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To maintain the oxygen supply, the production of red blood
cells (erythrocytes) is promoted under low-oxygen conditions
(hypoxia). Oxygen is carried by hemoglobin in erythrocytes, in
which the majority of the essential element iron in the body is
contained. Because iron metabolism is strictly controlled in a
semi-closed recycling system to protect cells from oxidative
stress caused by iron, hypoxia-inducible erythropoiesis is closely
coordinated by regulatory systems that mobilize stored iron for
hemoglobin synthesis. The erythroid growth factor erythropoietin
(EPO) is mainly secreted by interstitial fibroblasts in the renal
cortex, which are known as renal EPO-producing (REP) cells,
and promotes erythropoiesis and iron mobilization. Intriguingly,
EPO production is strongly induced by hypoxia through iron-
dependent pathways in REP cells. Here, we summarize recent
studies on the network mechanisms linking hypoxia-inducible
EPO production, erythropoiesis and iron metabolism. Additionally,
we introduce disease mechanisms related to disorders in the
network mediated by REP cell functions. Furthermore, we propose
future studies regarding the application of renal cells derived
from the urine of kidney disease patients to investigate the
molecular pathology of chronic kidney disease and develop
precise and personalized medicine for kidney disease.
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When the first organism emerged, oxygen concentrations
were very low on Earth, and the evolution of early organ‐

isms progressed away from the harmful reactivity of oxygen to
biomolecules.(1,2) After the appearance of aerobic organisms that
could use oxygen for energy production while detoxifying
oxygen, oxygen has driven the explosion of evolution by
providing metabolic systems that are effective for energy produc‐
tion. Inevitably, aerobic organisms must incessantly consume
oxygen, which cells cannot store.(3,4)

For proteins or cells, iron is a suitable molecule for main‐
taining and releasing oxygen in a rapid response to changing
metabolic conditions. However, because iron is cytotoxic,
aerobic cells and organisms need to strictly control iron metabo‐
lism and iron storage in a semi-closed system.(5) Thus, oxygen
metabolism and iron metabolism in mammals are cooperatively
and precisely regulated.(6) Approximately 70% of the iron in
a human body is distributed in erythrocytes, in which 1
hemoglobin (Hb) molecule contains 4 iron atoms, to deliver
oxygen to every peripheral organ. Erythropoiesis is closely asso‐
ciated with the mobilization of stored iron, which accounts for

<30% of the total iron in the body.(5,6) This paper explains the
molecular mechanisms by which oxygen and iron collaboratively
regulate erythropoietin (EPO) production in renal interstitial
fibroblasts and the mechanism by which EPO simultaneously
promotes erythroid cell differentiation and iron mobilization.

Iron is Associated with Hypoxia-Inducible EPO
Production in REP Cells

In adult mammals, EPO is mainly produced and secreted by
interstitial fibroblasts distributed in the renal cortex, and these
cells are referred to as renal EPO-producing (REP) cells.(6–11)

Therefore, kidney injury or nephrectomy often cause EPO-
deficiency anemia, which is known as renal anemia. Under
hypoxic conditions caused by factors such as bleeding, high-
altitude areas, and respiratory diseases, plasma concentrations
of EPO are dramatically increased to maintain the erythrocyte-
mediated oxygen supply to peripheral organs.(12) Hypoxia-
inducible EPO production in REP cells is fundamentally
controlled at the transcription level by hypoxia-inducible tran‐
scription factors (HIFs).
HIFs consist of a hypoxia-inducible α subunit and a constitu‐

