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Abstract

Zoonoses are increasingly recognized as an important burden on global public health in the

21st century. High-resolution, long-term field studies are critical for assessing both the base-

line and future risk scenarios in a world of rapid changes. We have used a three-decade-

long field study on hantavirus, a rodent-borne zoonotic pathogen distributed worldwide, cou-

pled with epidemiological data from an endemic area of China, and show that the shift in the

ecological dynamics of Hantaan virus was closely linked to environmental fluctuations at the

human-wildlife interface. We reveal that environmental forcing, especially rainfall and

resource availability, exert important cascading effects on intra-annual variability in the wild-

life reservoir dynamics, leading to epidemics that shift between stable and chaotic regimes.

Our models demonstrate that bimodal seasonal epidemics result from a powerful seasonal-

ity in transmission, generated from interlocking cycles of agricultural phenology and rodent

behavior driven by the rainy seasons.

Author Summary

Pathogens shared with wildlife cause more than 60% of human infectious diseases. How-

ever, there is a scarcity of comprehensive modeling of zoonotic disease dynamics at the
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wildlife-human interface. Here, we use 30 years of monthly rodent-hantavirus monitoring

to show that the complex seasonality in human spillover results from the interplay

between an ecological cascade that shapes reservoir infection dynamics and seasonal agri-

cultural cycles that in turn determine human-wildlife contact patterns.

Introduction

Most emerging infectious diseases are zoonotic, and more than 70% of these originate among

wildlife [1]. Zoonotic disease emergence and reemergence has been hypothesized to be driven

by environmental and anthropological variability at the human-wildlife interface [2–4]. How-

ever, recent reviews of our understanding of the determinants of spillover have shown that a

critical knowledge-gap [5] exists as we lack empirically validated models of the ecological

interactions between humans, wildlife reservoirs and key environmental drivers [6,7]. In order

to untangle the complexity of zoonotic spillover, combined field surveillance and modeling

approaches that link the contacts between humans and wildlife with disease dynamics within

the wildlife reservoir are essential [8]. However, such comprehensive investigations are still

lacking for almost all zoonotic disease systems [9].

Hantaviruses are rodent-borne zoonotic pathogens within the Bunyaviridae family that

cause hundreds of thousands of hospitalizations annually on a global scale. Depending on the

viral strain in question, which may cause hantavirus pulmonary syndrome (HPS) or hemor-

rhagic fever with renal syndrome (HFRS), case fatality rates range between 0.5–40% [10]. Han-

tavirus is responsible for numerous significant zoonotic outbreaks, including the outbreak of

HFRS due to Hantaan virus (HTNV) during the Korean War [11], and HPS due to Sin Nom-

bre virus (SNV) in the Four Corners region of the United States in 1993 [12] and more recently

in Yosemite National Park, California, in 2012 [13]. Hantaan virus, which is in the clade of

hantaviruses that causes HFRS, was first isolated in 1978 [14].

Previous analyses of hantavirus infection dynamics suggest that changes in climate [15–17],

environmental condition and/or agricultural activity affect the risk of zoonotic transmission

via changes in reservoir dynamics [18,19], exposure risk [20–22], or virus stability in the envi-

ronment [23–25]. However, HPS/HFRS epidemics do not appear to simply track environmen-

tal conditions or rodent dynamics [26,27]. An integrated picture of host-environment

interactions and the resulting hantavirus transmission and spillover is far from clear.

China has the highest incidence of HFRS worldwide. Our study area in central China, Hu

County, is one of the main epidemic areas and serves as a national surveillance site to monitor

the HFRS situation. Since 1984, a unique longitudinal field study of hantavirus in rodents with

additional epidemiological tracking of human incidence has been conducted in the area (Fig

1A). From 1994 onwards, an attempt has been made to control hantavirus transmission

through the targeted routine vaccination of adults aged 16 to 60 yrs. old. Despite these control

efforts, the dominant hantavirus (HTNV) continues to infect humans, with dynamics exhibit-

ing clear seasonal and interannual variability as outbreaks invariably coincide with the end of

the two rainy seasons (Fig 1B).

In this study, we used a Bayesian state space approach to demonstrate how natural seasonal

patterns interact with anthropogenic environmental changes to drive the temporal dynamics

of host-virus infection and the consequent risk of HFRS in human populations.

Shifts in the ecological dynamics of HFRS
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Results

Seasonality and dynamics

In Hu County, a total of 9,626 HFRS cases were reported from 1984–2014, with the highest

incidence of 0.3% occurring in 1984. During the study, 10,598 rodents were captured in

247,408 trap-nights, with a capture rate of 4 rodents per hundred trap-nights. Of the rodent

species captured, striped field mice (Apodemus agrarius, mean capture rate of 2.1) was the

most frequently captured species, with 48% (5079/10598) of total captures, followed by brown

rats (Rattus norvegicus, mean capture rate of 0.9), buff-breasted rats (Rattus flavipectus, mean

capture rate of 0.7), Gansu hamsters (Cansumys canus, mean capture rate of 0.3), and house

mice (Mus musculus, mean capture rate of 0.2) [28].

