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A RT I C L E

Voltage-dependent Gating Rearrangements in the Intracellular T1–T1 
Interface of a K+ Channel

Guangyu Wang and Manuel Covarrubias

Department of Pathology, Anatomy, and Cell Biology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA 19107

The intracellular tetramerization domain (T1) of most eukaryotic voltage-gated potassium channels (Kv channels) 
exists as a “hanging gondola” below the transmembrane regions that directly control activation gating via the elec-
tromechanical coupling between the S4 voltage sensor and the main S6 gate. However, much less is known about 
the putative contribution of the T1 domain to Kv channel gating. This possibility is mechanistically intriguing be-
cause the T1–S1 linker connects the T1 domain to the voltage-sensing domain. Previously, we demonstrated that 
thiol-specifi c reagents inhibit Kv4.1 channels by reacting in a state-dependent manner with native Zn2+ site thiolate 
groups in the T1–T1 interface; therefore, we concluded that the T1–T1 interface is functionally active and not 
protected by Zn2+ (Wang, G., M. Shahidullah, C.A. Rocha, C. Strang, P.J. Pfaffi nger, and M. Covarrubias. 2005. 
J. Gen. Physiol. 126:55–69). Here, we co-expressed Kv4.1 channels and auxiliary subunits (KChIP-1 and DPPX-S) to 
investigate the state and voltage dependence of the accessibility of MTSET to the three interfacial cysteines in the 
T1 domain. The results showed that the average MTSET modifi cation rate constant (kMTSET) is dramatically 
 enhanced in the activated state relative to the resting and inactivated states (�260- and �47-fold, respectively). 
Crucially, under three separate conditions that produce distinct activation profi les, kMTSET is steeply voltage dependent 
in a manner that is precisely correlated with the peak conductance–voltage relations. These observations strongly 
suggest that Kv4 channel gating is tightly coupled to voltage-dependent accessibility changes of native T1 cysteines 
in the intersubunit Zn2+ site. Furthermore, cross-linking of cysteine pairs across the T1–T1 interface induced 
 substantial inhibition of the channel, which supports the functionally dynamic role of T1 in channel gating. 
 Therefore, we conclude that the complex voltage-dependent gating rearrangements of eukaryotic Kv channels are 
not limited to the membrane-spanning core but must include the intracellular T1–T1 interface. Oxidative stress in 
 excitable tissues may perturb this interface to modulate Kv4 channel function.

I N T R O D U C T I O N

Vital electrophysiological processes in the brain and 

heart depend on the precise orchestration of intra-

molecular motions in voltage-dependent K+ channels (Kv 

channels). Current models of Kv channel activation gat-

ing propose that the opening of the main gate namely 

depends on the electromechanical coupling between 

segments S4 (voltage sensor) and S6 (activation gate), 

which are membrane-spanning regions of the Kv sub-

unit (Yellen, 1998; Horn, 2000; Lu et al., 2002; Tristani-

Firouzi et al., 2002; Bezanilla and Perozo, 2003; Long 

et al., 2005b). However, recent work has suggested the 

contribution of the intracellular NH2-terminal tetra-

merization domain (T1) to activation gating (Cushman 

et al., 2000; Minor et al., 2000; Robinson and Deutsch, 

2005; Wang et al., 2005), but there is no conclusive 

 evidence for conformational coupling between the T1 

domain and the voltage sensor.

The T1 domain of most eukaryotic Kv channels is 

responsible for the subfamily-specifi c assembly of Kv 

channel subunits (Li et al., 1992; Xu et al., 1995). It 

sits just below the voltage-sensing and pore-forming 

domains of the channel (Kobertz et al., 2000; Long 

et al., 2005a; Kim et al., 2004), and is connected to the 

transmembrane segments through the T1–S1 linker. 

Previous structure–function analyses of the Kv1 T1–T1 

interface showed that the mutational perturbation 

of certain polar residues signifi cantly affects voltage-

dependent gating (Cushman et al., 2000; Minor et al., 

2000; Robinson and Deutsch, 2005). Namely, these 

studies demonstrated that the mutations cause dra-

matic shifts in the voltage dependence of channel 

 activation. For instance, the T46V mutation in the rat 

Kv1.2 channel stabilizes the closed state by destroying a 

buried hydrogen bond network between T46 and D79 

in the T1–T1 interface without signifi cantly changing 

the tertiary structure of the protein (Minor et al., 2000). 

In contrast, another T1 mutation (N136A) in the Aplysia

Kv1.1 destabilizes the closed state and changes the ter-

tiary structure near the central axis of the T1 tetramer 

(Cushman et al., 2000).