tive β subunit. The β subunit is also known as aryl hydrocarbon
receptor nuclear translocators (ARNTs), and there are 3 isoforms
of HIF-α proteins encoded by independent genes.(13,14) Among
the HIF-α isoforms, HIF2α is the major activator of EPO gene
expression in REP cells (Fig. 1).(15,16) HIF2α is consistently
synthesized in REP cells but immediately degraded by the
proteasome under normal oxygen conditions (normoxia).
Hydroxylation of the specific prolyl residues of HIF-α proteins,
which is mediated by prolyl hydroxylase domain proteins
[PHDs, also known as HIF-prolyl hydroxylases (HIF-PHs)],
triggers their degradation.(13,14) Three PHDs have been identified
in mammalian cells and commonly require molecular oxygen,
ferrous iron (Fe2+) and α-ketoglutarate for their catalytic activity
(Fig. 1).(13,17) Under hypoxic conditions, oxygen is unavailable
for PHDs, and HIF2α is subsequently stabilized and induces
the transcription of its target genes by avoiding hydroxylation
and degradation. Among the PHD isoforms, PHD2 dominantly
controls EPO production in REP cells by sensing a lack
of oxygen availability and catalyzing HIF2α hydroxylation
(Fig. 1).(15,16)
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Little is known about the mechanisms by which PHD2 and
HIF2α among their isoforms, are involved in hypoxia-inducible
EPO gene regulation in REP cells. Additionally, signaling path‐
ways that control EPO gene expression exclusively in REP cells
have not been identified. To elucidate the mechanisms of cell
type-specific and hypoxia-inducible EPO gene expression, we
analyzed cis-regulatory elements of the mouse Epo gene in
reporter transgenic mice.(7,8,18–23) Although studies have demon‐
strated that the multiple regulatory elements involved in REP
cell-specific and hypoxia-inducible EPO gene expression are
located between 17 kb and 4 kb upstream of the transcription
start site, the specific sequences within the upstream region and
transcription factors other than HIF2α, which bind to EPO gene
regulatory sequences, have still not been identified. Further
studies using genome-wide single-cell techniques are needed to
determine the molecular mechanisms of EPO production.(11)

EPO production is regulated in response to oxygen availability
in REP cells, and iron is associated with EPO gene regulation at
multiple steps. Iron deficiency blocks the translation of HIF2α,
the main transcriptional activator of the EPO gene, through the
induction of a physical interaction between iron-binding protein
1 (IRP1) and the 5’ terminus of HIF2α mRNA, as well as transla‐
tional regulation of other iron-regulatory proteins, such as ferritin
chains and ferroportin (Fig. 1).(24) Under the iron-replete condi‐
tions, the iron–sulfur cluster binds to IRP1 and blocks its binding
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Fig. 1. Roles of oxygen and iron in erythropoietic regulation. EPO
production is fundamentally controlled at the transcriptional level by
HIF2α in a hypoxia-inducible manner in REP cells. HIF2α synthesis is
blocked by IRP1 binding to HIF2α mRNA, which is inhibited by iron–
sulfur clusters. Under normal oxygen conditions, HIF2α protein is
constitutively degraded through PHD2-mediated hydroxylation of
HIF2α, which requires ferrous iron and molecular oxygen (O2). Under
oxygen-depleted conditions (hypoxia), HIF2α is not degraded and
induces the transcription of its target genes, including the EPO
gene. EPO is secreted by REP cells and stimulates erythroferrone and
TfR expression in erythroblasts through the EPOR-STAT5 signaling
cascade. Erythroferrone suppresses hepatic production of hepcidin, a
negative regulator of stored iron mobilization, and then erythroblasts
take up transferrin (Tf)-iron from the blood through TfR for
hemoglobin (Hb) synthesis. Mature erythrocytes deliver oxygen to
every organ by using Hb.

to HIF2α mRNA. Thus, EPO production is attenuated by a
decrease in HIF2α activity when iron is unavailable for Hb
synthesis and erythropoiesis. On the other hand, iron overload
attenuates hypoxia-inducible HIF2α accumulation and EPO
gene expression in REP cells.(25) Although the mechanisms by
which iron negatively regulates HIF2α and EPO levels have yet
to be elucidated, iron may enhance HIF2α degradation even
under hypoxic conditions because ferrous iron is used for
PHD-mediated HIF-prolyl hydroxylation (Fig. 1).(17,25,26)

EPO Induces Erythropoiesis by Triggering Erythroid
Maturation and Systemic Iron Mobilization

After EPO is secreted from REP cells in the kidneys, EPO is
delivered to the bone marrow, where it stimulates the maturation
and proliferation of erythroblasts by binding to its specific
receptor (EPOR). Since EPOR is more highly expressed on the
surface of erythroid cells than on other cell types, EPO exclu‐
sively targets erythroid lineage cells.(6,27,28) One EPO molecule
binds to an EPOR homodimer and alters the gene expression
profile by activating various signaling cascades, and the Janus
kinase 2 (JAK2)-signal transducer and activator of transcription 5
(STAT5) pathway plays a central role (Fig. 1).(6,28–30)

