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Abstract

Siderophores are small molecules synthesized and secreted by bacteria and fungi to scav-

enge iron. Extracellular ferri-siderohores are recognized by cognate receptors on the cell

surface for transport over membranes. Several siderophore systems from Vibrionaceae rep-

resentatives are known and well understood, e.g., the molecular structure of the siderophore,

the biosynthesis gene cluster and pathway, and the gene expression pattern. Less is known

about how these systems are distributed among the ~140 Vibrionaceae species, and which

evolutionary processes contributed to the present-day distribution. In this work, we compiled

existing knowledge on siderophore biosynthesis systems and siderophore receptors from

Vibrionaceae and used phylogenetic analyses to investigate their organization, distribution,

origin and evolution. Through literature searches, we identified nine different siderophore bio-

synthesis systems and thirteen siderophore receptors in Vibrionaceae. Homologs were identi-

fied by BLAST searches, and the results were mapped onto a Vibrionaceae phylogeny. We

identified 81 biosynthetic systems distributed in 45 Vibrionaceae species and 16 unclassified

Vibrionaceae strains, and 409 receptors in 89 Vibrionaceae species and 49 unclassified

Vibrionaceae strains. The majority of taxa are associated with at least one type of siderophore

biosynthesis system, some (e.g., aerobactin and vibrioferrin) of which are widely distributed in

the family, whereas others (i.e., bisucaberin and vibriobactin) are found in one lineage. Cog-

nate receptors are found more widespread. Phylogenetic analysis of three siderophore sys-

tems (piscibactin, vibrioferrin and aerobactin) show that their present-day distribution can be

explained by an old insertion into Vibrionaceae, followed mainly by stable vertical evolution

and extensive loss, and some cases of horizontal gene transfers. The present work provides

an up to date overview of the distribution of siderophore-based iron acquisition systems in

Vibrionaceae, and presents phylogenetic analysis of these systems. Our results suggest that

the present-day distribution is a result of several evolutionary processes, such as old and new

gene acquisitions, gene loss, and both vertical and horizontal gene transfers.
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Introduction

Siderophores represent a group of relatively small, and low molecular weight secondary

metabolites with high-affinity binding potential to ferric iron [1]. They are produced and

secreted by a broad range of microorganisms (e.g., bacteria and fungi), and some plants.

Under low iron conditions, such as in aquatic environments or inside a vertebrate host, e.g.,

bacteria must use highly specific strategies to acquire iron and other essential micronutrients

[2,3]. To overcome iron starvation, siderophores are synthesized and secreted to their sur-

roundings where they chelate ferric iron. Once bound, the ferric iron-siderophore complexes

are recognized by siderophore receptors, and transported over the membrane by ABC trans-

porters using TonB complexes as energy transducers.

Interestingly, bacteria produce siderophores of several major classes, each of which can

have a diverse set of molecular structures, presumably because production of unique sidero-

phores can provide individual bacteria with an advantage in the competition with others [4].

For example, polymicrobial studies have shown that siderophores from one species can

inhibit growth or functions of other species, e.g. low concentrations of avaroferrin from She-
wanella algae inhibit swarming of Vibrio alginolyticus and a siderophore from Pseudomonas
fluorescens inhibits growth of Vibrio anguillarum [5,6]. Such kin discrimination strategy can

however be bypassed by “cheaters”, i.e., bacteria expressing receptors on their surface with

affinity to siderophores produced by others [7]. This mechanism is also known as exogenous

or xeno-siderophore utilization. So surely, there must be a constant battle between microor-

ganisms for available iron, and they can produce (i) own siderophores and the respective

receptors, and/or (ii) “cheating” receptors for utilization of siderophores produced by

others.

We have in this work, studied siderophore biosynthesis systems and their respective recep-

tors from the Vibrionaceae family. Vibrionaceae represents a large and diverse group of Gram-

negative Gammaproteobacteria, and the evolutionary relationships between many of the

approximately 140 different species were recently updated by Sawabe and coworkers [8]. Rep-

resentatives of this family have been heavily studied, typically due to their ability to cause seri-

ous diseases in humans or animals.

The causative agent of the human disease cholera, Vibrio cholerae, is the most famous

Vibrionaceae representative. V. cholerae produces the catechol siderophore vibriobactin

using proteins encoded by vibABCDEFH [9,10]. Ferric iron-vibriobactin complexes are rec-

ognized by the receptor ViuA [11]. Moreover, V. cholerae can “cheat” on derivatives of

enterobactin (produced by e.g., Escherichia coli) using the receptors IrgA and VctA [12], flu-

vibactin (synthesized by Vibrio fluvialis) using the ViuA, VctA and IrgA receptors, and

finally ferrichrome by using the FhuA receptor [12–14]. Vibrio vulnificus represents another

significant human pathogen [15]. This bacterium produces the catechol siderophores vulni-

bactin by using proteins encoded by the gene cluster VV2_0830—VV2_0844 [16], and

recognizes ferri-vulnibactin via the VuuA receptor [17]. It has also been proposed that V.

vulnificus produces an uncharacterized hydroxamate siderophore, and an uncharacterized

catechol siderophore using, in part, same genes as for vulnibactin [16,18]. Finally, V. vulnifi-
cus can transport and utilize aerobactin (IutA receptor) [19], deferoxamine B (DesA recep-

tor) [20,21] and vibriobactin [22]. The human pathogen Vibrio parahaemolyticus [23]

produces the carboxylate siderophore named vibrioferrin (encoded by pvsABDE) [24].