Recent crystallographic studies of the isolated Kv3 

and Kv4 T1 domains revealed that the tetrameric 
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four-layer scaffold includes four C3H1 high-affi nity 

Zn2+ sites in the T1–T1 intersubunit interface (Bixby 

et al., 1999; Nanao et al., 2003). Surprisingly, however, 

our recent studies showed that the Zn2+ site thiolate 

groups in Kv4 channels are not protected by Zn2+ 

against chemical modifi cation and that the T1–T1 in-

tersubunit interface may play a role in channel gating 

(Wang et al., 2005). We have hypothesized that the 

L4 layer at the membrane side of the T1 domain and 

the S6 gate may undergo conformational changes as-

sociated with voltage-dependent activation. To test 

the coupling between a putative T1 conformational 

change and voltage-dependent activation gating, we 

probed here the state-dependent accessibility changes 

of the unprotected Zn2+ site thiolate groups. Using 

thiol-specifi c reagents and patch-clamp electrophysi-

ology combined with a concentration-clamp method, 

our experiments demonstrated a tight functional cou-

pling between voltage-dependent gating and an ap-

parent conformational change in the T1–T1 interface 

of the Kv4.1 channel. Moreover, cross-linking experi-

ments supported the idea of a functionally critical and 

dynamic T1–T1 interface that contributes to channel 

gating. Altogether, these observations suggest strongly 

that the complex voltage-dependent gating rearrange-

ments in eukaryotic Kv channels include coupled dis-

placements involving the intracellular T1 domain. 

Therefore, the activation gating mechanism extends 

beyond the membrane-spanning core of the pore-

forming subunits.

M AT E R I A L S  A N D  M E T H O D S

Molecular Biology
Kv4.1 (mouse), DPPX-S (rat), and KChIP1 (rat) were maintained 
in pBluescript II KS, pSG5 (Stratagene), and a modifi ed pBlue-
script vector, pBJ/KSM, respectively. DPPX-S and KChIP1 are gifts 
from B. Rudy (New York University, New York, NY) and Mark 
Bowlby (Wyeth-Ayerst Research, Princeton, NJ), respectively. 
Eight Kv4.1 mutants were used in this study (Table I and Fig. 3). 
All mutations were created using the QuickChange site-directed 
mutagenesis (Stratagene) and confi rmed by automated sequenc-
ing (Kimnel Cancer Institute of Thomas Jefferson University). 
The capped cRNAs for expression in Xenopus laevis oocytes were 
synthesized using the mMessage mMachine kit for in vitro tran-
scription (Ambion).

Heterologous Expression and Electrophysiology
Kv4.1 wild-type and mutant channels were coexpressed along with 
two auxiliary subunits (KChIP1 and DPPX-S) as described previ-
ously (Wang et al., 2005). The expression of the Kv4.1 ternary 
complex was necessary because mutations in the putative Zn2+ 
site yielded nonfunctional channels or inhibited expression pro-
foundly. Our previous paper and an earlier study from the Pfaffi n-
ger laboratory showed that the apparently lethal phenotype of 
Zn2+ site mutants can be corrected by coexpression of the chan-
nels with KChIPs (Kunjilwar et al., 2004; Wang et al., 2005); and 
we have found that DPPX-S boosts the expression of the channels 
even further (Wang et al., 2005), which made possible the record-
ings from inside-out macropatches.

All currents were recorded using an Axopatch 200A ampli-
fi er (Axon Instruments). To probe the gating state-dependent 
accessibility of the thiolate groups of the T1 domain, the mem-
brane-impermeant thiol-specifi c reagent MTSET (2-trimeth-
ylammonium-ethyl-methane-thiosulfonate bromide; Toronto 
Chemicals) (200–400 μM) was applied to the intracellular side 
of inside-out macropatches at various membrane potentials (see 
online supplemental material, available at http://www.jgp.org/
cgi/content/full/jgp.200509442/DC1). The composition of the 
solution in the patch electrodes was (in mM) 96 NaCl, 2 KCl, 1.8 
CaCl2, 1 MgCl2, and 5 HEPES (pH 7.4, adjusted with NaOH), and 
that of the bath solution was (in mM) 98 KCl, 0.5 MgCl2, 1 EGTA, 
10 HEPES (pH 7.2, adjusted with KOH). The tip resistance of 
the borosilicate patch pipette was typically 1–2 MΩ. An online 
P/4 procedure was applied to subtract the passive leak current 
and capacitive transients. The currents were fi ltered at 1–5 kHz 
and digitized at 5–100 kHz. All recordings were obtained at room 
temperature (23 ± 1°C).

For disulfi de cross-linking experiments, we used a mild oxidiz-
ing solution containing 50 μM CuSO4 and 200 μM 1,10 o-phen-
anthroline (Cu/P) (Liu et al., 1996). To promote the formation 
of the disulfi de bond between various cysteine pairs in the T1–T1 
interface, the cytoplasmic side of the inside-out patches was 
treated for �5 min with fresh Cu/P. After Cu/P washout, 10 mM 
 dithiothretiol (DTT) was used to reduce the disulfi de bond (pH 8.6) 
(Wang et al., 2005), and 400 μM MTSET was employed to test 
for the presence of free thiolate groups. All chemicals for these 
 experiments were purchased from Sigma-Aldrich.

