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Label-free cell tracking enables collective motion
phenotyping in epithelial monolayers

Shuyao Gu,1 Rachel M. Lee,2,3 Zackery Benson,1 Chenyi Ling,4 Michele I. Vitolo,2,5 Stuart S. Martin,2,5

Joe Chalfoun,4 and Wolfgang Losert1,3,6,*

SUMMARY

Collective cell migration is an umbrella term for a rich variety of cell behaviors,
whose distinct character is important for biological function, notably for cancer
metastasis. One essential feature of collective behavior is themotion of cells rela-
tive to their immediate neighbors. We introduce an AI-based pipeline to segment
and track cell nuclei from phase-contrast images. Nuclei segmentation is based on
a U-Net convolutional neural network trained on images with nucleus staining.
Tracking, based on the Crocker-Grier algorithm, quantifies nuclei movement
and allows for robust downstream analysis of collective motion. Because the AI
algorithm required no new training data, our approach promises to be applicable
to and yield new insights for vast libraries of existing collective motion images. In
a systematic analysis of a cell line panel with oncogenic mutations, we find that
the collective rearrangement metric, D2

min, which reflects non-affine motion,
shows promise as an indicator of metastatic potential.

INTRODUCTION

Breast cancer is one of themost common cancers in women.Many breast-cancer-related deaths result from

metastasis, a complex, multistep process in which cancer cells migrate away from the primary tumor and

eventually grow in other organs (Ferlay et al., 2015; Hagemeister et al., 1980; Klein, 2009). During the met-

astatic process, clusters of primary tumor cells can leave the original site, circulate in the bloodstream, and

seed secondary tumor growth at distant sites. There is growing evidence that tumor cells that collectively

migrate and enter the bloodstream as clusters (defined as any group larger than one cell) are 50–100 times

more likely than individual cells to lead to metastasis (Aceto et al., 2014; Cheung et al., 2016; Wrenn et al.,

2020). Characterization of collective motion is generally accomplished in one of two ways: PIV applied to

phase contrast movies, which ignores individual cellular characteristics, or tracking applied to fluorescent

labels, which tend to affect cell behavior. Here, we introduce a new artificial intelligence (AI)-based

approach to track the motion of individual cells from phase contrast movies. This AI-enabled cell tracking

allows us to characterize a shifting balance between individual motion and collective motility of mammary

epithelial cells as they become more transformed, tumorigenic, and metastatic.

We use a commonly studied breast epithelial cell line (MCF10A), a highlymetastatic cell line (MDA-MB-231),

and a genetically definedmodel system for cancer andmetastasis. The genetically definedmodel system is

based on theMCF10A cell line and introduces phosphatase and tensin homolog deletion (PTEN�/�) and/or
overexpression of activated KRas (G12V), two commononcogenicmutations that have downstream impacts

on the cytoskeleton. PTEN loss is found in 24% of breast cancers (López-Knowles et al., 2010) and has been

associated with poorer prognoses in many solid tumors (Wang et al., 2018); KRas is a frequent driver of tu-

mors across different types of human cancers (Herbst and Schlessinger, 2019; Sanchez-Vega et al., 2018).

This model cell system relates our results to in vivo outcomes, since the cell lines have been characterized

in terms of tumorigenicity (Thompson et al., 2015) and metastatic behavior (Yankaskas et al., 2019).

In a previous study, we imaged the motion of groups of cells from these cell lines in a well-defined in vitro

assay (Lee et al., 2013) and characterized the motion using particle image velocimetry (PIV). We found that

deletion of PTEN caused cells to move more collectively, while KRas activation had the opposing effect

(Lee et al., 2021a). However, when both mutations were present, the phenotype induced by KRas domi-

nated and the KRas and KRas/PTEN�/� cell lines displayed similar dynamics (Lee et al., 2021a; Yankaskas

et al., 2019), even though they have significantly different in vivo outcomes. One might think that
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malignancy would lead to higher cell motility; however, thesemodel cell lines and others with characterized

in vivo behavior do not show a clear correlation between cell speed and malignancy (Lee et al., 2013;

Weiger et al., 2013). One limitation of PIV is that it characterizes motion based on the movement of all fea-

tures in an image. Thus, PIV captures overall movement visible in an image, including the motion of the

many organelles visible in a typical phase contrast image, which may obscure the full motion of each cell’s

nucleus. However, the cell nucleus serves as the main reference point of a cell, steering cell motion (Renka-

witz et al., 2019) and defining orientation when compared to the microtubule-organizing center (Desai

et al., 2009).

In this study, we introduce an AI-enabled (U-Net) cell nucleus segmentation tool for epithelial cells (Ling et al.,

2020) that allows us to track cell nuclei and study their dynamics. The AI model was trained on stem cell images

with Lamin B1 stain for automated nucleus detection (Ling et al., 2020) and did not require further training to

perform nucleus segmentation on the studied epithelial cell sheets. Additionally, our AI-enabled single-cell

tracking allows us to characterize motion of cells relative to their neighbors. In particular, we borrowed a metric

from softmatter physics, D2
min (Crocker andGrier, 1996; Falk and Langer, 1998; Lee et al., 2021a), to describe the

extent of similarity of motion between the cell of interest and its closest neighbors. This ability to assess how

closely a cell follows its neighbors yields a phenotype of cell rearrangementsduring collectivemigration capable

ofdifferentiating themetastatic KRas/PTEN�/� from thenon-metastatic cell lines.AI-enabled trackingandquan-

tification of collective rearrangements thus provide new tools for quantifying metastatic potential and could be

used to improve patient diagnosis or to develop novel therapeutic targets.

