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Bacillus aryabhattai AB211 is a plant growth promoting, Gram-positive firmicute,
isolated from the rhizosphere of tea (Camellia sinensis), one of the oldest perennial crops
and a major non-alcoholic beverage widely consumed all over the world. The whole
genome of B. aryabhattai AB211 was sequenced, annotated and evaluated with special
focus on genomic elements related to plant microbe interaction. It’s genome sequence
reveals the presence of a 5,403,026 bp chromosome. A total of 5226 putative protein-
coding sequences, 16 rRNA, 120 tRNA, 8 ncRNAs, 58 non-protein coding genes, and
11 prophage regions were identified. Genome sequence comparisons between strain
AB211 and other related environmental strains of B. aryabhattai, identified about 3558
genes conserved among all B. aryabhattai genomes analyzed. Most of the common
genes involved in plant growth promotion activities were found to be present within
core genes of all the genomes used for comparison, illustrating possible common plant
growth promoting traits shared among all the strains of B. aryabhattai. Besides the core
genes, some genes were exclusively identified in the genome of strain AB211. Functional
annotation of the genes predicted in the strain AB211 revealed the presence of genes
responsible for mineral phosphate solubilization, siderophores, acetoin, butanediol,
exopolysaccharides, flagella biosynthesis, surface attachment/biofilm formation, and
indole acetic acid production, most of which were experimentally verified in the
present study. Genome analysis and experimental evidence suggested that AB211
has robust central carbohydrate metabolism implying that this bacterium can efficiently
utilize the root exudates and other organic materials as an energy source. Genes
for the production of peroxidases, catalases, and superoxide dismutases, that confer
resistance to oxidative stresses in plants were identified in AB211 genome. Besides
these, genes for heat shock tolerance, cold shock tolerance, glycine-betaine production,
and antibiotic/heavy metal resistance that enable bacteria to survive biotic/abiotic stress
were also identified. Based on the genome sequence information and experimental
evidence as presented in this study, strain AB211 appears to be metabolically diverse
and exhibits tremendous potential as a plant growth promoting bacterium.

Keywords: Bacillus aryabhattai, next generation sequencing, bacterial genomics, comparative genomics,
pangenome, plant growth-promoting rhizobacteria, root colonization
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INTRODUCTION

Plant growth promoting rhizobacteria (PGPR) are a
heterogeneous group of bacteria that are present in the
rhizosphere and exert beneficial effects on plant development
(Kloepper et al., 1980; Lugtenberg and Kamilova, 2009).
The rhizosphere is an extremely dynamic micro-niche in
which complex interactions occur between plant roots and
microorganisms (Molina et al., 2000; Uroz et al., 2010; Blom
et al., 2011). Microorganisms compete for colonization on the
plant roots and simultaneously function as phytostimulators,
biofertilizers, and as antagonists (biopesticides) (Khalid et al.,
2004; Vassilev et al., 2006; Spaepen et al., 2007; Van Wees
et al., 2008; Lugtenberg and Kamilova, 2009; Matilla et al.,
2010; Blom et al., 2011). A variety of rhizobacteria, including
Pseudomonas and Bacillus spp. are commonly found in the
rhizosphere of a wide variety of plant species and stimulate
plant growth through direct or indirect mechanisms (Podile
and Kishore, 2006). Direct plant growth promotion is often
executed via increasing bioavailability of mineral nutrients such
as nitrogen, phosphorous, and iron (Lugtenberg and Kamilova,
2009) or by providing amino acids and other nutritional factors
(Simons et al., 1997; Compant et al., 2010; Vial et al., 2011) or by
synthesis of plant growth regulating compounds such as indole
acetic acid (IAA), gibberellins, acetoin (3-hydroxy-2-butanone),
2,3-butanediol, and cytokinin (Arshad and Frankenberger, 1991;
Spaepen et al., 2007; Kang et al., 2014; Kudoyarova et al., 2014;
Piechulla and Degenhardt, 2014). Besides, rhizobacteria often
metabolize compounds like phenylacetic acid (PAA), the stress
ethylene precursor 1-aminocyclopropane-1-carboxylic acid
(ACC), and show chemotaxis toward the source of gamma-
aminobutyrate (GABA) and together they contribute toward
successful plant–microbe interaction (Glick et al., 1998; Shah
et al., 1998; Glick, 2004; Onofre-Lemus et al., 2009; Reyes-
Darias et al., 2015). There exist several indirect mechanisms
as well, through which many rhizobacteria promote plant
growth. Such mechanisms involve events like: synthesis of
antibiotics, antifungals, and biopesticides (Hammer et al., 1997;
Lugtenberg and Kamilova, 2009; Perez et al., 2011; Ahemad and
Khan, 2012), production of biocides such as hydrogen cyanide
and fungal cell wall degrading enzymes, e.g., chitinase and
β-1,3-glucanase (Zhang and Yuen, 2000; Haas and Keel, 2003;
Malfanova et al., 2011), and production of iron chelating small
molecules, siderophores to compete for iron in the rhizospheric
environment to achieve better selection (Lemanceau et al.,
2009; Schalk et al., 2011). Among rhizobacteria, Pseudomonas
spp. are the most widely studied in relation to plant growth
promotion activities (Meyer and Linderman, 1986; Paulsen
et al., 2005; Goswami et al., 2015; Godino et al., 2016). Several
plant growth promoting Pseudomonas spp. have contributed
significantly to understand the mechanisms that are involved in
phytostimulation and disease suppression. However, studies have
shown that biological preparations from spore-forming Bacillus
spp. are preferred due to their persistent viability that supports
commercialization (Haas and Defago, 2005). Compared to plant
growth promoting Pseudomonas, relatively little is known about
the growth promotion features of plant associated Bacillus spp.