Hantavirus antigen-positive captures were also found in the rodent species: A. agrarius, R.

norvegicus, R. flavipectus,C. canus, andM.musculus with positive rates of 6.8% (346/5079),

0.5% (12/2237), 0.2% (4/1702), 0.3% (2/677), and 0.2% (1/493), respectively. Complete S seg-

ments of Hantaan virus (HTNV) were obtained from A. agrarius and HFRS patients from

1984–2012 (Fig 1C, S1 Table) as described both previously and in this study [29,30]. This result

indicates that HTNV, carried by A. agrarius, is primarily associated with the HFRS cases in Hu

County. While other rodent species were relatively rarely infected, these sequences were

closely clustered with little antigenic variation from sequences obtained from A. agrarius even

Fig 1. Hantavirus infections and host dynamics in Hu County of central China, 1984–2014. (A) Study

area (108˚ E, 34˚ N) and sampling sites in Hu County on the Loess Plateau of central China. Crosses indicate

rodent sampling sites, squares represent locations of sequences obtained from patients (black) and rodent

lungs (red). (B) Mean number of log-transformed reported cases from 1984 to 2014, and the mean monthly

rainfall over the same time period, indicating the two peaks of the rainy season (blue line). Monthly number of

HFRS cases during the pre-vaccination era (red line): 1984–1993, and vaccination era (orange line): 1994–

2014. Blue shaded region gives ±2 standard deviations of rainfall. Arrows indicate bimodal seasonal

epidemics. (C) Phylogenetic tree of HTNV in the study area. The black squares represent the sequences

obtained from patients, the red squares represent the sequences obtained from rodent lungs (1984–2012),

and the hollow squares represent the sequence obtained in this study. (D) The monthly rodent capture rates

(black line) and infection rates (red line). All capture rates are expressed as number of rodents caught per 100

trap-nights, infection rates represent number of captured rodent that carry hantavirus per 100 trap-nights. (E)

Time series of HFRS cases in Hu County from 1984 to 2014, aggregated monthly.

doi:10.1371/journal.ppat.1006198.g001
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over long periods of time (S1 Fig), indicating that these are spillover infection of HTNV. We

therefore chose to explore the epidemics of HFRS by considering its dynamics solely within A.

agrarius, using field and laboratory studies.

We found that HFRS epidemics increased after the rainy seasons, even after the mass vacci-

nation program was initiated in 1994, which was associated with a decrease in the mean num-

ber of cases (Fig 1B). This suggests powerful seasonality in wildlife-to-human transmission.

However, while the incidence indicates a clear intra-annual variability with a strong corre-

spondence to A. agrarius dynamics (R = 0.80, P< 0.05) prior to the vaccination program (Fig

1C–1E), the incidence during the vaccination era testifies to highly erratic outbreaks.

Ecological cascades

Changes in interannual patterns of epidemics may be linked to changes in potential environ-

ment drivers. Environmental variability has cascading effects on wildlife population dynamics

[31–33], through breeding success (S2 Fig) and mortality (resource availability and carrying

capacity), which may further affect hantavirus dynamics [34]. We propose a mechanistic

mathematical model to explore the response of hantavirus dynamics to environmental fluctua-

tions. The model includes the logistic growth of the rodent reservoir [35], where A. agrarius
population dynamics are influenced by environmental factors affecting both birth and death

rates, which are in turn determined by amount of rainfall in the breeding season and the carry-

ing capacity of farmland, respectively (see Materials and Methods).

The model supports our dynamical hypothesis, and captures the qualitative pattern of

rodent population dynamics (Fig 2A). In particular, the model accurately predicts the unusu-

ally low abundance between 2002 and 2005. Our analysis reveals that the exceptional 2002

population crash in autumn breeding could be traced back to a significant food shortage, as

crops growing after the spring harvest in our study area were affected by extreme drought in

2002. The extent of this catastrophic drought in the area is illustrated by the temperature vege-

tation dryness index (TVDI) (S3 Fig). In addition, the mean normalized difference vegetation

index (NDVI) for farmland in this region was significantly lower during the drought year of

2002, compared with other years (Fig 2B). Significantly, drought may be associated with low

breeding rate (S2 Fig), and the resulting food shortage may increase mortality for most rodents

(Fig 2C), except the brown rat (R. norvegicus) which lives in close association with humans and

does not rely on farm crops (S4 Fig).