RESULTS

AI-based analysis workflow enables label-free single-cell tracking

Our analysis focuses on the collective dynamics of a migrating monolayer of epithelial cells (Figure 1A)

imaged with phase-contrast microscopy. Nuclear segmentation and tracking are a powerful approach to

studying cell migration dynamics. Here, we show that deep learning (U-Net)-based inferences of nuclear

positions can provide a substitute for fluorescently labeled nuclei. We use a successful image analysis

deep learning model, U-Net, that was originally trained on phase contrast images of migrating sheets of

stem cells (a human iPSC clonal line) and ground truth nucleus data (Figure 1B) (Ling et al., 2020). We

find that the model can identify the locations of cell nuclei from only phase contrast images of other mam-

mary epithelial cell lines, such as the MCF10A epithelial cell line (Figure 1C), without requiring any training

on these epithelial cell lines. This U-Net model was made robust to noise blurriness and intensity changes

that one might encounter in live image acquisition by adding Gaussian noise, contrast and brightness

change, blur, and scaling during the augmentation step in the training process after segmentation.

Once segmented, the images are fed into a tracking algorithm (Crocker and Grier, 1996; Blair and Dufres-

neCrocker-Grier), which identifies a center for each segmented nucleus and maps these positions from

frame to frame into a cellular track, allowing us to follow individual cell nuclei over hundreds of frames

(Figure 1D).

The trajectories of cell nuclei using this approach are validated by a comparison to the dynamics obtained

in prior studies on the same data using particle image velocimetry (PIV) analysis (Lee et al., 2021a) as shown

in Figure 1E. The twomethods produce similar speed and direction of motion distributions, with our U-Net-

based tracking exhibiting longer tails at higher velocities and larger angles. Bhattacharyya coefficients

quantify the overlap between distributions and range between 0 (no overlap) and 1 (complete overlap).

The distributions shown in Figure 1E have Bhattacharyya coefficients of 0.971 (speed) and 0.991 (direction),

which indicates agreement between the PIV and U-Net results (Kailath, 1967). We note that the angles are

computed relative to the direction of monolayer expansion. The small differences observed in the tails of

the distributions agree with a previous comparison of PIV and tracking (Lee et al., 2013), which found that

the motion captured by PIV is smoother than the motion of nuclei.

Our U-Net-based cell tracking approach from phase contrast images complements both PIV and tradi-

tional fluorescent nucleus tracking as illustrated in a comparison table (Figure 1F). PIV is widely used

because it can be applied to label-free images, such as the phase contrast images studied in this current

work. Fluorescent labeling of cell nuclei can provide additional information about individual cell behavior

but often suffers from issues of phototoxicity (Phototoxicity revisited, 2018). Our label-free U-Net cell

tracking approach yields the best of both worlds because it allows for nuclear tracking without interfering

with long-term behavior or decreasing the survival rate of cells.
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A quantitative metric for cell rearrangements distinguishes tumorigenic and metastatic cell

lines

With the ability to follow individual cells in a sheet, we can compute how cells move relative to their neigh-

bors. One measure of collective rearrangements, D2
min (Equation 1), has been used in models of elasto-

plastic deformation of amorphous solids or granular materials (Utter and Behringer, 2008) to describe

the motion of particles relative to their neighbors. Analyzing a cluster of N particles, D2
min characterizes

departures from the local affine deformation by fitting overall motion of the cluster over a time Dt to an

affine deformation and reporting the residue.

D2
i; min =

1

N
min

(XN
j = 1

�
d
!

ijðt1Þ � Ei d
!

ijðt0Þ
�2)

(Equation 1)

In Equation (1), D2
i; min is the D2

min value for cell i at time t1 = t0 +Dt ; N is the number of neighboring

cells for cell i; d
!

ijðt1Þ and d
!

ijðt0Þ are the relative spacing between cell i and neighboring cell j at times

Figure 1. AI-based segmentation and tracking workflow captures collective migration behavior

(A) A tiled image of a migrating cell sheet. The red box indicates the size of the field of view captured over time.

(B) An example of human iPSC clonal line images used as the training set for U-Net.

(C) Computational workflow: an input image is segmented using U-Net and then the centroids of the segmented cell nuclei are tracked using the Crocker-

Grier algorithm.

(D) Tracks of 8 cells from t = 0 to frame 100 (3 min per frame, frames t = 0, 50, and 100 shown).

(E) Comparisons of tracking results with PIV results.

(F) Table comparing benefits of traditional tracking, PIV, and U-Net Crocker-Grier tracking.
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t1 and t0, respectively; and Ei is the strain tensor for the neighbor cell group around cell i. We chose N =

6 under the assumption that epithelial cells have on average six neighbors in a confluent sheet. D2
min

(Chen et al., 2010; Falk and Langer, 1998) (Equation 1) is a least-squared calculation in which the

final relative spacing between cells, dijðt1Þ, is predicted via a linear transformation, Ei , of the initial

relative spacing dijðt0Þ, (Figure 2A). The resulting difference is called non-affine (non-linear) motion,

whereas the Eidijðt0Þ is the affine motion. Ei is fit to minimize the difference between the affine motion

and the actual motion. The affine component, which reflects collective motion, is essentially how well

the displacements of the neighboring cells can predict the motion of the central cell. A lower D2
min value

indicates the cell motion is more affine, meaning the cell more closely follows its neighbors’ motion and

is moving more collectively. A higher value of D2
min thus implies a more individualistic or non-affine

motion.