Data Acquisition and Analysis
Voltage-clamp protocols and data acquisition were controlled by 
a Pentium-III class desktop computer interfaced to a 12 bit A/D 
converter (Digidata 1200 using Clampex 8.0; Axon Instruments). 
Clampfi t 8.0 (Axon Instruments) and Origin 7.0 (Origin Lab 
Inc.) were used for data reduction and analysis. To determine the 
MTSET modifi cation rate constant, the peak currents were plot-
ted as a function of the cumulative time of exposure to MTSET. 
The time constant (τ) was computed from the best-fi t exponential 
describing the time course of inhibition by MTSET, and the sec-
ond-order rate constant kMTSET was determined from this relation-
ship: kMTSET = (1/τ [MTSET]). Data from at least three patches 
for each measurement are presented as mean ± SEM. The Stu-
dent’s t test (unpaired) was used to evaluate statistically signifi cant 
differences between two groups of data.

Sources of Error
To test whether or not a mutant was inhibited by MTSET, 
we used continuous intracellular application of the reagent 
while the current was evoked by a 250-ms step depolarization to 
+80 mV from a holding potential of −100 mV (3 s, start-to-start) 
(Wang et al., 2005). The rate constants determined from these 
experiments were slow and similar to those obtained from mea-
surements in the resting state (Figs. 1 and 2). This similarity is 
expected because even during continuous application, the chan-
nels spend most of the time in the resting state at −100 mV. 
In general, however, the measurement of very slow MTSET modi-
fi cation rate constants (<50 M−1s−1) in the resting state was less 
accurate. This diffi culty resulted from the limited survival of 
some inside-out patches, which did not always allow the modifi -
cation to reach steady state. Under continuous application, 
steady state was reached typically in �4–5 min. To minimize the 
error, the constant term of the exponential function (see above) 
was fi xed by assuming the value obtained from those experi-
ments that were long and stable enough to reach steady-state. 
For wild-type and the mutants C11xA, C12xA, and C13xA, the 
fractional steady-state level of the inhibition by MTSET ranged 
approximately between 0.1 and 0.3 (Wang et al., 2005). The slow 



 Wang and Covarrubias 393

rate constants in the resting state were not corrected for the pos-
sible loss of some reagent due to hydrolysis during the applica-
tion period. At neutral pH, the half-life of MTSET is 10–11 min 
(Karlin and Akabas, 1998).

Online Supplemental Material
Rapid reagent application and verifi cation of the switching and 
exchange processes were performed as described in the online 
supplemental materials (available at http://www.jgp.org/cgi/
content/full/jgp.200509442/DC1).

R E S U LT S

Kv4.1 Cysteines in the T1 Interfacial Zn2+ Site Undergo 
State-dependent Modifi cation by MTSET in the Presence 
of Auxiliary Subunits
To investigate the possible functional coupling between 

the transmembrane activation machinery and the T1 

domain, all but three intracellular Zn2+ site cysteines in 

the T1–T1 interface of the Kv4.1-α subunit were mu-

tated to alanines (Kv4.1-C11xA) (Table I); and the wild-

type or mutant Kv4.1-α subunit was coexpressed with 

the Kv4 auxiliary subunits KChIP1 and DPPX-S (ternary 

complex) as shown previously (Wang et al., 2005).  The 

functional impact of the remaining cysteines was probed 

upon chemical modifi cation with a thiol-specifi c re-

agent. Fig. 1 shows that internal application of the mem-

brane-impermeant MTSET irreversibly inhibits ternary 

complexes of wild-type or C11xA channels in the rest-

ing, activated, or inactivated state.  In contrast, and re-

gardless of the gating state of the channel, MTSET had 

no effect on the C14xA mutant, which has no remain-

ing intracellular cysteines. More signifi cantly, the rate of 

the inhibition of ternary C11xA was strongly gating state 

dependent (Fig. 2), which is in agreement with previ-

ously published results obtained in the absence of auxil-

iary subunits (Wang et al., 2005).  When MTSET was 

applied to channels in the resting state (240 ms, at −120 mV), 

the time course of the inhibition was very slow 

(kMTSET = 0.038 mM−1s−1). In sharp contrast, when a 7-ms 

pulse of MTSET was applied immediately following 

current activation by a strong step depolarization to 

+80 mV, the rate constant of inhibition was �475-fold 

faster (kMTSET = 19 mM−1s−1). When a 120-ms pulse of 

MTSET was applied at the end of a long step depolariza-

tion to +80 mV to test the inactivated state (Fig. 1), the 

rate constant of inhibition by MTSET was intermediate 

(kMTSET = 0.33 mM−1s−1) between those for resting and 

activated channels. These observations confi rm that the 

chemical modifi cation of at least one thiolate group 

in the T1 interfacial Zn2+ site causes inhibition of the 

Kv4.1 channel, implying that these intersubunit inter-

faces play a critical functional role (Wang et al., 2005). 