The dynamics of A. agrarius normally undergoes biennial cycles, which was especially the

case in the high population densities of 1984 and 2012. However, these population oscillations

collapsed in 2002, initiating a population decline (Fig 1D). We infer that the life cycle of A.

agrarius in our study area is affected by rainfall and resource availability during the breeding

season, and our model was therefore constructed to represent these dynamics (S5 Fig). Bifur-

cation analysis demonstrates that our model produces stable population dynamics (i.e. stable

equilibria, in which population numbers remain constant) at low density under low rainfall or

drought scenarios, oscillations with 1–2 yrs. periodicity under normal rainfall, and aperiodic

and chaotic dynamics (i.e. chaos, in which population numbers change erratically) for strong

environmental forcing and abundant rainfall (Fig 3, S6 Fig).

The magnitude of transmission rate varies with time and corresponds to time-varying con-

tacts between susceptible and infected hosts [36]. Thus, environmental changes lead wildlife

hosts to a critical density threshold, below which the virus cannot invade (S7 Fig) [34,37]. In

addition, a decreased carrying capacity is associated with loss of farmland area over time (Fig

4). This moves hantavirus dynamics into an environmentally forced regime with large fluctua-

tions in infection rate.

Shifts in the ecological dynamics of HFRS
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Transmission at the human-wildlife interface

Intervention can explain the discrepancy between rodent dynamics and human infections at

interannual timescales. In times of high rodent abundance, the response in number of HFRS

cases would be expected to be large. However, the number of HFRS cases was low for 2001 and

2012, despite favorable transmission conditions due to high rodent density (Fig 1). Our results

indicate that these episodes were concurrent with a vaccination-induced reduction in human

susceptibility. This in turn reduced the number of human hantavirus infections and controlled

the susceptible population size, even though the overall human population increased in these

decades (see Supporting Information). Most notably, a significant decrease in the number of

susceptible individuals was observed after the mass vaccination in 2011 (S8 Fig), and the mea-

sures implemented successfully averted further epidemics.

Fig 2. Environmental fluctuations, rodent host dynamics, and hantavirus infections. (A) Rodent

population density observed (black line), model-simulated density (red line), and rainfall in July (blue line, unit:

mm), 1984–2014. The orange-shaded vertical bars indicate periods of drought. Model-predicted and

observed density have a correlation of R = 0.73, P < 0.01. (B) Normalized difference vegetation index values

for farmland during the drought, from July to August (green dotted line). The black line indicates the average

NDVI value of farmland from July to August, 1984–2014. Error bars give ±2 standard deviations. (C) The

effect of seasonal changes in NDVI on rodent survival estimated from Eq 2. Error bars show the 95% credible

intervals.

doi:10.1371/journal.ppat.1006198.g002
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In addition, the number of HFRS cases were clustered on an annual basis during two time

periods: June to July, and October to November (Fig 5A). The cases peaked and coincided

with two important annual agricultural events, the spring and autumn harvest. Maize is sown

in late October for the spring harvest at the end of May, and wheat is sown in June for the

autumn harvest at the end of September and October. These agricultural activities coincide

Fig 3. Predicted environmental forcing alters dynamical stability. (A) Bifurcation diagram showing the

local minima and maxima of A. agrarius abundance predicted by the environment-based wildlife dynamic

model as a function of the environmental forcing parameter δ (Eqs. 12, 13, see Supporting Information). The

system heads toward extinction with drought, followed by stable population dynamics with densities that

increase as rainfall increases, followed by outbreaks with abundant rainfall and amplitudes that increase with

rainfall. Precipitation status (drought/normal/abundant rainfall) is quantified by the corresponding

environmental forcing intensity, δ, which ranged from 0 to 4.5. (B) Lyapunov exponent versus environmental

forcing, predicted by the environment-based wildlife dynamic model. The black line shows the Lyapunov

exponent calculated over 100 years with average environmental forcing.

doi:10.1371/journal.ppat.1006198.g003
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with the two rainy seasons (Fig 5B). A second important cycle (shown in Fig 5B) involves the

pregnancy rate of A. agrarius [38], which closely matches the NDVI curve. Apodemus agrarius,
which tends to live in agricultural fields, initiates its spring breeding season in April–May, and

the autumn breeding season starts in August–September [38]. It is interesting to note that the

breeding season is closely associated with agricultural activity in Hu County. To summarize,

the incidence of HFRS cases peaked during the harvests, when the risk of exposure of farmers

to infected rodents in the farmland areas would have increased (Fig 5C, as the average incuba-

tion period for HFRS is approximately 3 weeks, ranging from 10 days to 6 weeks [10]). We

estimated the seasonal variation in the transmission rate explicitly by applying the discrete-

time susceptible-infected-recovered model to 30 yrs. of monthly data from the area, and the fit

of the full model accounts for 88% of the variability in the HFRS cases (Fig 5D).