Vibrioferrin is sensitive to photolysis and has a lower affinity for iron compared to other cat-

echol-type siderophores in vibrios. Ferri-vibrioferrin is recognized and transported over the

membranes using the receptor PvuA [25]. V. parahaemolyticus can “cheat” using the exoge-

nous siderophores enterobactin, aerobactin, ferrichrome and possibly vibriobactin and
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fluvibactin [22,26–29]. V. alginolyticus is an emerging foodborne pathogen that causes gas-

troenteritis and peritonitis in humans [30]. The B522 strain contains the vibrioferrin biosyn-

thesis cluster [5,31], and can also utilize siderophores synthesized by V. cholerae, V. fluvialis
and V. parahaemolyticus and ferrichrome [32,33].

Several Vibrionaceae fish pathogens have been studied with respect to siderophore pro-

duction and utilization, e.g., V. anguillarum, a pathogen causing haemorrhagic septicemia in

fish, bivalves and crustaceans [34], Aliivibrio salmonicida, causing cold-water vibriosis in

Atlantic salmon at low seawater temperatures [35,36], Photobacterium damselae subsp. pisci-
cida [37,38], and V. alginolyticus [30]. Depending on strain, V. anguillarum can synthesize

and utilize the mixed catechol/hydroxamate siderophore anguibactin (only serotype O1

strain; biosynthesis encoded by angABCEB/GMTHRNUD and recognized by FatA receptor)

[39,40], or vanchrobactin (found in all serotype O2 strains, some plasmid less O1 strains,

and several other serotypes). Biosynthesis of the latter is encoded by dapH and vabABCEFH
[41], and recognized by a receptor encoded by fvtA [42]). Anguibactin biosynthesis genes are

located both on a conjugative plasmid named pJM1, and on chromosomes (angABC and

angE) [40]. Intriguingly, for V. anguillarum strain 775 the presence of pJM1 and anguibactin

coincides with the lack of vanchrobactin [43]. Its chromosome contains entire vanchrobactin

gene cluster, except that vabF is interrupted by an RS1 transposon originating from pJM1.

Closely related strains that lacks this plasmid produce vanchrobactin. The authors therefore

hypothesize that vanchrobactin was produced by the bacterium prior to the acquisition of

pJM1 (and thus the anguibactin cluster), and that production of vanchrobactin at some

point was suppressed by inactivation of vabF since anguibactin has a higher affinity for iron.

Moreover, V. anguillarum utilizes exogenous siderophores like enterobactin, ferrichrome

and citrate [44,45]. A. salmonicida synthesizes and utilizes the di-hydroxamate siderophore

bisucaberin (biosynthesis encoded by bibABC and recognized by the BitA receptor) [46,47].

It has been postulated that the siderophore production is vital for the virulence of A. salmoni-
cida. This assumption is based on that production of significant amounts of bisucaberin is

restricted to low temperature conditions (i.e., the bacterium only causes disease at low tem-

peratures) [46]. Also, we recently showed that the genes responsible for bisucaberin produc-

tion are highly up-regulated under low iron conditions and that the production is strongly

regulated by Fur [48]. A system for aerobactin synthesis is in contrast not expressed, proba-

bly because the cluster is non-functional due to frameshift mutations and loss of the promo-

tor [49]. The genome of A. salmonicida also encodes the deferroxamine B receptor DesA and

the aerobactin receptor IutA [49]. The fish pathogen P. damselae subsp. piscicida produces

the mixed carboxylate/hydroxamate siderophore piscibactin (encoded by dapH and

irp123459), which is probably transported by FrpA [37,38,50]. The shrimp pathogen Vibrio
campbelli produces the catechol siderophore amphi-enterobactin (biosynthesis encoded by

aebABCEG), however the receptor has not been identified [51]. In addition, Vibrionaceae
representatives may produce other siderophores such as amphibactins, deferroaxamines, tri-

vanchrobactins, ochrobactins and probably several more. However, although the biosyn-

thetic gene clusters responsible for production of these molecules are well known from other

bacteria, they may not have been conclusively identified in Vibrionaceae. In Vibrio campbellii
DS40M4, the same gene cluster is responsible for production of both vanchrobactin and tri-