Usingour proposedU-Net-based segmentation and trackingworkflow,we calculateD2
min for bothMCF10A

(non-tumorigenic) and MDA-MB-231 (metastatic) breast cells. This reveals strong differences in their rear-

rangement behavior. Figure 2B shows single frames from a time-lapse series in which cell nuclei are marked

using colorful dots according to their respective D2
min value. The non-tumorigenic MCF10A cells behave

more collectively (lower D2
min values) compared to the metastatic MDA-MB-231 cells (Figure 2C).

We also applied our U-Net cell tracking workflow, without additional training of the AI algorithm, on a

genetically defined cancer progression model system based on the MCF10A cells (Thompson et al.,

2015) (Video S1). In this model system, cells with PTEN deleted (PTEN�/�) have previously been found to

Figure 2. Cell rearrangements distinguish tumorigenic and metastatic cell lines

(A) A schematic of how D2
min is calculated.

(B) Sheets of migrating cells labeled by their motion and rearrangements. Colorful dots represent D2
min values for individual cells, with their values indicated

by the color bar. Red arrows show the direction of cell motion.

(C) Comparison of average D2
min values for MCF10A and MDA-MB-231 cells over 6 independent experiments.

(D) Comparison of D2
min distribution of MCF10A mutants in one set of experiments (4 technical replicates of each mutant).

(E) Average D2
min for each mutant over 10 independent experiments.

(F) Pairwise comparison of KRas and KRas/PTEN�/� D2
min. (left) Dashed lines connect experiments performed on the same 12 well plate. (right) The central

line indicates the median value of the paired difference, while the top and bottom edges of the box indicate the 75th and 25th percentiles.

Error bars in c, e represent the standard deviation across independent replicates. Data are represented as meanG SD ‘‘*’’ = p< 0:001, ‘‘**’’ = p = 0:78 ,

‘‘***’’ = p = 0:01. Two-sample t-test.
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remain dormant in vivo. KRas-activated cells also usually stay dormant in vivo; however, sometimes the

KRas cells can form primary tumors (poorly tumorigenic) (Lee et al., 2021a; Thompson et al., 2015). The dou-

ble mutant (KRas/PTEN�/�) is aggressively tumorigenic (Thompson et al., 2015) and metastatic (Yankaskas

et al., 2019). Figure 2D showcases the D2
min distribution from four technical replicates for each cell line from

one experiment. The D2
min distribution for each cell line is consistent across technical replicates and the

combined experiment shows the overall trend that the original MCF10A and PTEN�/�mutants have smaller

D2
min values, which means that their motion is more collective, and cells tend to follow their neighbors’ mo-

tion. The overall results from 10 independent experiments (Figure 2E) confirm the poorly tumorigenic KRas

and metastatic KRas/PTEN�/� mutants have higher D2
min than the non-tumorigenic MCF10A and dormant

PTEN�/� mutants. To further differentiate the KRas and KRas/PTEN�/� mutants, a pairwise comparison

was performed (Figure 2F). A blocked experimental design allows us to pairwise compare the D2
min

value within each experiment, depicted by dashed line connecting the raw values (Figure 2F, left), and

by directly subtracting the KRas D2
min value from the KRas/PTEN�/� D2

min value (Figure 2F, right). The re-

sults show that most experiments yield the metastatic KRas/PTEN�/� having higher D2
min than the poorly

tumorigenic KRas mutant. Therefore, the KRas/PTEN�/�mutant motion is more individual (non-affine) than

the KRas mutant, and D2
min can distinguish the poorly tumorigenic KRas and metastatic KRas/PTEN�/� cell

lines.

Affine motion quantifies changes in collective behavior

To further study the collective component of cell motion, we extract affine dilation and deformation com-

ponents from the minimized linear transformation matrix Ei (Equation 1) (Falk and Langer, 1998). We

decompose the 2D matrix Ei into a product of two matrices: a pure rotation matrix R(q) and a symmetric

strain tensor F. The average of the eigenvalues of the strain tensor F corresponds to affine dilation, while

the difference is the affine deformation. Physically, the two eigenvalues describe the contraction or expan-

sion in the direction of their respective eigenvectors. Affine dilation represents the collective contraction or

expansion of the group of 6 neighbors. Affine deformation describes whether the cells’ neighbors are com-

pressed or stretched. Schematics shown in Figure 3A illustrate examples of affine dilation and deformation

in a 6-neighbor system.

We know from analysis of the nuclear tracks that the metastatic MDA-MB-231 cells have a larger average

motion than the non-tumorigenic MCF10A cells (Figure S1). Affine calculations reveal that the MDA-MB-

231 cells also display larger deformations and dilations (Figure 3B). Thus, the larger average total motion

observed in the MDA-MB-231 cells has a collective component. The MCF10A mutants have similar affine

dilation and deformation (Figure 3C). Combining data from all 10 experiments (Figure 3D), the magnitude

of affine/collective motion among MCF10A mutants is similar.

Next, we compare the contribution of the two components of motion, affine (collective) and non-affine (in-

dividual), to the cell sheet’s direction of motion. Angular distributions of both components (Figure 3E) show

that the non-affine motion is roughly uniformly distributed in all directions, while the directions of affine

motion favor the directional cue provided by empty space in the experimental system (roughly 90 degrees

in the figures). This shows that the collective migration of cell sheets is mostly led by affine motion, where

individual cells more closely follow their neighbors’ motion. The non-tumorigenic MCF10A and dormant

PTEN�/� cell lines show much more directional affine motion than the poorly tumorigenic and metastatic

cell lines.