Discussion

Public health scientists and epidemiologists are increasingly challenged to understand how

environmental change and anthropogenic trends affect zoonotic disease dynamics at the wild-

life-human interface [39–42]. An effective prevention and control method of zoonotic disease

is required, which integrates ecological principles of animal, human, and environmental fac-

tors [2,9]. Our study of how shifts in disease ecology can be forced by environmental and

anthropogenic processes sheds critical light on zoonotic dynamics and the persistence of dis-

ease [2]. We have shown the ecological drivers responsible for the cascading effects of environ-

mental variability on HFRS, using a mechanistic mathematical model integrating longitudinal

field surveillance, environmental change and epidemiological data. Once the wildlife and virus

dynamics are taken into account, a clear picture emerges of the role of environmental variabil-

ity in zoonoses [43]. We found support for intra-annual disease cycles driven by seasonal inter-

actions between humans and wildlife, and by an environmentally induced cascade which can

switch the dynamics of A. agrarius abundance between stable and oscillatory [44]. This in turn

affects seasonality in HFRS incidence. Our finding adequately explains the complexity and

Fig 4. Farmland loss and estimated carrying capacity in Hu County, 1984–2014. Left panel: Land cover

maps of Hu County were produced using supervised maximum-likelihood classifications of Landsat Thematic

Mapper data. Time series Landsat satellite images, covering the entire city area of Hu County, were used to

detect land cover changes, including forest, farmland, building land, bare land, and water. Right panel: Area of

farmland (green point) was obtained from remote sensing images, time-varying carrying capacity was

estimated from Eq 2. The green line shows the linear regression of farmland area over time, and the black line

represents the estimated carrying capacity, and the grey area indicates the 95% credible intervals.

doi:10.1371/journal.ppat.1006198.g004
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interrelatedness of the environmental, biological, and anthropogenic dimensions of zoonotic

pathogen dynamics.

We have provided support for the hypothesis that environmental forcing, rainfall and

related vegetation growth, may induce strong chain reactions [45,46] in wildlife dynamics and

zoonotic epidemics [47]. Environmental conditions influence survival of the animal reservoir

[48,49] and affect transitions between stability, cycles and chaotic dynamics. This is consistent

with numerous field studies showing that an increase in resources would allow the rodent host

to survive and reproduce [50–52], possibly leading to a higher prevalence of infection [26,53–

55] and a higher transmission rate among rodent populations with an older age structure [56]

Fig 5. A simplified web of interactions involved in the ecology of hantavirus transmission. (A)

Seasonal epidemic and rodent dynamics in Hu County, 1984–2014. Apodemus agrarius capture rates (black

line) and 95% confidence intervals (whiskers) are shown for 1984 to 2014. The blue line represents the

number of HFRS cases. (B) Agricultural phenology and rodent dynamics. Time series of NDVI values of

farmland (green line), rainfall (blue bars), and pregnancy rate of rodents (grey bars) [38] are shown. The

timing of harvests (*) are denoted, as well as rainy seasons and breeding seasons (black dots). The NDVI

value for farmland, which increases gradually during the growth period of crops and suddenly drops during the

harvest season, was used to reflect the phenological changes of local crops. (C) Estimated seasonal

transmission rate. Shaded regions are the 95% Bayesian credible intervals. Asterisks indicate agricultural

activities for the spring harvest and wheat sowing, and autumn harvest and maize sowing. The agricultural

activity may increase the risk of human exposure to rodents. (D) Hantavirus infections at the human-wildlife

interface. The monthly number of HFRS cases from 1984 to 2014 are shown; the blue line represents

observed cases, the red line represents the deterministic prediction from the model (using the susceptible and

infected individuals in the first month in 1984 as initial conditions), and the black line represents the predicted

outcome of the model without a vaccination campaign from 1994 to 2014. (E) An overview of the system. The

series of models link environment to host population dynamics, hantavirus prevalence in rodents, and human

demography. The model structures (solid lines) are established according to realistic ecological processes.

Susceptible individuals, S, were divided into different age groups, births, B, deaths, D, vaccinated individuals,

V, immune individuals, R, infected individuals, I, susceptible rodent hosts, SR, and infected rodent hosts, IR.

The environmental forcing, δ, and resource availability, K, are incorporated into the model with parameters,

which were considered to play a significant role in the fluctuation of rodent populations.

doi:10.1371/journal.ppat.1006198.g005
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as hantavirus infection is life-long in natural hosts [57]. In turn, this could lead to a greater

chance of spillover to humans. Various studies cite HFRS as an example of a zoonotic disease

which is linked to climate variability and environmental factors [58–60]. However, general

predictions and a supporting model of the effects of environmental change on HFRS dynamics

have not yet been empirically tested [27,61,62]. Our results in this study suggest that the pro-

posed mechanism would be valuable in broadening our understanding of human exposure to

hantaviruses in general.