Importantly, the state-dependent cysteine accessibility 

rate constants are correlated with the main functional 

states of the Kv4.1 channel. Thus, a dynamic T1–T1 in-

terface could adopt three distinct conformations in 

resting, activated, and inactivated channels because the 

targeted intracellular cysteines in the C11xA mutant are 

all located in the interfacial Zn2+ site. These conforma-

tional correlatives are not induced by the eleven 

Cys→Ala mutations or the presence of auxiliary subunits 

because we observed similar state dependence and rate 

constants with wild-type and C11xA in the absence or 

presence of KChIP1 and DPPX-S (Table I).

To test whether the integrity of the T1 Zn2+ site and 

the number of cysteines in this site are important in 

TA B L E  I

Rate Constants of Kv4.1 Channel Modifi cation by MTSET (mM−1s−1)

Kv4.1 channel 110 131 132 Cys/α subunit Resting state Inactivated state Activated state

Wild-type (WT) C C C 14 0.079 ± 0.019 

n = 6

0.291 ± 0.044 

n = 3

30.8 ± 4.2 

n = 5

C11xA C C C 3 0.092 ± 0.007 

n = 5

0.330 ± 0.053 

n = 4

21.2 ± 2.8 

n = 5

WT+DPPX+KCHIP1 C C C 14 0.059 ± 0.005 

n = 4

0.271 ± 0.027 

n = 4

35.3 ± 7.9 

n = 4

C11xA+DPPX+KCHIP1 C C C 3 0.038 ± 0.003 

n = 3

0.328 ± 0.028 

n = 6

19.0 ± 3.2 

n = 6

C12xA+DPPX+KCHIP1 A C C 2 0.078 ± 0.004 

b 
 

n = 5

0.280 ± 0.034 

n = 5

13.8 ± 2.0 

n = 5

C13xA+DPPX+KCHIP1 C A A 1 0.050 ± 0.007 

n = 6

0.212 ± 0.037 

c 
 

n = 5

6.81 ± 0.73 

a 
 

n = 3

C14xA+DPPX+KCHIP1 A A A 0 No effect 

n = 3

No effect 

n = 4

No effect 

n = 4

All mutants of Kv4.1 channel contain the following additional substitutions: C[105, 257, 322, 392, 467, 484, 490, 532, 533, 589, 642]A. The tabulated Cys/α 

subunit are intracellular.

 

a
 Difference against corresponding C11xA and C12xA is statistically signifi cant at P < 0.01.

 

b
 Difference against corresponding C11xA is statistically signifi cant at P < 0.01.

 

c
 Difference against corresponding C11xA is statistically signifi cant at P = 0.03.
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 determining the magnitude of kMTSET or its state depen-

dence, we examined the ternary complexes of C12xA 

and C13xA. The coexpression of these mutants with 

KChIP1 and DPPX-S is necessary to rescue the lethal 

 phenotype induced by the mutations of the Zn2+ cyste-

ines (Wang et al., 2005; Kunjilwar et al., 2004) (MATE-

RIALS AND METHODS). C12xA has two intracellular 

cysteines (C131 and C132) in the Zn2+ site, which can-

not form an intersubunit metal bridge but an intrasub-

unit metal bridge with H104 (Nanao et al., 2003). By 

contrast, C13xA with only one intracellular cysteine in 

the Zn2+ site (C110) could form a relatively weak metal 

bridge between C110 and H104 (Nanao et al., 2003). 

Inhibition of both mutant channels by MTSET was 

state dependent in a manner qualitatively similar to 

that observed with C11xA (Table I). From the three 

mutants, C11xA, C12xA, and C13xA, the average dif-

ference between the kMTSET of the activated and resting 

states was �260-fold, and between activated and inacti-

vated states was �47-fold. Therefore, the integrity of 

the Zn2+ site is not necessary to preserve the state de-

pendence of kMTSET. Moreover, kMTSET of the activated 

state increased proportionally with the number of cys-

teines in the T1 Zn2+ site (Fig. 3 and Fig. 6, A and B).  

Our previous studies showed that Kv4.1 mutants with 

their Zn2+ site either intact (C11xA) or disrupted 

(C12xA, C13xA, and C14xA) exhibit similar gating 

properties under the same condition (Wang et al., 

2005). Thus, the relationship between kMTSET and the 

number of Zn2+ site cysteines is unlikely to result from 

global channel distortions caused by the mutations. 

 Instead, kMTSET is simply a function of the number of 

potential targets/subunit, with the most signifi cant 

 increase occurring when this number increases from 

1/subunit to 2 or 3/subunit (Table I, Fig. 3, and Fig. 

6, A and B).