We calculate angular deviation for both affine and non-affine motion among all cell lines to quantify the

spread of these distributions. Angular deviation values range from 0 to
ffiffiffi
2

p
, with 0 meaning all cells are

moving in one direction and higher values indicating a more dispersed set of migration directions. The

non-affine motion of all cell lines has an angular deviation near
ffiffiffi
2

p
, which confirms the observation that

non-affine motion has no directional preference (Figure 3E). Meanwhile, the angular deviation differs for

the affine (collective) motion across the different cell lines. The affine motion of the MCF10A cells is much

more directional than the metastatic MDA-MB-231 cells (Figure 3F). Among the MCF10A model system,

KRas and KRas/PTEN�/� have significantly higher affine motion angular deviations compared to MCF10A

and PTEN�/�, indicating the collective motions of the poorly tumorigenic (KRas) and metastatic (KRas/

PTEN�/�) cell lines are less directional (Figure 3G). A pairwise comparison to MCF10A shows that

PTEN�/� cells have the lowest angular deviation (Figure 3H), indicating that PTEN deletion leads to

more directional movement consistent with prior PIV analysis (Lee et al., 2013). We note that pairwise
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comparison of KRas and KRas/PTEN�/� mutants shows that PTEN deletion does not have a similar effect

of increasing directionality of collective motion in KRas mutants (Figure 3I).

Quantification of cell rearrangements by D2
min is robust to tracking errors

To test the robustness of our findings, 20% of the cells were randomly removed in each frame to simulate

a cell segmentation error situation, which might occur with non-ideal imaging or segmentation

Figure 3. The affine component of motion describes collective behavior

(A) Schematics of affine dilation (top) and affine deformation (bottom), with pink dots indicating the original positions of nuclei and red dots representing

their positions at a later time.

(B) Representative distributions of affine deformation and dilation comparing the MCF10A and MDA-MB-231 cells.

(C) Representative distributions of affine deformation and dilation comparison for the MCF10A mutants.

(D) The absolute value of affine dilation and average affine deformation for MCF10A mutants (10 independent experiments) and 231 cells (6 independent

experiments).

(E) The direction of affine and non-affine motion for representative experiments for the MCF10A mutants and MDA-MB-231.

(F) MCF10A and MDA-MB-231 affine angular deviation.

(G) MCF10A mutants’ affine angular deviation.

(H) Pairwise comparison of MCF10A and PTEN�/�.
(I) Pairwise comparison of KRas and KRas/PTEN�/�.
Error bars represent the standard deviation across independent replicates. Data are represented as meanG SD. ‘‘*’’ = p< 0:001, ‘‘**’’ = p< 0:001, ‘‘***’’ =

p = 0:32. Two-sample t test.
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parameters. The U-Net applied here was trained on a different cell line, without any retraining. We

manually segmented a set of images and found a segmentation accuracy of at least 80% with respect

to detecting all cell nuclei in the sample (Figure S2). As such, the removal of 20% of the tracked cells

is a good simulation to test the measurement robustness of our pipeline to expected segmentation

errors. Figure 4A shows the original data, with each cell nucleus (segmented by U-Net) labeled in yellow

and a frame where 20% of the identified nuclei are labeled for removal (red). Our D2
min analysis is still

able to distinguish between the KRas and KRas/PTEN�/� cell lines, as shown in Figures 4B and 4C.

With the removal of 20% of cells, the D2
min of these four cell lines maintain the same overall trends,

including KRas/PTEN�/� consistently exhibiting higher D2
min than the cell line mutated in KRas alone.

The average neighbor distance (Figure 4D) slightly increases and is accompanied by a slightly smaller

D2
min for all cell lines with 20% cell removal. In other words, the decrease of cell density from artificially

removing cells leads to lower D2
min. So, the larger neighbor distance seen in KRas/PTEN�/� cells cannot

explain the higher D2
min found in these cells. This means that high D2

min for KRas/PTEN�/� reflects

Figure 4. D2
min is robust to potential tracking errors

(A) Top: a sheet of MCF10A cells, with all U-Net-segmented nuclei labeled in yellow; bottom: the same sheet of MCF10A cells, with 20% of nuclei randomly

removed from tracking (indicated in red).

(B) Top: average D2
min for 10 independent experiments from U-Net-segmented nuclei; bottom: average D2

min with 20% of nuclei randomly removed in each

frame.

(C) Pairwise D2
min comparison of KRas and KRas/PTEN�/�.

(D) Average neighbor distance.

(E) Average D2
min per 20 frames (60 min) for the MCF10A mutants over time (shaded regions represent the standard deviation across independent

replicates).

(F) Average D2
min difference between KRas/PTEN�/� and original MCF10A per 20 frames (60 min) over time.

(G) Average D2
min difference between KRas/PTEN�/� and KRas per 20 frames (60 min) over time. For boxplots, the central line indicates the median value,

while the top and bottom edges of the box indicate the 75th and 25th percentiles.

Error bars in B, D represent the standard deviation across independent replicates. Data are represented as meanG SD. Data are represented asmeanG SD.