EPO stimulation induces the phosphorylation of STAT5,
and activated STAT5 translocates into the nucleus from the
cytoplasm to activate transcription of its target genes, which
are related to anti-apoptotic effects and iron use for Hb
synthesis.(6,28,30) The TFRC gene, which encodes the transferrin
(Tf) receptor (TfR), is upregulated by STAT5 in erythroblasts
receiving EPO and promotes the incorporation of holo-Tf
containing ferric iron (Fig. 1).(6,20) EPO-EPOR signaling not only
promotes iron use by erythroblasts but also impacts systemic iron
metabolism by inducing erythroblastic expression of the
FAM132B gene, another STAT5-target gene (Fig. 1).(6,31,32) The
FAM132B gene product, erythroferrone, suppresses hepcidin
production in hepatocytes after secretion from erythroblasts.
Since hepcidin strongly inhibits ferroportin-mediated iron export
from cells responsible for iron storage and iron absorption,
erythroferrone induction provokes systemic iron availability to
support Hb synthesis in erythroid cells (Fig. 1).

REP Cells are Transformed into Myofibroblasts, Thereby
Promoting Renal Fibrosis

Chronic kidney disease (CKD) currently affects more than
10% of the global population. However, there is no treatment to
cure CKD due to the unexplained molecular pathology of kidney
disease, which is caused by various primary diseases and has
complex prognosis.(33) Fibrosis is a final common pathway in
complicated kidney disease, and myofibroblasts emerge and
produce extracellular matrix.(34) REP cells are one of the most
potent origins of the renal myofibroblasts.(35–39) We showed that
oxidative stress in renal tubules is involved in the progression of
kidney disease with fibrosis caused by the transformation of REP
cells into myofibroblasts. Our previous report also demonstrated
that activation of the antioxidative transcription factor Nrf2 in the
earlier stages of kidney injury protects tubules from oxidative
damage and suppresses renal fibrosis.(40,41) Thus, elucidating the
molecular mechanism by which REP cells transform into myofi‐
broblasts is expected to lead to the development of innovative
therapies against renal fibrosis and CKD.
Analyses of a myofibroblastic cell line derived from murine

REP cells (Replic cells) demonstrated that REP cells gain prolif‐
erative activity and produce extracellular matrix after undergoing
fibroblast-to-myofibroblast transformation.(42,43) Additionally, renal
EPO production after myofibroblastic transformation of REP
cells is attenuated by constitutive degradation of HIF2α due to
an unidentified mechanism which may make PHDs resistant
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to hypoxic inactivation. Therefore, HIF-PH inhibitors (PHD
inhibitors) have been developed to block over-activated PHDs
and are currently used for treatment of renal anemia.(43–46)

Further progression of myofibroblastic transformation silences
EPO and EPAS1 (HIF2α) gene expression by inducing DNA
methylation in the promoter regions of these genes.(42,43,47)

Epigenetic silencing means that HIF-PH inhibitors cannot
induce EPO gene expression in terminally mature renal myofi‐
broblasts due to a lack of HIF2α synthesis at the transcriptional
level. Thus, studying REP cell transformation is critical for
understanding renal fibrosis and renal anemia, which are major
complications of CKD.

Iron Preferentially Accumulates in REP Cells and Inhibits
EPO Production

Iron overload in mice fed a high-iron diet or subjected to iron-
dextran injection reduced renal EPO production.(25,48) Under iron
overload conditions, iron deposition is observed exclusively in
renal interstitial fibroblasts, including REP cells, in the kidney
(Fig. 2A and B), and hypoxia-inducible HIF2α nuclear accumula‐
tion in these cells is inhibited. Although the mechanism of iron-
mediated HIF2α suppression has not been elucidated due to the
complex effects of iron on HIF2α activity (Fig. 1), HIF2α
inactivation results in a lack of EPO production followed by the
development of renal anemia. Because iron supports erythro‐
poiesis, iron supplementation is often provided to patients
suffering from iron deficiency anemia and also to endurance
athletes. However, iron overdose may attenuate erythropoietic
activity by reducing HIF2α-inducible EPO production.
Intriguingly, iron deposition is detected exclusively in tubular

epithelial cells after the induction of hemolytic anemia, which
increases blood concentrations of heme-iron derived from the Hb
of degraded erythrocytes. In contrast, renal interstitium-specific
iron deposition was observed in mice administered a high-iron
diet or iron dextran (Fe-Dex), and blood concentrations of