Anthropogenic forcing has been linked to disease dynamics and relations between wildlife

hosts, humans, and pathogens [63,64]. While prior research has traditionally focused on land-

use change and zoonosis emergence [65–67], growing evidence indicates that the expansion of

ecotones (transitional areas between adjacent ecological systems) can provide opportunities

for pathogen spillover [64,68–70]. Our work provides an improved understanding of the

mechanistic processes linking anthropogenic environmental change (for instance, land-use

change) and disease dynamics. During the study, farmland loss was found to be associated

with host resources and carrying capacity, both of which affect wildlife abundance. In addition,

over the past three decades there has been a decline in the abundance of A. agrarius, coinciding

with a long-term trend showing a decrease in the incidence of HFRS.

Our results suggest not only the role of environmental seasonality in shaping population

fluctuations [71,72], but also 1) the critical role of human activities, which shape the seasonal

dynamics of A. agrarius by deeply influencing the local rodents’ activity and their life cycles, as

well as 2) the role of seasonality in influencing contact between humans and the reservoir host.

Apodemus agrarius has adapted to thrive in the ecological landscape created by agriculture.

This adaptation amplifies seasonality in both transmission and spillover, which alter the spread

of infectious diseases [73–75]. The estimated seasonality in the transmission rate shows a

bimodal distribution, consistent with the seasonal timing of HFRS cases. Given the distinct

roles of wildlife and agricultural activity in transmission, a reasonable explanation for this sea-

sonal pattern is the increase in potential contact between rodents and humans in the dry sea-

son due to seasonal agricultural activities. Overall, the combination of both agricultural and

seasonal environmental forcing generates a setting in which irregular epidemics arise intrinsi-

cally. These findings not only provide evidence for the long-standing hypothesis that environ-

mental change is associated with zoonotic persistence and amplification, but also indicate that

the dynamical effects of human-wildlife interactions are dependent on environment-linked

processes (Fig 5E).

The HFRS vaccination strategy has been effective and has played an important role in

reducing the incidence of HFRS in Hu County [76,77]. Despite this, challenges still remain

regarding the prevention and control of HFRS outbreaks. It should be noted that the incidence

of HFRS evidently rebounded after 2010, even with high vaccination coverage [19]. This may

be attributed to many factors and requires a deeper understanding of the drivers of zoonotic

disease risk [78,79]. Taken together with the empirical data on demography and epidemiology,

the results suggest that such erratic HFRS epidemics in the study area may have been generated

by high amplitude wildlife oscillations interacting with environmental stochasticity and vacci-

nation coverage. All of this demonstrates that wildlife monitoring and modeling may not only

help us to retrospectively understand the dynamics of the system, but may also provide

advance warning of an outbreak.

Several important limitations of this study should also be acknowledged. First, there is no

surveillance data available before 1984, and it is therefore difficult to provide a possible mecha-

nistic explanation for the rodent population peaks in 1984 and 1985. Second, although our

rodent surveillance involved constant effort over time, the capture rate was estimated using an

unequal number of traps between months. Third, the relationship between environmental

Shifts in the ecological dynamics of HFRS
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variability and the infection rate of wildlife was not considered in the present analysis due to

constraints in data availability, and this relationship may have accounted for unexpected out-

breaks, e.g. the outbreaks in 1988 and 2011. Future surveillance efforts should include more

detailed and frequent sampling of wildlife and hantavirus to improve our knowledge of the

association between virus transmission and environmental variability.

Zoonotic diseases significantly impact human health globally, with approximately 1 billion

cases and millions of deaths reported each year [63], and are persistent public issues around

the world. Our longitudinal survey provides evidence that the key to HFRS epidemic control is

critical monitoring of wildlife and the environment, combined with mathematical models to

forecast outbreaks and the vaccination of farmers at risk.

Materials and methods

Data

The study was located in Hu County (108˚ E, 34˚ N) on the Loess Plateau of central China, an

area of 1,255 km2 and a population of approximately 600,000 people (according to the 2013

Chinese national census). We used the official monthly notification data of HFRS cases from

Shaanxi Provincial Center for Disease Control and Prevention and associated demographic

data available for Hu County between 1984 and 2014. All HFRS cases were confirmed accord-

ing to the standard diagnosis set by the Ministry of Health of the People’s Republic of China

[80], then confirmed by detecting antibodies against hantavirus in human serum samples.

Serum samples were sent to the Shaanxi Centre for Disease Control and Prevention (CDC) for

the detection of hantavirus-reactive antibodies. Between 1994 and 2014, a vaccination cam-

paign was conducted in the study area. To assess both the vaccine efficacy and the loss of vac-

cine efficacy with time elapsed since vaccination, we randomly selected a total of 29,359 people

from epidemic and non-epidemic villages in Hu County and monitored them [77]. The health

records of each person were investigated, and blood was collected and analyzed by ELISA for

the presence of anti-hantavirus IgG specific antibodies.