vanchrobactin, but the main determinant that regulates which of them is produced remains

unknown [52]. Payne and co-workers recently reviewed siderophore biosynthesis and utili-

zation in Vibrionaceae, with a focus on vibrios [7]. This inspired us to use the existing knowl-

edge to investigate the distribution and evolution of the different siderophore systems

further. In this work, we first performed literature searches on Vibrionaceae siderophore

gene systems, then we used this knowledge to search the databases for siderophore systems
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in all available Vibrionaceae genomes, and mapped the result onto a Vibrionaceae phyloge-

netic network. The evolution of individual siderophore biosynthesis systems and receptors

was next studied by constructing phylogenetic trees based on amino acids datasets, and by

comparing the resulting tree topologies to host trees. Through the presented work, we wish

to broaden the perspective and existing knowledge on siderophore synthesis and utilization

within the Vibrionaceae family.

Materials and methods

Data retrieval

Siderophore biosynthesis gene clusters and associated siderophore receptor genes in Vibrio-
naceae were identified by literature searches, and the corresponding protein sequences were

retrieved from NCBI’s protein sequence databank. The literature search was done over sev-

eral months during fall 2016. Updated RefSeq accession numbers for identified proteins with

the ‘WP’ prefix (the ‘WP’ accession prefix was introduced to decrease redundancy in RefSeq,

and has replaced the ‘YP’, ‘NP’ and ‘ZP’ prefixes) are presented in Tables 1 and 2. These

sequences were next used as queries in BLASTp searches to find homologous protein

sequences. BLASTp was run using the non-redundant protein database while restricting the

search to the Vibrionaceae family (NCBI taxid: 641). The following criteria were used to

decide if a siderophore biosynthesis gene cluster is present in any given species: (i) threshold

values from BLASTp were set to�80% coverage and�50% identity, (ii) all proteins associ-

ated with a siderophore gene cluster must be present in the same species, (iii) pseudogenes

were rejected, and (iv) BLASTp hits labelled “low quality protein” in the databases were

excluded. Within-species variations were not considered because it would require extensive

manual curation of a huge number of blast hits and database entries, which was not feasible

to do as part of this study. Also, some of the siderophore pathways may share parts of the bio-

synthesis steps e.g., in the proposed pathways of anguibactin, vanchrobaction, vibriobactin

and enterobactin synthesis, all involve synthesis of DHBA, later the four pathways split into

unique steps. Siderophore synthesis pathways may therefore use common enzymes, or they

Table 1. RefSeq accession numbers of known Vibrionaceae siderophore biosynthetic proteins.

Siderophore Organism Siderophore biosynthesis protein accession numbers Ref

Aerobactin V. mimicus IucA(WP_000554936.1) IucB(WP_000033134.1) IucC(WP_000372426.1) IucD(WP_000401386.1) [53]

Bisucaberin A. salmonicida BibA(WP_012549025.1) BibB(WP_012549026.1) BibC(WP_012549027.1) [47]

Vibrioferrin V. parahaemolyticus PvsA(WP_015313675.1) PvsB(WP_015313676.1) PvsC(WP_015313677.1) PvsD(WP_015313678.1) PvsE

(WP_015313679.1)

[24]

Vibriobactin V. cholerae VibA (WP_000654285.1) VibB (WP_000997093.1) VibC(WP_000245175.1) VibD(WP_000874996.1) VibE

(WP_000205544.1) VibF (WP_000523394.1) VibH(WP_001880577.1)

[9,10]

Vanchrobactin Vibrio anguillarum DapH(WP_011154675.1) VabA(WP_064624836.1) VabB(WP_064624831.1) VabC(WP_043004165.1) VabE

(WP_019281788.1) VabF (WP_019281791.1) VabH (WP_019281793.1)

[41]

Piscibactin P. damselae subsp.

piscicida
DapH (AKQ52526.1) Irp1(AKQ52532.1) Irp2(AKQ52531.1) Irp3(AKQ52533.1) Irp4(AKQ52534.1) Irp5

(AKQ52536.1)

[37]

Anguibactin V. anguillarum AngA(WP_013857267.1) AngB(WP_013857270.1) AngC(WP_043004165.1) AngE(WP_013857269.1) AngB/G

(WP_011154672.1) AngM(WP_011154633.1) AngT(WP_011154640.1) AngH(WP_011154645.1) AngR

(WP_011154639.1) AngN(WP_011154642.1) AngU(WP_011154641.1) AngD(WP_011154670.1)

[40]

Vulnibactin V. vulnificus VV2_0830(WP_011081748.1) VV2_0831(AAO07755.1) VV2_0834(WP_011081751.1) VV2_0835

(WP_011081752.1) VV2_0836(WP_011081753.1) VV2_0838/VenB(WP_011081755.1) VV2_0839

(WP_011081756.1) VV2_0840(WP_011081757.1) VV2_0844(AAO07767.2)

[16]

Amphi-

enterobactin

V. campbellii AebG (WP_012127281.1) AebA(WP_041853223.1) AebC(WP_012127292.1) AebE(WP_012127293.1) AebB

(WP_012127294.1) AebF(WP_041853220.1)

[51]

https://doi.org/10.1371/journal.pone.0191860.t001
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may encode redundant enzymes. Such overlapping and redundancies of pathways were not

specifically considered in this work.