‘‘*’’ = p = 0:01, ‘‘**’’ = p = 0:02 , ‘‘***’’ = p< 0:001. Two-sample t test.
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individualistic motion. Neighbor distances, or cell density might be impacted by tracking accuracy; how-

ever, Figures 4A and 4B show that the D2
min metric can distinguish poorly tumorigenic from metastatic

cell lines even when tracking accuracy is artificially lowered.

Next, we investigate the change in motion with time over the 12 h timescale of our experiments.

We segmented the data into 20-frame pieces and found the average D2
min over each time segment,

as shown in Figure 4E. The shaded regions in the plot are the standard deviations for D2
min values

over 10 experiments. The poorly tumorigenic KRas and metastatic KRas/PTEN�/� have consistently

higher D2
min compared to the non-tumorigenic MCF10A and dormant PTEN�/� cells at all timepoints.

The KRas cells’ D2
min value decreases over the first 120 frames, and then stabilizes; the KRas/PTEN�/�

mutant D2
min values slightly increase over time. These two time-related behaviors lead to the KRas/

PTEN�/� cells having a higher time-averaged D2
min value, as shown in Figures 2E and 2F. Over the

12 h of imaging (240 frames), the metastatic KRas/PTEN�/� consistently has higher D2
min than the

non-tumorigenic MCF10A (Figure 4F), indicating that D2
min is a robust comparison between non-tumor-

igenic and metastatic cells. Comparing the KRas/PTEN�/� and KRas cells (Figure 4G), we find that their

motion is initially similar, but differences emerge 120 frames (6 h) after the start of imaging, or 30 h after

cell plating. At later times, 20 frames (60 min) of imaging are sufficient for D2
min to distinguish the KRas/

PTEN�/� and KRas cell lines.

DISCUSSION

We present an AI-enabled label-free nuclear tracking method capable of identifying the motion of cell

nuclei and use this information to quantify the collective behavior of panels of cell lines. We study the

MCF10A epithelial cell line and its variants with cancer-relatedmutations, specifically contrasting KRas acti-

vation alone and in conjunction with PTEN deletion. These two oncogenic mutations yield different out-

comes in vivo but their associated motion characteristics have been indistinguishable when analyzed

with prior methods (Lee et al., 2021a; Yankaskas et al., 2019).

Our nuclear segmentation is done by an AI model previously trained on a human iPSC clonal line (Ling et al.,

2020). The parameters of the tracking algorithm maintain a temporary memory of cells that disappear in a

frame or two due to imaging or segmentation issues and remove tracks that are too short, improving suc-

cessful cell tracking and reducing noise. With these quality-control features, we can segment and track on

average 80% of the nuclei in an image for MCF10A and MDA-MB-231 cell lines without further training on

U-Net (Figure S2).

The successful application of the AI model on these two cell lines suggests that our AI model and tracking

algorithm are versatile and can be applied to other epithelial cell lines without an extra training set. More-

over, random removal of 20% of the nuclei yielded consistent D2
min results (Figure 4), suggesting that we

are tracking a large enough fraction of cells for robust calculations not prone to change with tracking errors.

Being versatile and robust to errors, we can use our workflow to track and analyze the collective motion for a

variety of different types of cells.

Based on measuring the individual motion of cells, D2
min is capable of clearly distinguishing non-

tumorigenic and tumorigenic cells and is also able to distinguish the poorly tumorigenic KRas and

the metastatic KRas/PTEN�/� cells (Figure 2F). The D2
min calculation (Equation 1), provides multiple

metrics for understanding collective migration behavior. In addition to D2
min, which measures

the balance of collective vs individual behavior, the calculation quantifies ‘‘affine’’ motion

characteristics, namely, the magnitudes and preferred directions of dilations and deformations. Both

our previous PIV and current U-Net tracking results show that PTEN deletion makes cells more collective

and more directional (Figure 3), while KRas activation makes cells less collective (Figures 2 and 4).

However, D2
min highlights the differences between the poorly tumorigenic KRas and metastatic

KRas/PTEN�/� cell lines (Figure 2), despite similarities in their collective behavior (Figure 3). The

metastatic cell line (KRas/PTEN�/�) has the most individual motion, which leads to more local rearrange-

ments in the sheet, impacting the overall collective migration of the cell sheet. This individual motion

may be the result of a loss in cell adhesion in tumor progression (Cavallaro and Christofori, 2004), favor-

ing tumor invasion and metastasis. Our analysis of collective and individual motions has the potential to

be applied to distinguish non-tumorigenic, tumorigenic, and metastatic cells for easier and faster

diagnosis.
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In summary, we introduce an AI-enabled label-free nucleus tracking workflow for phase-contrast imaging

that can follow the motion of cells without the need for new AI training data. The comprehensive assess-

ment of cell motion is critical in enabling us to characterize collective motion using D2
min, which provides

a local metric of collective motion that shows differences between metastatic and non-metastatic cell lines.

Our results indicate that AI-enabled collective motion measurements may provide a new perspective on

the identification and diagnosis of metastatic risk.

NIST disclaimer

Commercial products are identified in this document in order to specify the experimental procedure

adequately. Such identification is not intended to imply recommendation or endorsement by the National

Institute of Standards and Technology, nor is it intended to imply that the products identified are neces-

sarily the best available for the purpose.