Tight Correlation between the Chemical Modifi cation 
of the T1–T1 interface and Voltage-dependent Activation
If the state dependence of kMTSET originates from the 

voltage-dependent activation process of the Kv4.1 chan-

nel, we expect a close correlation between the peak 

conductance–voltage (GPEAK-Vm) and the kMTSET –

 voltage (kMTSET -Vm) relations. To test this hypothesis, 

we examined the inhibition of the ternary C11xA 

complex by MTSET at various membrane potentials 

between −120 and +120 mV. We conducted these ex-

periments as  described above for the activated state 

(Fig. 1, middle) except for voltages between −80 and 

−50 mV, which are not suffi ciently depolarized to in-

duce signifi cant current activation. In this voltage 

range, an 80-ms MTSET pulse was fi rst applied during 

a 100-ms step depolarization to −80 or −50 mV; the 

membrane potential was then hyperpolarized for 240 

ms at −100 mV to remove any inactivation induced by 

the fi rst pulse, and lastly a 4-ms test pulse to +80 mV 

was applied to monitor the available current. Fig. 4 

shows that inhibition by MTSET became more rapid 

with membrane depolarization and was well described 

as an exponential decay.  Thus, kMTSET is voltage de-

pendent. The best-fi t fourth-order Boltzmann func-

tion estimated a maximal kMTSET on the order of 21 

mM−1s−1 (Fig. 5 B).  Furthermore, there is a close cor-

relation between the GPEAK-Vm and kMTSET -Vm rela-

tions (Fig. 5 B), which suggests that the conformational 

change in the T1–T1 interface faithfully mirrors acti-

vation gating of the Kv4 channel. In that case, any fac-

tor that shifts the voltage dependence of activation 

gating should shift the voltage dependence of kMTSET 

as well. We tested this prediction in two ways: (1) co-

expression of C11xA with DPPX-S only to induce a 

leftward shift of the GPEAK-Vm relation (unpublished 

data); and (2) exposure of the ternary complex of 

Figure 1. The T1 zinc bind-
ing site is accessible to inter-
nal MTSET in three distinct 
states. All channels were co-
expressed with DPPX-S and 
KChIP-1. Wild-type (WT), 
C11xA, and C14xA currents 
from inside-out patches be-
fore (black) and after (red) 
the application of internal 
MTSET in the resting (left), 
activated (center), or inacti-
vated (right) states. The units 
of current and time are pA 
and ms, respectively. Top, 
synchronized application of 
voltage steps (black line) and 
MTSET concentration jumps 
(red bar). The MTSET con-
centration was 200 μM for 

the activated state and 400 μM for the resting and inactivated states. The inhibition by MTSET during the test pulse is not apparent 
because the chemical modifi cation and the resulting inhibition were slow relative to channel gating.
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C11xA to 400 μM Ni2+ (Cd2+ or Zn2+) in the external 

pipette solution of the inside-out patch to induce a 

rightward shift of the GPEAK-Vm relation (Song et al., 

1998). We found indeed that the kMTSET -Vm relation 

precisely followed the shifts induced by these two ma-

nipulations (Fig. 5). Therefore, the strong correlation 

between the voltage dependencies of GPEAK and kMTSET 

in three independent conditions is compelling evi-

dence for a tight functional coupling between trans-

membrane voltage sensor and the intracellular T1–T1 

intersubunit interface in a Kv channel during voltage-

dependent gating.

Disulfi de Bond Cross-linking Across the T1–T1 Interface 
Inhibits Kv4.1 Activation
If a movement of the T1–T1 interface is required for 

normal gating, locking the T1–T1 interface by forming 

a disulfi de bond between two adjacent subunits should 

prevent the putative intersubunit displacement and 

thus suppress gating. Although the structure of the 

Zn2+-free T1 site is not known, the available crystal 

structure of the T1 domain (Fig. 6, A and B) reveals that 

the distances between the β carbons of C110 and C131, 

C110 and C132, and C131 and C132 are 5.44 Å, 5.43 Å, 

and 3.97 Å, respectively.  To form a disulfi de bond, the β 

carbons of the cysteinyl groups in a rigid protein must 

be within 3.4–4.6 Å (Careaga and Falke, 1992); but in 

fl exible proteins, the β carbons of the cysteinyl groups 

may be separated by as much as 15 Å (Falke and Koshland, 

1987). Therefore, under proper conditions, the 

formation of intersubunit disulfi de bonds in the chan-

nel tetramer is likely because our functional data sug-

gest a dynamic T1–T1 interface. To test this hypothesis, 

we exposed the intracellular side of the channel to a 

mild oxidizing agent. Fig. 6 C shows that Cu/P (50 μM 

Figure 2. Gating state–dependent accessibility of the Kv4.1 chan-
nel T1–T1 interface to internal MTSET. (A) Time courses of 
C11xA ternary complex inhibition by internal MTSET in the acti-
vated (gray), inactivated (hollow circle), and resting (black) 
states. Solid lines are best-fi t exponential decays with the follow-
ing second-order rate constants (1/τ[MTSET]): 0.038, 0.366, and 
22 mM−1s−1 in the resting, inactivated, and activated states, re-
spectively. The remaining fractional current at steady state was 
0.2–0.25 in all states. (B) Bar graph summarizing the second-
 order rate constants of wild-type and C11xA ternary channel 
inhibition by MTSET.