Mapping of siderophore systems onto a Vibrionaceae phylogenetic network

A Vibrionaceae host phylogeny was inferred based on sequence alignments of the genes ftsZ,

gap, gyrB,mreB, pyrH, recA, rpoA and topA, provided by Dr. Sawabe [8]. SplitsTree4 [56] was

used to concatenate the sequences to construct a multi locus sequence alignment (MLSA), and

to generate an unrooted phylogenetic network. Settings were set to ‘NeighbourNet’ method

with ‘uncorrected P’ distance. Presence/absence of siderophore biosynthesis and receptor

genes were mapped onto the phylogenetic network. Only complete siderophore biosynthesis

clusters are shown. The siderophore receptors were considered separately, and mapped onto

the same network. Species with positive hits, but not included in the MLSA dataset, were

placed onto the network based on the literature. “Unclassified” Vibrionaceae strains are not

shown on the network, but can be found in S1 and S2 Tables.

Phylogenetic analysis of siderophore biosynthesis systems and receptors

Amino acid sequences of proteins involved in siderophore biosynthesis were aligned using

ClustalW [57]. Proteins belonging to same clusters were concatenated using SplitsTree4 [56]

and exported to Fasta format, thus generating the final datasets. Next, Mega6 [58] was used to

generate Maximum Likelihood (ML) trees based on the individual siderophore biosynthesis

datasets. The robustness of nodes in the resulting phylogenies was tested by running Bootstrap

analyses, using the ML method (2000 replicates, JTT substitution model, uniform rates, and

‘Complete deletion’ in gap handling).

To address inheritance of the siderophore biosynthesis systems, we next constructed host

phylogenies of same taxa as those containing the siderophore systems. Host trees were based

on concatenated datasets of the same eight genes as described above. ML-trees were con-

structed using the Tamura-Nei model [59], and all gaps and missing data were removed. Phy-

logenies of the vibrioferrin (PvsABCDE), piscibactin (Irp123459), and aerobactin (IucABCD)

biosynthesis systems, and their corresponding MLSA host trees, were rooted on Aliivibrio

Table 2. RefSeq accession numbers of known Vibrionaceae siderophore receptor proteins.

Organism Receptor Transport Ref

V. mimicus IutA (WP_000843157.1) Aerobactin [53]

A. salmonicida BitA (WP_012549028.1) Bisucaberin [47]

V. parahaemolyticus PvuA (WP_057620147.1) Vibrioferrin [25]

V. parahaemolyticus PeuA (WP_005479624.1) Enterobactin [27]

V. cholerae ViuA (WP_000279435.1) Vibriobactin

Fluvibactin

[11]

V. anguillarum FvtA (WP_019281795.1) Vanchrobactin [42]

V. anguillarum FatA (WP_011154638.1) Anguibactin [54]

V. cholerae VctA (WP_000350325.1) Enterobactin

Fluvibactin

[13]

V. cholerae IrgA (WP_000086048.1) Enterobactin

Fluvibactin

[13]

V. vulnificus VvuA (WP_015728225.1) Vulnibactin [17]

V. cholerae FhuA (WP_053043596.1) Ferrichrome [14]

V. furnissii DesA (WP_004725209.1) Deferoxamine B [55]

P. damselae subsp. Piscicida FrpA (AKQ52529.1) Piscibactin [37]

https://doi.org/10.1371/journal.pone.0191860.t002
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wodanis, Photobacterium profundum, and Grimontia hollisae, respectively. The phylogeny of

siderophore receptors was constructed essentially as described above. Briefly, amino acid

sequences of homologous receptor sequences were aligned using ClustalW, and Mega6 [58]

was then used to make ML-trees. Bootstrap analysis was done using the ML method, 2000

pseudoreplicates, the JTT model, uniform rates, and complete deletion of gaps. Corresponding

MLSA trees were constructed as described for the cluster. The receptor phylogenies were com-

pared to host trees, which were constructed as described above.