Starting in 1984, surveillance of the rodent host population density in Hu County has been

carried out on a monthly basis (Fig 1B). In each month between 1984 and 2014, rodent trap-

ping was carried out in the fields (farmland or wasteland, 3 km away from villages, which are

the habitats for the important rodent reservoirs) in Hu County for three consecutive nights at

9 trapping sites, according to standard protocol from the Chinese Center for Disease Control

and Prevention. Snap-traps (medium-sized steel rodent trap, brand name: Golden Cat, Guixi

Mousetrap Factory, Jiangxi, China) were baited with peanuts, set each night, and recovered in

the morning. At the trapping site, traps were set as 4 parallel lines of 25 traps each and were

spaced at 5 m intervals. The trapped rodents were identified to species by species identification

experts according to previously described criteria [81]. All rodents were accessioned to the

Shaanxi CDC [84HX001-13HX141], and retained as voucher specimens for each species. Lung

tissues were removed from the trapped rodents and stored immediately at –196˚C, and then

transported to the biosafety level-2 (BSL-2) laboratory of Shaanxi CDC for processing. The fro-

zen lungs were sliced with a cryostat (Leica CM1950) and preserved in a refrigerator at –80˚C.

Tissues and serum specimens for serological or molecular tests were handled during the vari-

ous laboratory procedures in class II type A2 biosafety cabinets.

The average monthly NDVI, an index of the amount and productivity of vegetation, was

derived from satellite data and was generated as follows: NDVI = (NIR—VIS)/(NIR + VIS),

where VIS and NIR stand for the spectral reflectance measurements acquired in the visible

(red) and near-infrared regions, respectively [82]. NDVI values for farmland were obtained

from 9 sampling sites (Fig 1A) during 1984–2014 using AVHRR GIMMS 15-day composite

Shifts in the ecological dynamics of HFRS
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NDVI products [83]. The TVDI, based on an empirical parameterization of the relationship

between surface temperature and NDVI, was used in monitoring soil moisture and drought

regionally [84]. The TVDI is estimated using the following equation: TVDI = (Ts—Ts min)/(Ts

max—Ts min), where Ts is the observed land surface temperature at a given pixel, and Ts min is

the minimum surface temperature in the triangle (Ts min = a1 + b1(NDVI)). Ts max is the maxi-

mum surface temperature observation for a given NDVI (Ts max = a2 + b2(NDVI)). a1 and a2

are the intercepts, and b1 and b2 are the slopes for the dry and wet edges. The value for TVDI is

higher for dry conditions and lower for wet conditions, and varies between 0 and 1. Climatic

data, including temperature and rainfall, were obtained from a local meteorological station

from 1984–2014.

Ethics statement

The study’s protocol was conducted according to the guidelines of animal welfare set by the

World Organization for Animal Health, and approved by the institutional ethics committee of

the Shaanxi CDC (Permit numbers: 2014–2 and 2013–005). The species captured in this study

were not protected wildlife and were not included in the China Species Red List, therefore a

permit to collect wildlife was not required from an official wildlife/conservation agency.

Land-use change

During the study, the major crop production in Hu County was spring wheat and autumn

maize, occupying most of the local farmland. We used the phenology of local crop production,

together with the spectral features of satellite images, to select Landsat images (with a resolu-

tion of 30 m) from March to May and September to October in order to extract the areas of

cropland in the Hu area in 1984, 1995, 2001, 2004, 2010 and 2014. A support vector machine

(SVM) of supervised classification was applied to perform the classification process in ENVI

v4.3 [85]. The accuracy assessment of land cover classification using ground truth images by

region of interest tools (ROI) indicated a Kappa coefficient of 0.98 on average.

Detection of hantavirus antigen

Viral antigens in lungs were detected by using direct immuno-fluorescent assay as described

previously [86]. Lung tissue samples were cut into 7–8 μm sections on a freezing microtome

and fixed in acetone after air drying for at least 30 min. 100μl of FITC-labeled anti-SEOV/L99

or HTNV/76–118 hantavirus nucleoprotein typing monoclonal antibody [87] was pipetted

onto each slide. Tissues were incubated at 37˚C for 1 hour and washed five times with 0.02 M

phosphate buffered saline (PBS). The samples were considered positive when yellow-green

fluorescing hantavirus particles were seen under fluorescence microscopy.