Figure 3. The kMTSET in the activated state against the total num-
ber of cysteines in the T1 tetramer. The gray boxes (left) repre-
sent the available cysteines in the T1–T1 interface for different 
mutants. Mutants with one cysteine are variants of C13xA and 
those with two cysteines are variants of C12xA. The dashed line is 
the best-fi t linear regression with a slope of 1.65 mM−1s−1/Cys.

Figure 4. MTSET inhibition time courses of the Kv4.1-C11xA 
ternary complex at different membrane potentials. Solid lines 
are best-fi t exponential decays with second-order rate constants 
(1/τ[MTSET]) of 0.038, 0.42, 4.66, 11.77, and 21.93 mM−1s−1 
at −120, −80, −30, +30, and +80 mV, respectively. MTSET con-
centrations are 200 μM above −30 mV and 400 μM below +30 mV.
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CuSO4 and 200 μM phenanthroline; MATERIALS AND 

METHODS) inhibited the Kv4.1 current substantially 

when the intersubunit pair C110/C132 was available. 

Similarly, but to a lesser degree, inhibition was observed 

when the intersubunit pair C110/C131 was available. 

The inhibition was not reversible by washout of Cu/P, 

but the reducing agent DTT reversed it slowly (Fig. 7); 

and neither Cu2+ nor phenanthroline alone affected 

the Cu/P-sensitive mutants (unpublished data).  In 

sharp contrast, when the intrasubunit pair C131/C132 

or just C110 remained, there was no inhibition by Cu/P 

(Fig. 6 C). These observations suggest that the inhibi-

tion by Cu/P is not due to overoxidation of the thiolate 

to sufi nic or sulfonic acid but to the formation of inter-

subunit disulfi de bonds between C110 and C132 or be-

tween C110 and C131. Apparently, the latter pair formed 

the disulfi de bond less effi ciently than the former, sug-

gesting that the spatial relationship between C110 and 

C132 is more favorable than between C110 and C131. 

To support this conclusion further, we investigated the 

inhibition by MTSET. If the cysteine pair forms a disul-

fi de bond, the inhibition by MTSET would be reduced 

in a manner that refl ects the effi ciency of disulfi de bond 

formation upon Cu/P treatment. Fig. 6 D shows that 

MTSET inhibited the currents by �76–79% when all T1 

thiolate groups remained free. However, when the puta-

tive T1–T1 disulfi de bonds were formed after pretreat-

ing with Cu/P, the mutant channels harboring the pairs 

C110/C132 and C110/C131 were inhibited by only 

�25% and 43%, respectively. These results showed that 

upon oxidation, fewer cysteines remained free and that 

disulfi de bond formation was more effi cient between 

C110 and C132, as hypothesized above. Altogether, the 

cross-linking results are consistent with channel inhibi-

tion resulting from strait-jacketing a functionally critical 

and dynamic T1–T1 interface during gating.

D I S C U S S I O N

Others have established strong correlations between 

cysteine accessibility changes in the S4 or S6 transmem-

brane segments and gating charge movements or pore 

opening, respectively (Yang and Horn, 1995; Larsson 

et al., 1996; Yang et al., 1996; Liu et al., 1997; Baker 

et al., 1998; Mannikko et al., 2002). These correlations 

are the bases of the proposed mechanisms of activa-

tion gating in voltage-gated cation channels. Our re-

sults strongly suggest that the coupled conformational 

changes extend beyond the S4 and S6 segments into 

the interfacial Zn2+ site of the intracellular T1 domain 

in Kv4 channels.

Working Models and Mechanisms
From our earlier work and this study, we conclude that 

the Kv4 T1–T1 interface is functionally active because 

chemical modifi cation of the Zn2+ site thiolate groups 

or intersubunit disulfi de bridges involving these groups 

cause channel inhibition (Fig. 6) (Wang et al., 2005). 

This inhibition may result from a steric local perturba-

tion or strait-jacketing of the T1 domain, respectively. 

In addition, we demonstrated that the cysteine acces-

sibility is much faster in the activated state than in 

the resting or inactivated states (Fig. 3; Table I), and 

that kMTSET is dependent on the membrane potential 

(Figs. 4 and 5). Importantly, this voltage dependence 

follows the Gp-V relation faithfully (Fig. 5). Thus, 

kMTSET is tightly correlated with the channel’s conduc-

tance change. Fig. 8 B illustrates hypothetical working 

models that attempts to explain these observations.  