Results and discussion

Compilation of siderophore biosynthesis gene cluster sequences from

Vibrionaceae
In this work, we set out to search both in the literature and the global sequence databases, to

identify gene clusters for biosynthesis of siderophores in Vibrionaceae, and compile and visu-

alize the result in a simple and comprehensible manner. See Materials and methods for

details on search criteria. Fig 1 and Table 1 summarize our findings. Based on the literature

we identified nine siderophore biosynthesis gene clusters responsible for producing aerobac-

tin, bisucaberin, vibrioferrin, vibriobactin, vanchrobactin, piscibactin, anguibactin, amphi-

enterobactin and vulnibactin. Fig 1 shows that genes belonging to the individual siderophore

biosynthetic pathways are typically found clustered “bumper-to-bumper” on the chromo-

some, or as in V. anguillarum, on a plasmid. Pathways for hydroxamate or carboxylate type

siderophores are encoded by 3–5 genes, all encoded on the same DNA strand, whereas cate-

chol or mixed siderophores pathways are typically encoded by 6–11 genes, including one or

more non-ribosomal peptide synthase (NRPS) gene(s), located on both strands and not nec-

essarily in immediate proximity to each other. The synteny and general organization of the

latter siderophore biosynthetic gene cluster types therefore appear more complex. Other

siderophores are known to be produced by Vibrionaceae representatives. However, even

though their structures are known, their biosynthesis gene clusters have not been conclu-

sively identified in Vibrionaceae, and they have therefore been omitted from Fig 1. Examples

are shown in S1 Fig, e.g., V. fluvialis and Vibrio nigripulchritudo produce the catechol sidero-

phores fluvibactin and nigribactin, respectively [60,61]. Also, Vibrio isolates are known to

produce trivanchrobactin (V. campbellii DS40M4; [62]), ochrobactins (V. sp. DS40M5; [63])

and desferroxamines (V. sp. BLI-41; [64]). In V. campbellii DS40M4 vanchrobactin and tri-

vanchrobactin are produced from the same biosynthesis gene cluster, but in the distinguish-

ing determinant is unknown[52].

Next, we used the known Vibrionaceae amino acids sequences (see Fig 1A and 1B) as que-

ries in BLASTp searches to identify homologous siderophore gene clusters in all available

Vibrionaceae genomes in the non-redundant protein sequences database. Threshold values

were set to�80% coverage and�50% identity. Only complete siderophore biosynthesis clus-

ters were kept (i.e., all genes needed for biosynthesis must be present). Our search identified 81

biosynthetic clusters in total, distributed among 45 species and 4 genera, and 16 unclassified

Vibrionaceae strains (i.e., Vibrio sp.) (see S1 Table for details). The majority of species can

potentially produce 1–3 of known Vibrionaceae siderophores, with zero being the minimum

and four the maximum.

Bacteria must encode and express siderophore receptors on their surface in order to take

up and utilize siderophore-Fe3+ complexes. It is therefore of equal importance to identify and

map the existence of siderophore-associated receptors. In a similar approach as described

above, we identified and used siderophore receptor sequences in BLASTp searches. (Table 2).

The receptor searches identified 410 siderophore receptors in 89 classified Vibrionaceae species
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(and 49 unclassified Vibrionaceae strains), representing 5 genera (when using the same cut-off

values as described above). The complete list of identified siderophore receptors is presented

in S2 Table. We found homologs of known Vibrionaceae siderophore receptors in almost all

Vibrionaceae species. Twenty-nine of the representatives in the split network do not encode

homologs of known Vibrionaceae siderophore biosynthesis clusters or receptor. Of the 29,

only 14 are fully sequenced, and the maximum number of different siderophore receptors

found in a single genome was eight (i.e., in V. alginolyticus).
In summary, we searched the literature for known siderophore gene clusters from the

Vibrionaceae family and identified nine types. The corresponding amino acids sequences were

Fig 1. Organization of Vibrionaceae siderophore biosynthesis clusters and schematic structure of the corresponding siderophores. (A) Vibrionaceae hydroxamate

and carboxylate and siderophore biosynthesis clusters. (B) Vibrionaceae catechol and mixed catechol/hydroxamate siderophore biosynthesis cluster. (C) Schematic 2D

structure representation of Vibrionaceae siderophores with known biosynthesis gene clusters.

https://doi.org/10.1371/journal.pone.0191860.g001
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next used as queries in BLASTp to identify homologs. A total of 81 biosynthetic clusters dis-

tributed among 45 species and 16 unclassified Vibrionaceae strains were identified. Using a

similar approach, we identified 409 siderophore receptor genes in 89 Vibrionaceae species and

49 unclassified Vibrionaceae strains.

Distribution of siderophore biosynthesis clusters and siderophore

receptors in the Vibrionaceae family

Fig 2 shows the distribution of siderophore biosynthetic systems and receptor genes on a phylo-

genetic network containing 86 representative species and unclassified strains from Vibrionaceae.