Limitations of the study

Comparing the AI-based nucleus finding algorithm and tracking algorithm together to a traditional

method is unfortunately not possible in our system as fluorescent tracking can affect cell behavior, in partic-

ular the long-term behavior of cells after repeated light exposure.
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López-Knowles, E., O’Toole, S.A., Mcneil, C.M.,
Millar, E.K.A., Qiu, M.R., Crea, P., Daly, R.J.,
Musgrove, E.A., and Sutherland, R.L. (2010). PI3K
pathway activation in breast cancer is associated
with the basal-like phenotype and cancer-specific
mortality. Int. J. Cancer 126, 1121–1131. https://
doi.org/10.1002/ijc.24831.

Phototoxicity revisited (2018). Nat. Methods 15,
751. https://doi.org/10.1038/s41592-018-0170-4.

Renkawitz, J., Kopf, A., Stopp, J., de Vries, I.,
Driscoll, M.K., Merrin, J., Hauschild, R., Welf, E.S.,
Danuser, G., Fiolka, R., and Sixt, M. (2019).
Nuclear positioning facilitates amoeboid
migration along the path of least resistance.
Nature 568, 546–550. https://doi.org/10.1038/
s41586-019-1087-5.

Sanchez-Vega, F., Mina, M., Armenia, J., Chatila,
W.K., Luna, A., La, K.C., Dimitriadoy, S., Liu, D.L.,
Kantheti, H.S., Saghafinia, S., et al. (2018).
Oncogenic signaling pathways in the cancer
genome atlas. Cell 173, 321–337.e10. https://doi.
org/10.1016/j.cell.2018.03.035.

Thompson, K.N., Whipple, R.A., Yoon, J.R.,
Lipsky, M., Charpentier, M.S., Boggs, A.E.,
Chakrabarti, K.R., Bhandary, L., Hessler, L.K.,
Martin, S.S., and Vitolo, M.I. (2015). The
combinatorial activation of the PI3K and Ras/
MAPK pathways is sufficient for aggressive tumor
formation, while individual pathway activation
supports cell persistence. Oncotarget 6, 35231–
35246. https://doi.org/10.18632/oncotarget.
6159.

Utter, B., and Behringer, R.P. (2008). Experimental
measures of affine and nonaffine deformation in
granular shear. Phys. Rev. Lett. 100, 208302.
https://doi.org/10.1103/physrevlett.100.208302.

Wang, X., Cao, X., Sun, R., Tang, C., Tzankov, A.,
Zhang, J., Manyam, G.C., Xiao, M., Miao, Y.,
Jabbar, K., et al. (2018). Clinical significance of
PTEN deletion, mutation, and loss of PTEN
expression in de novo diffuse large B-cell lym-
phoma. Neoplasia 20, 574–593. https://doi.org/
10.1016/j.neo.2018.03.002.

Weiger, M.C., Vedham, V., Stuelten, C.H., Shou,
K., Herrera, M., Sato, M., Losert, W., and Parent,
C.A. (2013). Real-time motion analysis reveals cell
directionality as an indicator of breast cancer
progression. PLoS One 8, e58859. https://doi.
org/10.1371/journal.pone.0058859.

Williams, E., Moore, J., Li, S.W., Rustici, G.,
Tarkowska, A., Chessel, A., Leo, S., Antal, B.,
Ferguson, R.K., Sarkans, U., et al. (2017). Image
Data Resource: a bioimage data integration and
publication platform. Nat. Methods 14, 775–781.
https://doi.org/10.1038/nmeth.4326.

Wrenn, E.D., Yamamoto, A., Moore, B.M., Huang,
Y., Mcbirney, M., Thomas, A.J., Greenwood, E.,
Rabena, Y.F., Rahbar, H., Partridge, S.C., and
Cheung, K.J. (2020). Regulation of collective
metastasis by nanolumenal signaling. Cell 183,
395–410.e19. https://doi.org/10.1016/j.cell.2020.
08.045.

Yankaskas, C.L., Thompson, K.N., Paul, C.D.,
Vitolo, M.I., Mistriotis, P., Mahendra, A., Bajpai,
V.K., Shea, D.J., Manto, K.M., Chai, A.C., et al.
(2019). A microfluidic assay for the quantification
of the metastatic propensity of breast cancer
specimens. Nat. Biomed. Eng. 3, 452–465.
https://doi.org/10.1038/s41551-019-0400-9.

