative endodontics, the material can be used for any application of 

intra-oral regeneration, such guided periodontal regeneration, alveolar bone growth and others. Reprinted from [145] with 

permission from Elsevier. 

Figure 6. Photopolymerizable Cell-Laden Gelatin Methacryloyl Hydrogels for Regenerative Endodontics. Example of
application of GelMA hydrogel in regenerative dentistry. (A) Synthesis of GelMA macromer (B) Cell encapsulation (C)
Example intracanal hydrogel loading and photopolymerization (D) The resulting cell-laden hydrogel material. Note that
although the schematic depicts an example for regenerative endodontics, the material can be used for any application of
intra-oral regeneration, such guided periodontal regeneration, alveolar bone growth and others. Reprinted from [145] with
permission from Elsevier.

Scaffolds in REP have also mainly been used to achieve pulp regeneration, which often
translates into elimination of clinical signs and symptoms and regain of pulp sensibility.
Such scaffolds include PRF membranes, alginate-laponite hydrogels, human-derived com-
posite amnion-chorion membrane (ACM), collagen-gelatin hydrogels, and soft angiogenic
biomimetic acellular peptide hydrogels. One study showed that teeth that have been
endodontically treated using PRF membranes showed elimination of all clinical signs and
symptoms, and presence of tooth sensibility 12 months after the initial treatment, which is
indicative of the formation of a vital pulp-like tissue [148]. Alginate-laponite hydrogels
encapsulating DPSC and VEGF have shown to promote a sustained release of VEGF and
thus allow for revascularization and regeneration of pulp-like tissue in vivo [149]. Human
composite ACM is a scaffold that contains a combination of growth factors and cytokines
that can facilitate the controlled recruitment of progenitor stem cells and thus enhance pulp
regeneration. In fact, when compared to using a blood clot alone or using a blood clot with
collagen membrane for pulp regeneration in mature teeth, ACM produced more intracanal
fibrous tissue and odontoblast-like cell lining [134]. Finally, angiogenic hydrogels have
similar material properties to that of the native dental pulp and can promote ideal biointe-
gration and soft tissue regeneration. They have been shown to re-establish vasculature in
dental root canals [150].

Although there has been many studies highlighting the success of the existing REP
scaffolds, many have their limitations. For one, many membranes are still in their orig-
inal phases and being tested in vitro. For these newer scaffolds, the successful results
obtained from in vitro assays will form the basis for future studies as they will require
more thorough in-vivo analysis of their effectiveness, as well as further preclinical and
clinical studies [134,143]. For another, many studies showed a negative response to pulp
vitality assessments during the follow-up period despite demonstrating apical closure and
resolution of the periapical lesion on radiographic examination. To regain nerve function
after REP takes a long time. Therefore, a longer follow-up period may be required for pulp
sensibility tests to display a positive result [138,139].
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3.4. Whole Tooth Regeneration

Dental conditions such as dental caries or periodontal disease, whether with or with-
out dental treatment, ultimately lead to loss of the affected teeth with time. Although the
completely edentulous population is reducing over the past decades, 2.3% of the global
population remains edentate in 2010, representing 158 million people [151]. Tooth loss
is associated with systemic health conditions such as malnutrition, hypertension, and
obesity [152]. There is a wide range of treatment options, ranging from restorations, pros-
theses, or dental implants. With the emergence of tissue engineering, treating edentulism
with bioengineered teeth is coming to the horizon of researchers and clinicians. These
innervated and vascularized vital teeth would mimic closely the appearance and function
of natural dentition, offering a better outcome than any of the existing synthetic dental
implants to date.

Biodegradable scaffold materials are used to support tooth formation into the desired
size and shape. Post-natal tooth buds are seeded into the scaffold and transplanted into
renal capsules for maturation. In 2002, Young et al. seeded single-cell suspension from
porcine third molar tooth tissue PLGA scaffolds, and successfully formed recognizable
tooth structures such as dentin, odontoblasts, enamel and well-defined pulp chamber [153].
The promising results opened the door to studying scaffold-based techniques in whole
tooth regeneration. The same scaffold was used by Duailibi, where 4-day postnatal rat
tooth bud cells seeded for 1h generated tooth tissues most reliably [154]. Smith et al.
explored GelMA hydrogels as scaffolds for postnatal dental cells. The generated tooth buds
contained biomarkers characteristic of a natural tooth bud [155]. Although the experiments
produced teeth-like structures, the size of the teeth was too small, and the shape was
uncontrollable. Until now, the closest to a real-size tooth was achieved by combining
adult dental cells with decellularized natural tooth bud ECM scaffolds. Six months after
implantation into mini pig hosts, organized dentin and enamel-like tissues were observed,
comparable to natural teeth [156]. Several studies utilize embryonic or induced pluripotent
stem cells based scaffold free strategies for tooth bioengineering [157–159].

Several challenges remain in the tissue engineering field, preventing the clinical
application of whole tooth regenerative therapy. Controlling the size and shape of the
bioengineered tooth is a significant concern. To have optimal functionality, the regenerated
teeth need to have a precise crown shape for occlusion. To date, no scaffold can direct
the tooth generation with such precision. Another challenge is the integration of the engi-
neered tooth to the host supporting tissues such as alveolar bone and PDL. Vascularization
and innervation are especially hard to obtain but essential for the longevity of the teeth.
Moreover, the population needing whole tooth regenerative therapy would have lost their
natural dentition due to underlying conditions such as caries and periodontal disease.
These oral conditions further complicate the situation as they put the patient at higher risk
of infection and having an unhealthy oral environment.