Fig 2. Distribution of homologs of known Vibrionaceae siderophore biosynthesis clusters and receptors mapped to a phylogeny. The phylogenetic split network is

based on a dataset from Sawabe and co-workers [8], and consists of the genes ftsZ, gap, gyrB,mreB, pyrH, recA, rpoA and topA. The tree was constructed using

SplitsTree4 to concatenate the individual gene alignments, and settings for network were uncorrected P and NeighborNet [56]. Branch lengths are to scale and species

located outside grey arches were not included in the MLSA files and have been placed according to literature [71–86].

https://doi.org/10.1371/journal.pone.0191860.g002
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Overall, the figure shows that the vast majority of species are associated with at least one type of

siderophore system. We have, however not examined to what extent each of the siderophore sys-

tems are present in each species. In other words, individual isolates may or may not contain

siderophore systems associated with that species, as indicated on the splits network. Moreover,

some siderophore systems are restricted to a very narrow phylogenetic lineage, whereas others

have a wide but sporadic presence. For example, the aerobactin, vanchrobactin and piscibactin

biosynthesis clusters are scattered across multiple phylogenetic lineages, and anguibactin are

found in V. anguillarum as well as in the Splendius and Harveyi clades. Similarly, vibrioferrin is

found in A. wodanis and Vibrio navarrensis, and inside the Harveyi and Splendidus clades. A

scattered distribution can potentially be explained (at least in part) by spread of siderophore

clusters via plasmids. For example, serotype O1 strains of V. anguillarum 775 carries both chro-

mosomal (Chr I) and plasmid-born (pJM1) genes for anguibactin biosynthesis, most of them on

the plasmid (i.e., angB, angD, angCE, angN, angR, angM, angH, angT, angU) [40,65,66]. The

plasmid-carried genes have been hypothesized to spread e.g., into Vibrio harveyi, or vice versa

(see [67]). Similarly, a piscibactin biosynthesis cluster is located on a conjugative plasmid

(pPHDP70) of a highly virulent P. damselae subsp. piscicida DI21 [50]. In experiments, Osario

et al. showed that pPHDP70 can be conjugally transferred into multiple Gammaproteobacteria,

including E. coli, Aeromonas salmonicida, and V. anguillarum. Moreover, the authors showed

that a V. alginolyticus strain acquired the ability to both synthesize and utilize piscibactin after

receiving pPHDP70 by conjugation.

To clarify if other Vibrionaceae representatives carry siderophore-encoding plasmids, we

compiled all available plasmid sequences from the EBI Genomes Plasmid database (https://

www.ebi.ac.uk/genomes/plasmid.html). These sequences were (i) submitted to antiSMASH

ver. 4.0.2, and (ii) used as BLAST database in a tBLASTn search against all sequences from

Table 1 as queries. The pPHDP70 plasmid sequence (described above) was missing from the

EBI database and was manually added to the BLAST database file. Both methods identified the

two plasmid-encoded systems in V. anguillarum and P. damselae subsp. piscicida as described

above, but failed to find previously unrecognized plasmid-encoded siderophore gene clusters

in Vibrionaceae.
To summarize, based on the current wide, but sporadic distribution of e.g., anguibactin

and piscibactin, in addition to several lines of experimental evidence, it is likely that plasmids

have contributed to transfers of siderophore gene clusters into new species, and thus likely

contributed to the emergence of new pathogens due to increased capability to acquire iron

from their surroundings. Extra care should therefore be taken, when comparing plasmid-

borne and chromosomal-encoded siderophore gene clusters since their evolutionary histories

can be complicated.

In contrast to the wide, but sporadic distribution described above, bisucaberin is narrowly

distributed into one lineage, i.e., in three species from the Fischeri clade. This finding suggests

that bisucaberin was introduced into Vibrionaceae through horizontal gene transfer into the

most recent common ancestor of Allivibrio. Similarly, amphi-enterobactin is restricted to the

Harveyi clade, vulnibactin is restricted to V. vulnificus, and vibriobactin is only found in the

closely related species Vibrio albensis and V. cholerae. Interestingly, no siderophore biosynthe-

sis clusters were identified in the Halioticoli clade.

In addition to showing presence/absence of siderophore biosynthetic gene clusters, Fig 2

also displays how the respective siderophore receptors are distributed in Vibrionaceae. Some

main findings are that (i) the presence of biosynthetic genes for individual siderophores is

accompanied by the presence of the corresponding receptor, (ii) the number of different types

of receptors typically exceeds (and in some cases by far) the number of biosynthetic cluster

types, and (iii) similar to the biosynthetic clusters the receptors are widely distributed in
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Vibrionaceae. E.g., iutA (aerobactin receptor gene) and desA (deferroxamine B receptor gene)

are found in nearly all clades. Also, the receptor genes viuA (for vibriobactin), vuuA (for vulni-

bactin), pvuA (for vibrioferrin), vctA, irgA and peuA (all three for enterobactin), and finally

fhuA (for ferrichrome) are widely distributed. In contrast, other receptors are more narrowly

distributed, e.g., the bisucaberin receptor gene bitA, which is restricted to the Fischeri clade,

more specifically to the same three Aliivibrio species that contain corresponding bisucaberin

biosynthesis clusters.