ll
OPEN ACCESS

10 iScience 25, 104678, July 15, 2022

iScience
Article

https://doi.org/10.1016/j.cell.2014.07.013
https://doi.org/10.1016/j.cell.2014.07.013
http://site.physics.georgetown.edu/matlab/
http://site.physics.georgetown.edu/matlab/
https://doi.org/10.1196/annals.1294.006
https://doi.org/10.1196/annals.1294.006
https://doi.org/10.1103/physreve.81.011403
https://doi.org/10.1103/physreve.81.011403
https://doi.org/10.1073/pnas.1508541113
https://doi.org/10.1073/pnas.1508541113
https://doi.org/10.1006/jcis.1996.0217
https://doi.org/10.1006/jcis.1996.0217
https://doi.org/10.1242/jcs.028183
https://doi.org/10.1103/physreve.57.7192
https://doi.org/10.1103/physreve.57.7192
https://doi.org/10.1002/ijc.29210
https://doi.org/10.1002/1097-0142(19800701)46:1&lt;162::aid-cncr2820460127&gt;3.0.co;2-b
https://doi.org/10.1002/1097-0142(19800701)46:1&lt;162::aid-cncr2820460127&gt;3.0.co;2-b
https://doi.org/10.1002/1097-0142(19800701)46:1&lt;162::aid-cncr2820460127&gt;3.0.co;2-b
https://doi.org/10.1038/d41586-019-03242-8
https://doi.org/10.1038/d41586-019-03242-8
https://doi.org/10.1109/tcom.1967.1089532
https://doi.org/10.1038/nrc2627
https://doi.org/10.1088/1367-2630/15/2/025036
https://doi.org/10.1088/1367-2630/15/2/025036
https://doi.org/10.1038/s41598-021-89130-6
https://doi.org/10.1038/s41598-021-89130-6
https://doi.org/10.17867/10000163
https://doi.org/10.17867/10000163
http://refhub.elsevier.com/S2589-0042(22)00950-6/sref17
http://refhub.elsevier.com/S2589-0042(22)00950-6/sref17
http://refhub.elsevier.com/S2589-0042(22)00950-6/sref17
http://refhub.elsevier.com/S2589-0042(22)00950-6/sref17
http://refhub.elsevier.com/S2589-0042(22)00950-6/sref17
https://doi.org/10.1002/ijc.24831
https://doi.org/10.1002/ijc.24831
https://doi.org/10.1038/s41592-018-0170-4
https://doi.org/10.1038/s41586-019-1087-5
https://doi.org/10.1038/s41586-019-1087-5
https://doi.org/10.1016/j.cell.2018.03.035
https://doi.org/10.1016/j.cell.2018.03.035
https://doi.org/10.18632/oncotarget.6159
https://doi.org/10.18632/oncotarget.6159
https://doi.org/10.1103/physrevlett.100.208302
https://doi.org/10.1016/j.neo.2018.03.002
https://doi.org/10.1016/j.neo.2018.03.002
https://doi.org/10.1371/journal.pone.0058859
https://doi.org/10.1371/journal.pone.0058859
https://doi.org/10.1038/nmeth.4326
https://doi.org/10.1016/j.cell.2020.08.045
https://doi.org/10.1016/j.cell.2020.08.045
https://doi.org/10.1038/s41551-019-0400-9


STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Wolfgang Losert (wlosert@umd.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d MCF10A and MDA-MB-231 data underlying the figures are available in Data S1. The images analyzed in

this study are available in the Image Data Resource (Williams et al., 2017). DOIs are listed in the key re-

sources table.

d The code used for analysis in this study has been deposited at GitHub and will bemade publicly available

upon acceptance for publication. DOIs for the analysis code are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell migration dataset

No cell culture or imaging experiments were conducted for this study. The images of cell migration used in

this work are a freely available dataset in the Image Data Resource (Lee et al., 2021b). This previously pub-

lished dataset (Lee et al., 2021a) was collected on the MCF10A human breast epithelial cell line, MCF10A

PTEN�/�, MCF10A KRas(G12V), MCF10A KRas(G12V)/PTEN�/� (Thompson et al., 2015), and the MDA-MB-

231 breast cancer cell line. MCF10A cells were maintained in DMEM/F12 medium supplemented with 5%

horse serum, 10 mg/mL insulin, 0.5 mg/mL hydrocortisone, and 100 ng/mL cholera toxin. For comparisons

between the MCF10A, MCF10A PTEN�/�, MCF10A KRas(G12V), and MCF10A KRas(G12V)/PTEN�/� cells,

the media was additionally supplemented with 0.5 mg/mL puromycin to select for LifeAct-GFP. MDA-MB-

231 cells were maintained in DMEM supplemented with 10% FBS.

For this published dataset, cells were plated in 12 well glass-bottom plates using a complete block design,

which allows for pairwise comparisons between cell sheets imaged on the same plate. Each well was coated

with 3.25 mg/cm2 collagen IV by placing the plate on ice and leaving 500mL of collagen IV solution (3.25 mg/

cm2 collagen IV in 0.05 M HCl) on each well for 1 h before rinsing twice with water. A 5 mL drop of 1.5 3 106

cells/mL was plated in the center of each well, allowed to adhere for approximately 45min at 37�C, and then

rinsed to remove non-adherent cells. This created a circular cell sheet, which was then allowed to adhere

overnight before imaging, followed by amedium change 1 h before the start of imaging. An initial snapshot

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Cell migration imaging dataset Lee et al., 2021b Imaging Data Resource: https://doi.org/10.17867/10000163a

Software and algorithms

Crocker-Grier Tracking Algorithm Daniel Blair and Eric Dufresne http://site.physics.georgetown.edu/matlab/

ImageJ Schneider et al. (2012) https://imagej.nih.gov/ij/

MATLAB The MathWorks, Inc https://www.mathworks.com/?s_tid=gn_logo

Cell Counter plugin for ImageJ Kurt De Vos https://imagej.nih.gov/ij/plugins/cell-counter.html

U-Net model Ling et al. (2020) N/A

Trained U-Net and D2
min analysis code This paper https://github.com/losertlab/UNet-D2min
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of the entire cell sheet was recorded by tiling multiple positions before focusing on ROIs for time lapse im-

aging. Cells were then imaged every 3 min for 12 h using a 103 phase-contrast objective (Nikon CFl Plan

Fluor, NA 0.3) on a PerkinElmer Ultra-View VoX spinning-disk confocal with a Tokai Hit incubator chamber

(37�C and 5%CO2) and amotorized stage for acquiringmultiple positions over time. Images were acquired

using a Hamamatsu C10600-10BORCA-R2 camera (12 bit images 1024 pixels3 1344 pixels, 0.582 mm/pixel)

using PerkinElmer’s Volocity software (version 6.4.0). The initial analysis of these images is described in (Lee

et al., 2021a) and the image files are available in the Image Data Resource (Williams et al., 2017) under DOI

[https://doi.org/10.17867/10000163a] (Lee et al., 2021b).