The future is promising for whole tooth bioengineering. With fully functional tooth
roots, pulp and attachment apparatus, the crown can potentially be 3D printed for better
size and shape accuracy [160]. Although researchers are optimistic about achieving suc-
cessful whole tooth regeneration, the cost must be taken into consideration to make its
clinical application possible.

3.5. Salivary Gland Regeneration

The salivary system comprises the parotid, submandibular, and sublingual glands,
and ~1000 minor glands in the oral mucosa. Salivary glands (SGs) are composed of two
types of secretory acinar cells (fluid-secretory epithelial cells) and ductal cells forming the
duct network to secrete saliva. This parenchymal tissue is surrounded by myoepithelial and
endothelial cells. When SGs are damaged, frequently in patients treated for radiotherapy for
head and neck cancer and patients with Sjögren’s syndrome, they experience a decrease in
saliva production due to the loss of acinar cells function. Consequently, patients experience
dry mouth, difficulty swallowing, oral infection, tooth decay, taste loss, and malnutrition.
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Several strategies have been developed to study and culture SG cells in vitro using
different hydrogels compositions. Nam et al., used fibrin- and laminin-based hydrogels to
promote the regeneration of salivary tissue. The authors found that chemically conjugated
fibrin with laminin peptides applied to wounded mouse submandibular glands in vivo and
promoted the cell organization into salivary tissue, indicating that damaged salivary gland
tissue can grow and differentiate using these hydrogels as a 3D scaffold [28,29]. In another
study using trimers laminin- I II conjugated with fibrin hydrogels (LIP-T-FH), the hydrogel
was able to increase the expression of acinar differentiation markers and elevate saliva
secretion on Par-C10 acinar cells and C57BL/6 mice. The LIP-T-FH significantly increased
the expression of the acinar cell differentiation markers and saliva secretion compared with
monomeric form [161].

Ozdemir et al., synthesized HA-based hydrogels with different polymer concentra-
tions and thiol/acrylate ratios. In hydrogels with a G′ ≤ 216 Pa and a thiol/acrylate
ratio ≥ 18, salivary human stem cells self-assembled into acini-like structures, with an
average diameter of 50 µm, and the spheroid size and size distribution were dependent
on the HA content in the hydrogel [162]. Placenta basement membrane extract (PBME)
promotes the polarization and organization of SG cells in 3D hydrogels. Maria et al. used
fibronectin- and PBME gels to expand and differentiate primary human salivary gland
epithelial cells (huSGs) in a serum-free medium. The same group has recently grown
human salivary spheroids using a hydrogel made of egg white and alginate (Figure 7) [163].
These systems allowed the morphological and functional differentiation of salivary ductal
cells into acinar-like cells, exhibiting a polarized acinar 3D units or monolayers with tight
junction proteins, acinar proteins, and acinar adhesion-related cell markers [164].
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novel hydrogel which combines the advantages of both egg white and alginate. The egg white material provides extracellular
matrix (ECM)-like proteins that can mimic the ECM microenvironment, while alginate can be tuned mechanically through
its ionic crosslinking property to modify the scaffold’s porosity, strength, and stiffness. Reprinted from [163] with permission
from MDPI.

4. Future Directions

Additive manufacturing (AM) is one of the most promising technologies aiming to
construct 3D functional organs in vitro based on a layer-by-layer building-up process from
a 3D CAD design [165]. Different AM techniques are available to achieve 3D geometrically
complex structures that can be used for tissue regeneration and dental applications, includ-
ing stereolithography, digital light processing, inkjet, material extrusion [24]. Even when
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some successful 3D models have been created using AM process, the materials remain
as “static scaffold”, supporting cell growth and development but maybe not enough to
support tissue or organ development [166].

It is well known that a biological system, besides its complexity, possesses a dynamic
environment under constant reorganization to adapt to external factor facilitation and
ensure the excellent functionality of organs and cells [166]. 4D printing is a new manu-
facturing concept that involves the use of 3D printed structures made with responsive
polymers that can be stimulated by external factors such as pH, humidity, light, and tem-
perature. These materials allow dynamic responses to in vivo conditions by changing
their shape or color, producing an electrical stimulus, becoming bioactive, self-assembling,
or performing an intended function [166,167]. The 3D structure generated represents a
more realistic model mimicking the native human environment and ensuring the good
performance of living entities.

Although responsive materials have been studied for years, only a few have been used
in 4D printing for tissue engineering [166,167]. As mentioned above, the material’s require-
ments for tissue engineering are strict to guarantee the correct biological performance. An
ideal polymer matrix must be biocompatible, biodegradable, present mechanical strength,
bioactive, and fit the dynamic environment that living organisms have. Many potential
applications of smart hydrogels along with 3D/4D printing exist in craniofacial and tissue
regeneration leading, for instance, the self-assembling, self-memory material, self-repair,
controlled release of drugs and biomolecules, of 3D polymeric matrices, which may offer a
pivotal advantage in the development of in vitro tissue and organs [2].

5. Conclusions

Despite advances in polymeric scaffolding materials used to treat dental, oral, and
craniofacial deficiencies, true regeneration of tissues that combines native morphology,
physiologic function and esthetic remains a challenge in the field of DOC regenerative
medicine. Further research is needed to develop polymeric biomaterials with tunable
mechanical properties that potentiate cell function, matching degradation rate similar
to physiological remodeling processes, surface functionalization with gene vectors or
biologics to enhance cell interactions, and ability to be used in additive manufacturing
including 3D and 4D bioprinting. In the future, polymeric scaffolds will play a significant
role in personalized patient care to ultimately provide predictable treatment options to
enhance clinical outcomes and patient quality of life.
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