Interestingly, (iv) known pathogens are conspicuously rich in siderophore receptors. E.g.,

V. cholerae, V. alginolyticus and V. parahaemolyticus encode seven, eight and five different

receptor types, respectively. It is tempting to speculate that this richness likely reflects the life-

style of these bacteria, where iron acquisition would be critical, especially during the initial

phases of infections. Also, having multiple siderophore receptors would make them efficient

“cheaters”, i.e., they can use siderophores produced by other species rather than from them-

selves. The receptors IrgA, VctA, FhuA, PeuA and DesA are found in many “cheaters”

throughout Vibrionaceae. Another explanation for the apparent richness in receptor types is

that these species have been characterized in more detail than environmental isolates, but at

least multiple known pathogens still encode a higher number of known siderophore receptor

types. It should however be noted that there are also examples of the opposite, i.e., very impor-

tant pathogens that are poor in siderophore systems. E.g., the genome of P. damselae subsp.

piscicida strain DI21encodes only one known siderophore system (piscibactin) (see Fig 2;

[68]). Regardless, the bacterium is known as the causative agent of photobacteriosis, a disease

that causes high mortality rates in outbreaks in fish farms worldwide (see [69]). According to a

tBLASTn search from this study, the P. damselae subsp. piscicida strain OT-51443 genome

[70] does not contain homologs of the piscibactin gene cluster found in strain DI21, or any

other know siderophore cluster (known from Vibrionaceae). The sister subspecies, P. damselae
subsp. damselae, also causes disease in a broader range of marine animals, and contains no

known siderophore systems. It is possible that the apparent lack of siderophore-based iron

uptake systems is compensated for by other systems, e.g., heme and/or hemoglobin uptake

systems.

Evolution of siderophore systems

To evaluate the evolutionary history of siderophore systems (biosynthesis and receptors) in

Vibrionaceae, and to better understand their present-day distribution, we concatenated the

protein sequences from the most abundant types of biosynthetic clusters separately, and

aligned the resulting sequences using ClustalW. Only species included in Fig 2 were investi-

gated. Maximum likelihood (ML) trees were generated from PvsABCDE (vibrioferrin),

Irp123459 (piscibactin) and IucABCD (aerobactin) datasets. Similarly, datasets and ML-tree

were constructed for siderophore receptors. The rationale for treating receptor sequences

separate from biosynthesis genes was that receptor genes are often located elsewhere in the

genome, and are much more widely distributed than the biosynthesis genes. ML-trees of the

concatenated biosynthesis proteins and receptors were juxtaposed a host phylogeny based on

same dataset as that used in Fig 2. Similar tree topologies (congruence) were interpreted as

same evolutionary trajectories (i.e., vertical evolution), whereas conflicting topologies would

suggest horizontal gene transfer events.

Fig 3 shows the genic organization and phylogeny of the piscibactin system. Nodes in the

trees are highly supported by 95–100% bootstrap values. Although there are some discrepan-

cies in the phylogenies, the overall tree topologies are very similar. Based on the criteria

described above the data thus suggest that the piscibactin biosynthesis pathway was introduced
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early into Vibrionaceae and then stably inherited in a few lineages, and lost from the majority

of lineages. Similarly, the overall topology for the proposed piscibactin receptor FrpA and the

corresponding host tree are in good overall agreement, except for one clear case of misplace-

ment, i.e., V. harveyi and Vibrio rotiferianus (Harveyi clade). Interestingly, these two species

only contain the receptor, and not the biosynthesis system. This strongly suggests one horizon-

tal gene transfer event of the FrpA receptor into the common ancestor of these two closely

related species.

Fig 3. Phylogeny of the piscibactin biosynthesis cluster and receptor within the Vibrionaceae family. (A) The

cluster organization of the biosynthesis cluster and the cognate receptor. (B) Host phylogeny on the left and piscibactin

biosynthesis system (Irp123459) phylogeny on the right. (C) Host phylogeny on the left and piscibactin receptor

(FrpA) phylogeny on the right. Asterisks denote species that do not encode the piscibactin biosynthesis system, i.e., the

FrpA homolog is an exogenous siderophore receptor. Evolutionary analyses were conducted in MEGA6 [58]. The host

trees were generated using the ML method and the TM model [59]. The siderophore biosynthesis cluster and receptor

trees were generated using the ML method and the JTT model [87]. Bootstrap values are shown at the nodes (JTT

model, 2000 replicates) [88]. Branch lengths are measured substitutions per site.