RT–PCR and sequencing

Total RNA was extracted from rodent lung tissue with the TRIzol reagent (Invitrogen, USA)

and RNeasy mini kit (Qiagen, Germany), the viral RNAs from the sera of patients were

extracted using the QIAamp viral RNA mini kit (Qiagen, Germany) according to the manu-

facturer’s instructions. cDNAs were synthesized from 5 μg total RNA with the RevertAid

first strand cDNA synthesis kit (Fermentas, Canada) in the presence of random hexamers

primer according to the manufacturer’s instructions. The partial S segment sequences were

obtained by PCR as described previously [29]. The PCR products were gel purified using

QIAquick Gel Extraction kit (Qiagen, Hilden, Germany), according to the manufacturer’s

instructions. DNA sequencing was performed with the Big Dye Termination Sequencing kit
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on the ABI-PRISM3730 genetic analyzer (Applied Biosystems, Carlsbad, CA, USA) and

sequences (S1 Table) were submitted to GenBank (accession nos. KY357322–KY357327,

KY283955–KY283956). For a detailed description of the laboratory methods used, see Ma

et al. [29,30].

Serological assays

Human serum samples were tested for IgG antibodies against hantavirus by ELISA. Briefly,

the serum samples were diluted 1:10 in PBS and incubated on a microtiter plate containing

hantavirus recombinant nucleoprotein. After incubation at 37˚C for 1 hour, the plate was

washed six times with PBS containing 0.05% Tween 20 (PBST), then peroxidase-labeled goat

anti-human IgG (Millipore, Bedford, MA) at a dilution of 1:10,000 was added. After the incu-

bation and washing steps (described above), tetramethylbenzidine (TMB) and hydrogen per-

oxide (H2O2) substrate was added and incubated at 37˚C for 10 mins. The reaction was

stopped by adding 1 M H2SO4 and the plates were read on a microplate reader at 450 nm. A

net absorbance value of> 0.15 was considered positive.

Phylogenetic analysis

Neighbor-joining trees of hantaviral S segment sequences were constructed using a GTR + I +

Γ4 model in PAUP v4.0b10 [88]. The best-fit phylogenetic model was determined by Modelt-

est v3.7 [89]. To assess the robustness of the tree topology, a set of 100 pseudoreplicates was

generated and used in bootstrap analyses with the maximum likelihood (ML) method imple-

mented in PHYML [90] and the neighbor-joining method implemented in PAUP v4.0b10. A

Bayesian phylogenetic tree (10 million generations) was also constructed using MrBayes v3.2

[91]. Trees were highly congruent to those produced above.

Fitting the TSIR model and ecological fluctuations

We modelled the HFRS epidemics in Hu County (1984–2014) using a discrete-time suscepti-

ble-infected-recovered (TSIR) model with age structure [92]. We estimated the seasonality for

the HFRS transmission rate by fitting the 30-year-long time series of observed monthly cases

using this TSIR model in a Bayesian state-space framework to account for uncertainty in the

observation [93]. New infections were drawn from the pool of susceptible individuals, along

with information on births, deaths, and vaccinations. As the natural time scale for the disease

is ~1 month [94], we used this as the time interval in our model. The number of people suscep-

tible to disease in month t+1 is given as St+1 = Bt + St−Dt−Vt−It + λRt. Bt and Dt represent the

number of human births and deaths during the time period, respectively. V is the number of

vaccinated individuals based on medical records, and R is the number of immune individuals.

λ is the proportion of vaccinated people who lost their immunity per month, based on 20 years

of surveillance. Susceptible individuals were divided into three different age groups (0–15 yrs.,

16–60 yrs., and 61–100 yrs.) according to disease characteristics, and each individual was also

kept track of over the study period (Fig 5A). The number of people aged 16–60 yrs. accounted

for more than 90% of the total cases in the study area, and as the vaccine was only provided to

this group (S9 Fig) we assumed that the highest risk of infection was for this age group. Addi-

tional information is given in the Supporting Information.

In the model, the force of infection can be expressed as: βt (NRt/Nt)(IRt), where Nt is the

current human population size at time t, IR and NR indicate the number of infected and total

rodent hosts, and βt the month-specific transmission rate from rodents to human beings. The
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overall human HFRS epidemic dynamics are thus given by:

Itþ1 ¼
ðNRt þ t1Þ

Nt
ðIRt þ t2Þ

aStbt ð1Þ

where α allows for the nonlinearities generated by the heterogeneity of the contacts between

rodents and humans [95]. The parameter τ represents low, random abundances when no

animals were caught or no infected animals were caught. Here βt = β0(1 + β1cos(2πt)),

where β0 is the average transmission rate and β1 denotes the amplitude of variation around

β0 [96].

To represent the roles of intrinsic feedbacks from environmental forcing, we proposed an

environment-based wildlife dynamic model. The dynamic change of host population can be

mathematically represented as:

NRtþ1 ¼ NRt þ bseasrt 1 �
NRt
Kt

� �

NRt � dseasNRt ð2Þ

Hosts grow and die seasonally at rates bseas and dseas respectively, which are time-varying

parameters influenced by extrinsic drivers. bseas and dseas contain both the basic components

bcons and dcons, and an environmental component (influenced by rainfall and the NDVI for

farmland). Seasonality has been observed in the birth and pregnancy rates of A. agrarius [97].