Tf-iron were increased (Fig. 2A and B).(25,49) These observations
suggest that REP cells incorporate Tf-iron from interstitial fluid,
whereas tubular cells absorb heme-iron from the tubular lumen.
Indeed, we detected Tfrc (TfR) mRNA expression in the REP
cells of mouse kidneys. Additionally, the heme importer
[heme regulatory gene 1 (HRG1), also known as SLC48A1] is
expressed in the apical membrane of renal proximal tubular cells
and reabsorb heme from primary urine in mice suffering from
neonatal hemolysis.(50)

Roles of Iron in Myofibroblasts in Fibrotic Kidneys

Iron deposition in the interstitium is increased in kidneys
damaged by ischemia–reperfusion injury (Fig. 2B), indicating
that REP cells enhance Tf-iron absorption after myofibroblastic
transformation under disease conditions.(41) Since EPO deficiency
attenuates iron use for Hb synthesis followed by an increase in
serum Tf-iron levels,(31) the incorporation of Tf-iron into renal
myofibroblasts is thought to be associated with renal fibrosis and
EPO deficiency in the context of CKD. Flow cytometry demon‐
strated that TfR expression on the cell surface of Replic cells was
enhanced by a reduction in intracellular iron availability (Fig. 2C
and D), iron absorption in renal myofibroblasts was thought to be
controlled by regulating functional TfR expression in response to
changes in cellular status.
Iron is considered to be required for proliferative myofibro‐

blasts in fibrotic kidneys through supporting mitochondrial
energy production (Fig. 2D).(51) Additionally, because excessive
ferrous iron produces hydroxyl radicals in cells, iron seems to
be involved in the development of oxidative stress, which is
one of the major causes of tubular damage in kidney injury
(Fig. 2D).(41,52) Furthermore, iron accumulation results in HIF2α
inactivation and EPO deficiency in the kidney (Fig. 2D).(31) EPO
deficiency leads to anemia, and anemic hypoxia further exacer‐
bates renal fibrosis and kidney damage.(41) We recently found that
iron and oxygen conditions cooperatively controlled the activity
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Fig. 2. Iron deposition in the interstitium of healthy and injured kidneys. (A) Berlin blue staining of kidney sections showing that phenylhy‐
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of ten-eleven translocation DNA demethylases (TET),(53) which
may affect the epigenetic silencing of the genes encoding HIF2α
and EPO in fibrotic kidneys. These findings suggest that
signaling pathways related to iron are potential molecular targets
in CKD.

Perspective: Use of Urinary Exfoliated Cells from CKD
Patients for Studies on EPO Production and Renal
Fibrosis

Investigations using cells derived from CKD patients are
essential for applying advanced information on the molecular
pathology of kidney disease obtained from experiments using
animal models and cells such as Replic cells. It is known that the
urine of CKD patients contains a variety of cell types that are
exfoliated from the injured kidneys.(43,54,55) Because urinary exfo‐
liated cells (UECs) are living and culturable cells that are nonin‐
vasively obtained from patients, they can be used for in vitro
experiments to investigate the molecular pathology of kidney
disease, to screen biomarkers related to disease conditions and
prognosis and to diagnose individual responsiveness to drugs.

Because urine concentrations of UECs are low even in CKD
patients, few cells can be detected in a 10-cm dish culture imme‐
diately after seeding cells collected via the centrifugation of
40 ml of urine from CKD patients. However, cell clusters with
various shapes appear within 1 week after the initiation of culture
(Fig. 3), indicating high proliferation. We confirmed that cultured
UECs contained CD73+ fibroblasts, CD326+ tubular epithelial
cells, CD44+ injured cells from tubules and fibroblasts, although
the ratio of each cell population differed among patients. Addi‐
tionally, there are cells that can produce EPO, which are human
REP cells, in response to HIF-PH inhibitors.
Taking advantage of the diverse cell types of living UECs,

a variety of human kidney cell lines, which are useful for
elucidating the molecular pathology of CKD, can be established
after the transfection of immortalizing genes, such as those
encoding Simian virus 40 T-antigens (Fig. 3). Additionally,
single-cell RNA sequencing of UECs exposed to drugs of
interest is available for screening for the cellular and molecular
targets of newly developed drugs for kidney disease (Fig. 3). For
example, we are investigating the effects of iron on hypoxia- or
HIF-PHI-inducible EPO production in UEC-derived fibroblastic
cells that are positive for the cell-surface marker CD73. Thus,
UECs are expected to noninvasively provide innovative plat‐

forms for studying the molecular pathology and pharmaceutical
and diagnostic treatment of CKD, which is complicated by high
unmet medical needs.
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