Figure 5. Voltage dependence of MTSET inhibition rate con-
stants of the Kv4.1-C11xA channel. (A) Inside-out macropatch 
currents of Kv4.1-C11xA ternary, binary (+DPPX-S only), and ter-
nary + Ni2+ (400 μM, external). Currents were evoked by step de-
polarizations from −100 mV to command voltages between −100 
and +160 mV in 20-mV increments. (B) The kMTSET -Vm (fi lled) 
and Gpeak-Vm (hollow) relations for the Kv4.1-C11xA channels 
depicted in A. The solid lines are the corresponding best-fi t 
fourth-order Boltzmann functions with the following midpoint 
voltages (V1/2) and slope factors (s): V1/2 = −26 (binary), 14 (ter-
nary), and 59 (ternary + Ni2+); s = 32 (binary), 42 (ternary), and 
51 (ternary + Ni2+) mV. The maximal second-order rate con-
stants (mM−1s−1) are 22.32 (binary), 21.13 (ternary), and 29.7 
(ternary + Ni2+), respectively. The kMTSET -Vm and Gpeak-Vm rela-
tions in all three conditions are strongly correlated. The best-fi t 
linear regression of a plot of all Gpeak-kMTSET pairs has a slope = 
1.002 and coeffi cient = 0.9954.
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To create this cartoon models, we used the 3D crystal 

structure of Kv1.2 in the open state as a template (Fig. 

8 A). Kv1.2 and Kv4.1 are expected to share similar 

structural features. Note that the voltage-sensing do-

mains (VS) are connected to the pore domain (P) via 

the S4–S5 linkers, and to the T1 domain via the S1–T1 

linkers; and that the T1 domain sits just below the S6 

segments (and the S6 tails; not depicted). The latter 

is critical because the S6 helix bundle at the internal 

mouth of the channels is the main gate that controls 

the opening of the pore. Given these general features, 

including a relatively restricted space between the 

membrane-spanning core of the channel and the T1 

domain, we propose that the closed T1–T1 interface 

and the S6 tail (or post-S6 segment) bury the critical 

Zn2+ site cysteines in the resting state. Therefore, the 

cysteine accessibility to MTSET is low. When mem-

brane depolarization activates the channel, two alter-

native hypotheses may explain the dramatic increase 

in cysteine accessibility at the T1 Zn2+ sites (Fig. 8 B). 

In one scenario, the voltage-dependent displacement 

of the S4 sensor in the VS domain moves the S4–S5 

linker and allows the opening the S6 helix bundle (Lu 

et al., 2002; Tristani-Firouzi et al., 2002; Long et al., 

2005b). The latter opens the pore and exposes the T1–

T1 interface, which undergoes a quasi-simultaneous 

conformational change through a possible direct in-

teraction between the post-S6 segment and the T1–T1 

interface at the level of the L4 layer (Fig. 8 B, bottom 

pathway). Ultimately, these conformational changes 

expose the Zn2+ site cysteines and increase the accessi-

bility to MTSET. The interaction between post-S6 and 

Figure 6. Disulfi de bond cross-linking in the T1–T1 intersubunit interface inhibits ternary Kv4.1 channels. (A)  Stereo view of the resi-
dues within the rectangle in B. C110 is from one subunit and C131, C132, and H104 are from the neighboring subunit. A standard color 
scheme is used to represent the relevant atoms. (B) Structural model of the Kv4 T1 domain. Colored sticks represent the residues that 
coordinate Zn2+ in the crystal structure, and red lines represent the rest of the T1 protein. Relative to its central axis, the model is tilted 
to emphasize the angle of view for the residues outlined by the rectangle. (C) The inhibition of Kv4.1 mutants by internally applied Cu/P. 
The available cysteines are indicated above each graph. Each symbol and corresponding error bars are the mean ± SEM of at least 
four experiments. (D) Bar graph summarizing the percent inhibition by MTSET (400 μM) before (white) and after treatment with 
Cu/P (black). The number of experiments is indicated above each bar. After the pretreatment with Cu/P, the differential inhibition 
of the two mutants by MTSET is statistically signifi cant (P < 0.0001).
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the T1–T1 interface may be critical for the opening of 