An increase in the number of births during the wet season has been suggested [38], and this

was observed in the Chencang district from 1984 to 1987, 10 km away from Hu County, corre-

sponding to a greater percentage of pregnant females during the wet seasons (S2 Fig). Assum-

ing that an increased pregnancy rate is associated with rainfall, we estimated the time-varying

seasonal birth rates by monthly rainfall, and set the seasonal birth index, rt, at a value of 0

(non-breeding season) or 1 (breeding season) according to data provided by reference [38]. Kt
is the time-varying carrying capacity, determined by the area of farmland (see Supporting

Information). To reduce the dimensionality of the model, we ignored sex and age heterogene-

ity among A. agrarius.

Supporting information

S1 Fig. Hantaan virus (HTNV) of S segment sequences in China. (A) Map of China, showing

the distribution of the S segment of HTNV; the red dot is our study area. (B) Genetic map of

HTNV; the HTNV strains present in our study area from 1984 to 2012 are clustered in one

branch. (C) Phylogenetic tree of HTNV. The tree was inferred with the Bayesian method using

MrBayes. Numerical values at each node indicate posterior probabilities; only values greater

than 70% are shown. Sequences obtained from the study area are shown in the red boxes.

(TIF)

S2 Fig. Seasonal pregnancy rate of A. agrarius and rainfall (mm). This data is from the

Chencang district, adjacent to Hu County, and was collected between 1984–1987 [38]. The

black line is the seasonal pregnancy rate of A. agrarius, and the blue line represents monthly

rainfall (mm), 1984–1987. The pregnancy rate of A. agrarius was found to be correlated with

rainfall (R = 0.60, P< 0.01).

(TIF)

S3 Fig. Spatial distribution of the TVDI (July 15–30, 2002) in Hu County. The map shows

the TVDI, ranging in color from green to red with increasingly dry conditions. The black cross

symbols represent rodent sampling locations. The right panel shows the land use of the study

area. Land cover maps of Hu County were produced using supervised maximum-likelihood
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classifications of Landsat Thematic Mapper data. The whole southern part of Hu County is

Qin Mountain.

(TIF)

S4 Fig. Capture rates of A. agrarius and R. norvegicus in Hu County, 1984–2014, and the

autocorrelation function (ACF) of A. agrarius population dynamics.

(TIF)

S5 Fig. Predictions of the regression model. Observed versus simulated NDVI value for

farmland (R2 = 0.81). The grey dots indicate actual observations, the red dots indicate simu-

lated data from 1984 to 2003, and the blue dots indicate cross validation for 2004–2014. The

predictions are one-step ahead predictions, meaning that the data points at time t provide the

input for the predictions at time t + 1 (see Eq. 11). The model predictions use the same time

interval of 1 month as the time series data.

(TIF)

S6 Fig. Analysis of the environment-based wildlife dynamic model. Examples of predicted

A. agrarius population densities through time from the independently parameterized model

driven by rainfall. Seasonal variation in rainfall, averaged over all years in the time series (blue

line), and A. agrarius dynamics (red line) predicted by the model (Eqs. 12, 13).

(TIF)

S7 Fig. Capture rate, infection rate and human cases. (A) Monthly infected rate against the

capture rate threshold observed. The vertical line shows the location of the threshold. Capture

rate is expressed as number of rodents caught per 100 trap nights, infection rates represent the

number of captured rodents that carry hantavirus per 100 trap-nights. (B) Annual dynamics of

HFRS outbreaks and A. agrarius. Both the A. agrarius population abundance (red bar) and

HFRS cases (blue bar) decreased after the drought in 2002 (orange arrow).

(TIF)

S8 Fig. Population susceptible to hantavirus over time in Hu County, 1984–2014. (A) The

predicted population of Hu County that was susceptible (black line) to hantavirus during the

time period 1984–2014. The orange line represents the number of vaccinated individuals

based on annual records, and the green line is the total population size. (B) Loss of vaccine effi-

cacy over time. The rate of loss of vaccine efficacy was plotted against the amount of time since

the last vaccine dose was received, based on data from our longitudinal studies. The best fit of

the logarithmic relationship is shown. These estimates show a logarithmic increase in loss of

vaccine efficacy over time since the last vaccine dose was received (orange), consistent with a

loss in efficacy of 0.02% per year.

(TIF)

S9 Fig. Demography of the vaccine recipients in the study area, 1978–2014. (A) The

monthly number of births in Hu County. The numbers are averaged for each year. (B) The

monthly number of deaths. (C) The age distribution of HFRS cases and the population demog-

raphy in Hu County. The vaccine was provided to people aged 16–60 yrs. as people in this age

group accounted for more than 90% of the total cases in the study area, and the Pharmacopeia

of the People’s Republic of China (2005) specified that vaccines could only be administered to

people between 16 and 60 years of age.

(TIF)
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