https://doi.org/10.1371/journal.pone.0191860.g003
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Fig 4. Phylogeny of the vibrioferrin biosynthesis cluster and receptor within the Vibrionaceae family. (A) The

cluster organization of the biosynthesis cluster and the cognate receptor. (B) Host phylogeny on the left and

vibrioferrin biosynthesis system (PvsABCDE) phylogeny on the right. (C) Host phylogeny on the left and vibrioferrin

receptor (PuvA) phylogeny on the right. Asterisks denote species that do not encode the vibrioferrin biosynthesis

system, i.e., the PuvA homolog is an exogenous siderophore receptor. Evolutionary analyses were conducted in
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Fig 4 shows the genic organization and phylogeny of the vibrioferrin system. Intriguingly,

the result is strikingly similar to that of the piscibactin system. The overall tree topologies for

the biosynthesis system and the host phylogenies are very similar, except that V. harveyi and V.

rotiferianus are clearly misplaced (strongly supported by high bootstrap values). The evolution

of the associated receptor (PvuA) appears to be more influenced by horizontal gene transfer

events. The PvuA and host trees are mostly congruent within the Splendidus clade, whereas the

remaining branches have multiple clear, highly supported, misplacements in the PvuA tree

(compared to the host tree). Therefore, the evolution of the biosynthesis and receptor genes is,

in part, different with partly vertical and horizontal gene transfers.

Fig 5 shows the genic organization and phylogeny of the aerobactin system. Nodes in the

host and IucABCD trees are in general strongly supported by high bootstrap values (Fig 5B).

In line with result from piscibactin and vibrioferrin phylogenies, comparison of the host and

aerobactin tree topologies show both congruencies and conflicts, which suggests a mix of sta-

ble vertical inheritance, and cases of horizontal gene transfers. The evolution of its receptor

(IutA) is however, much more complicated (Fig 5C). First, many nodes in the IutA tree are

poorly supported. For clarity, the presented IutA tree is therefore a cladogram in which all

nodes with less than 60% bootstrap support have been collapsed (60% majority-rule). Regard-

less, the host-IutA tree comparison reveal a high proportion of well supported conflicts, some

of which are highlighted in the figure. Peculiarly, even representatives of closely related repre-

sentatives from the Harveyi clade are found scattered at three different locations in the IutA

tree, which suggest rampant spread of IutA within Vibrionaceae. Alternatively, the seemingly

disordered IutA tree is a result of some artefact in our analysis. The IutA sequences were

retrieved from protein databases using a conservative threshold setting (i.e., 50% identity/ 80%

coverage), which suggest that the sequences are indeed homologs. Errors could potentially

come from wrong naming of species in the databases, but even some errors in naming cannot

explain the huge number of “misplacements” in the IutA tree. We therefore conclude that the

IutA receptor has a complicated evolutionary history in Vibrionaceae, and has likely been

introduced into the family several times, and/or been subjected to multiple horizontal gene

transfers between Vibrionaceae representatives.

The narrow distribution of the bisucaberin cluster (in the Fischeri clade) suggests a different

evolutionary history, i.e., a recent insertion event into a common ancestor of A. salmonicida,

A. wodanis and Aliivibrio logei. Until recently, the bisucaberin biosynthesis genes (bibABC)

were found exclusively in A. salmonicida (within Vibrionaceae) [48,89]. Here, the system is

located on a genomic location (island) flanked by transposable elements. Our current BLASTp

searches show that similar clusters are also found in A. logei and A. wodanis, together with the

corresponding receptor gene bitA. So, where does this system originate from? We have in vain

tried to identify the donor organism by running BLASTp and PSI-BLAST searches. The best

database hits point to Shewanella as a possible source (BibA and BibB has 57% and 60% iden-

tity over 98% and 97% coverage, respectively, to S. algae. BibC 60% identity over 74% coverage

to Shewanella baltica and Shewanella putrefaciens), but this needs to be addressed again as

more genomic data from environmental marine bacterial strains are added to the databases.

In summary, the present-day distribution of siderophore systems in Vibrionaceae appears

to be, perhaps as can be expected, a result of a combination of events: both old and new gene

acquisitions, extensive gene loss, and both vertical and horizontal gene transfers.

MEGA6 [58]. The host trees were generated using the ML method and the TM model [59]. The siderophore

biosynthesis cluster and receptor trees were generated using the ML method and the JTT model [87]. Bootstrap values

are shown at the nodes (JTT model, 2000 replicates) [88]. Branch lengths are measured substitutions per site.

https://doi.org/10.1371/journal.pone.0191860.g004
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Fig 5. Phylogeny of the aerobactin biosynthesis cluster and receptor within the Vibrionaceae family. (A) The

cluster organization of the biosynthesis cluster and the cognate receptor. (B) Host phylogeny on the left and aerobactin

system (IucABCD) phylogeny on the right. (C) Host phylogeny on the left and aerobactin receptor (IutA) phylogeny

on the right. Asterisks denote species that do not encode the aerobactin biosynthesis system, i.e., the IutA homolog is

an exogenous siderophore receptor. Evolutionary analyses were conducted in MEGA6 [58]. The host trees were
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