METHOD DETAILS

Image and migration analysis

Cell nuclear segmentation from phase contrast images was performed by a pre-trained U-Net model (Ling

et al., 2020), which generated labeled binary images of inferred connected objects representing nuclei. We

used a customMATLAB code to filter out connected objects that are significantly smaller than the average

physiological nucleus size; this step filters out imaging and segmentation noise. The centroid of each nu-

cleus was found using the regionprops function in MATLAB. The Crocker-Grier algorithm (Crocker and

Grier, 1996), as implemented by Blair & Dufresne for MATLAB (Blair and Dufresne), performs nuclear

tracking on the centroids and outputs the tracks of each nucleus for each frame. A custom MATLAB

neighbor-finding code (Lee et al., 2013) was used to find the closest 6 neighbors for each cell nucleus in

each frame. This output was then used to calculate D2
min and the affine components of motion as described

in the section below.

Angular deviation, s, was calculated as s =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 � RÞp

, where each tracking vector was transformed into a

unit vector in the two-dimensional plane, ri =

�
cos qi
sinqi

�
, and R is the length of the vector average of the

direction vectors: R = k1
N

P
iri k.

D2
MIN AND AFFINE ANALYSIS

D2
i; min =

1

6
min

(X6

j = 1

�
d
!

ijðt1Þ � Ei d
!

ijðt0Þ
�2)

(Equation 1)

D2
min is calculated using Equation (1) by minimizing the difference between the final relative position of a

cell and its neighbors, d
!

ijðt1Þ , and the affine component, which is a linear transformation of the initial rela-

tive position, Ei d
!

ijðt0Þ.

The 23 2 linear transformationmatrix E that is fit in the D2
min equation was decomposed to further describe

the affine components of motion. We rewrite the matrix as a product of a pure rotation RðqÞ and a symmet-

ric deformation matrix F: E = RðqÞF which we can expand as shown in Equation (2). The angle of rotation, q,

can then be found by substituting the elements of E into Equation (3).

E =

�
cosðqÞ sinðqÞ
� sinðqÞ cosðqÞ

��
f1 0
0 f2

�
=

�
cosðqÞf1 sinðqÞf2
� sinðqÞf1 cosðqÞf2

�
=

�
e1 e2

e3 e4

�
(Equation 2)

q = tan� 1

�
e2 � e3

e1 + e4

�
= tan� 1

�
sinðqÞf2 � ð� sinðqÞf1Þ
cosðqÞf1 + cosðqÞf2

�
= tan� 1

�
sinðqÞðf1 + f2Þ
cosðqÞðf1 + f2Þ

�
= tan� 1

�
sinðqÞ
cosðqÞ

�
(Equation 3)

The deformationmatrix F can then be found using F = R� 1ðqÞE. We further define a strain tensor ε = F � I.

The subtraction of the identitymatrix from F ensures that its eigenvalues would be 0 if no deformation, positive

if stretching, and negative if compressing. The affine deformation is calculated as the difference between the

two eigenvalues of matrix F, and affine dilation is the average of the eigenvalues. Examples of q; RðqÞ; F, and ε

are given in Figure S3.
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For instances of skipped frames, we keep a memory of disappearing cells in the tracking algorithm, how-

ever, metrics like velocity and D2
min are calculated for frames of the track where the previous and later

frames are not missing data.

The D2
min calculation is done in the reference frame of an individual cell. Therefore, to extract the affine and

non-affine motion components of the lab frame motion, we performed a change of reference frame. For

example, we calculated the D2
min value for a cell with 6 neighbors from a time t1 to t2. Then the expected

difference in motion between cell i and neighbors j at t2 is Ei d
!

ijðt1Þ, where d
!

ijðt1Þ is the difference motion

at time t1: d
!

ijðt1Þ = riðt1Þ � rjðt1Þ. Thus, the expected (affine) neighbor position in the lab frame at time t2 is

given by Equation 4.

rj;affineðt2Þ = Ei d
!

ijðt1Þ+ d
!

ijðt1Þ+ riðt2Þ = Ei d
!

ijðt1Þ+ rjðt1Þ+ ðriðt2Þ � riðt1ÞÞ (Equation 4)

Equation (4) is the neighbor location in the lab frame plus the cell displacement over time plus the expected

motion difference between cell and neighbors. We then can find the difference between the expected and

actual positions for neighbors in the lab frame. Then, taking the average of over 6 neighbors, we get the

non-affine motion of the cell compared to its neighbors. To get the affine component of the motion, we

simply subtract the calculated non-affine motion from the actual (total) motion.

QUANTIFICATION AND STATISTICAL ANALYSIS

For each metric, means shown in the respective figures were calculated from N = 10 independent exper-

iments for the MCF10A genetically defined model system and N = 6 for comparisons to the MDA-MB-231

cells. Error bars represent the standard deviation across independent replicates unless otherwise noted. In

boxplot figures, the central line indicates the median value, while the top and bottom edges of the box

indicate the 75th and 25th percentiles. Outliers on the boxplots (red plus symbols) were defined as values

greater than 1.5 times the interquartile range (IQR indicated by the boxplot whiskers). Statistical significa-

tion test presented as asterisks are calculated using two-sample t test. All the calculations are done using

MATLAB. Underlying data for quantitative figures is presented in tabular format in Data S1.
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