the pore because T1–T1 cross-linking appeared to be 

suffi cient to inhibit the channel. Also, because the S6 

helix bundle is the main activation gate that controls 

the opening of the pore, the contributions of post-S6 

help to explain the tight correlation between the volt-

age dependencies of kMTSET and peak conductance. In 

the alternative scenario, the voltage-dependent dis-

placement of the S4 segment moves the S4–S5 segment 

to open the pore and induces a rearrangement of the 

VS domain (Chanda et al., 2005), which propagates 

into the T1 domain via the S1–T1 linker. This propa-

gated conformational change could open the T1–T1 

interface locally at the Zn2+ site (L4 layer); however, to 

expose the cysteines and increase the accessibility 

to MTSET, the post-S6 segments would have to move 

too in a manner that is strictly coupled to the T1–T1 

displacements. Therefore, if the T1–T1 interface can-

not shift (e.g., upon intersubunit cross-linking), the S6 

helix bundle cannot complete the pore opening. The 

VS domain-driven T1–T1 displacements alone can-

not account for the observed voltage dependence of 

kMTSET because this is tightly correlated with the Gp-V 

relation and the necessary movements of the voltage 

sensors (i.e., the Q-V relation) are expected to occur 

at more negative membrane potentials. Currently, our 

data cannot distinguish between these scenarios, and 

the mechanisms responsible for the inhibition are not 

known. Nevertheless, these working models provide 

concrete frameworks to investigate the striking voltage 

dependence of the putative conformational changes 

in the T1–T1 interface of Kv channels and their role 

in gating.

In contrast to the �260-fold change in cysteine acces-

sibility between resting and activated channels, the aver-

age change is much smaller between resting and 

inactivated channels (�3.7-fold) (Fig. 2; Table I). This 

observation may also be signifi cant because it suggests 

that the closed and inactivated conformations of Kv4 

channels are structurally alike, which is consistent with 

the presence of closed-state inactivation (Bahring et al., 

2001; Beck and Covarrubias, 2001; Shahidullah and 

 Covarrubias, 2003; Jerng et al., 2004). It is also in agree-

ment with a model of closed-state inactivation induced 

by the decoupling between the S4 voltage sensor and 

the S6 gate (Shin et al., 2004). In this decoupled state, 

the resting and inactivated states of the channel may 

become functionally indistinguishable.

Physiological Signifi cance
The proposed displacements could have important 

functional consequences. For instance, the T1–T1 in-

terface may report the activation status of the channel. 

Consequently, the redox potential of the cell may mod-

ulate the functional activity of the T1–T1 interface in a 

state-dependent manner. A recent study has demon-

strated acute state-dependent redox modulation of 

 putative Kv4 channels in internally dialyzed cardiac 

 myocytes and implicated intracellular sufhydryl groups  

(Rozanski and Xu, 2002). Based on our results, we pro-

pose that the Kv4 Zn2+ site cysteines are potential tar-

gets of physiological redox modulation in the heart. 

This modulation may exist in other excitable tissues and 

affect other Kv channels (Kv2 and Kv3), which also har-

bor the Zn2+ site cysteines in the T1 domain (Bixby 

et al., 1999).

At a more mechanistic level, the emerging multitask-

ing picture of the T1 domain reveals three separate but 

fundamentally important functions: (1) T1 determines 

specifi c subunit coassembly within Kv subfamilies (Xu 

et al., 1995; Li et al., 1992; Bixby et al., 1999); (2) T1 is 

the anchoring site for auxiliary subunits of Kv channels 

(Gulbis et al., 2000; Scannevin et al., 2004; Callsen et al., 

2005; Long et al., 2005a); and (3) in conjunction with 

the membrane spanning core and possibly other intra-

cellular regions of the Kv channel, T1 contributes to the 

molecular rearrangements that govern gating. Perhaps 

the objective of this contribution is to allow the expan-

sion of the lateral intracellular portals of the channel, 

which could favorably infl uence the opening of the main 

S6 gate and the rapid access of K+ and the intracellular 

inactivation gate to the internal mouth of the Kv pore. 

This hypothetical expansion is reasonable because 

the lateral intracellular portals are clearly apparent 

Figure 7. Reversibility of the Cu/P-induced inhibition 
of ternary Kv4.1 channels. (A) Outward currents evoked 
by a step depolarization from −100 to +80 mV. The 
currents were recorded in the inside-out confi guration 
before (black trace) and after (red trace) the applica-
tion of Cu/P to the intracellular side of the channels, 
and after exposing the same patch to 10 mM DTT (gray 
trace). The pH of the intracellular solution was 8.6 
throughout the experiment. (B) The time course of the 
experiment shown in A. The currents in A are averages 
of �10 sweeps. From a total of three independent ex-
periments, 32 ± 4% of the current inhibited by Cu/P 
was recovered upon the treatment with DTT.
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between the membrane-spanning core and the T1 do-

main in the recently published crystal structure of a 

mammalian Kv channel in the open state (Kobertz et al., 

2000; Kim et al., 2004; Long et al., 2005a).

Conclusion
We have provided compelling evidence for tight cou-

pling between voltage-dependent activation of a Kv4 

channel and conformational changes involving the in-

tracellular T1–T1 interface. We propose that the com-

plex structural rearrangements that control fast and 

effi cient activation gating of eukaryotic Kv channels in-

clude propagated movements in the conserved L4 layer 

of the T1 domain and a post-S6 COOH-terminal seg-

ment that may contact the T1–T1 interface. These fi nd-

ings suggest novel ways to regulate Kv channel gating in 

excitable tissues.
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