Despite their well established effect on plant growth promotion
and their role as biocontrol agents, Bacillus spp. have been
considered as typical soil bacteria for a long time (Kloepper et al.,
2004; Compant et al., 2005). In recent years, researchers have
demonstrated the great potential of various Bacillus isolates in
plant growth promotion, in biocontrol as well as in systemic
acquired resistance in plants (Chen et al., 2007; Wang et al.,
2009).

The Bacillus aryabhattai was first isolated, and identified from
cryotubes used to collect air samples at an altitude of 27 to 41 km
in 2009 (Shivaji et al., 2009). Since then, some B. aryabhattai
strains have been isolated from various environments like sugar
cane and rice plantation soil (Tanamool et al., 2013; Pailan
et al., 2015), rhizosphere of horseweed (common wild plant) (Lee
et al., 2012) and Spartina maritima (Mesa et al., 2015), dense
forest soil (Chanasit et al., 2014), an urban tunnel (Park et al.,
2012), and from deep sea water (Wen et al., 2015). Preliminary
plant growth promotion capacity of B. aryabhattai isolates (LS9,
LS11, LS12, and LS15) was demonstrated earlier using Xanthium
italicum as the model plant system (Lee et al., 2012). However,
little is known about the genomic potential of these isolates on
phytostimulation and biocontrol. The present study aims at the
thorough elucidation of the plant growth promoting traits and
to identify other metabolic features of B. aryabhattai AB211,
rhizobacteria isolated from tea rhizosphere. To investigate the
genomic potential, and to explore the habitat-specific variations
in the gene repertoire of B. aryabhattai AB211, we performed
genome sequencing and comparative genomics of the strain
AB211 and other related environmental strains of B. aryabhattai.
An exploration of the genome sequence has identified key
attributes essential for possible colonization, establishment, and
interaction of the strain AB211 with the host plant. We also
performed a detailed biochemical/metabolic characterization,
biofilm/root association, and plant growth promotion studies to
consolidate on the genomic insights.

MATERIALS AND METHODS

Strain and Culture Media
Bacillus aryabhattai AB211 was isolated using a functional
screening based method described previously (Ghosh et al.,
2007), from tea rhizosphere of Rohini, Darjeeling district, West
Bengal, India. Strain AB211 was routinely grown in M9 minimal
medium supplemented with glucose. The culture was incubated
at 37◦C on a rotary shaker (150 rpm) for desired period with or
without amendments of antibiotic (tetracycline 35 µg ml−1).

To test the ability of B. aryabhattai AB211 to use inorganic and
organic insoluble phosphate as a phosphorous source, Pikovskaya
agar plates were used (Pikovskaya, 1948). The reaction was
considered positive when a clear halo surrounding the bacterial
colonies was observed after 3–7 days of incubation at 37◦C.
Furthermore, the ability of the strain AB211 to solubilize
inorganic phosphate was quantitatively assessed. 50 µl of
overnight grown culture was inoculated in 5 ml Pikovskaya’s
broth and incubated for 7 days. Uninoculated medium was
used as a control. Following incubation, the cell suspension
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was centrifuged, and the available phosphate content of the
supernatant was estimated by malachite green method (Ghosh
et al., 2011). The experiment was performed in triplicate.

Chrome azurol sulfonate (CAS) agar solid medium was
used to screen siderophore production (Alexander and Zuberer,
1991). The reaction was considered positive when an orange
halo surrounding the bacterial colony appeared due to the
removal of iron from CAS by the siderophore. Quantification
of siderophore production was estimated by following the
formula: % siderophore unit = [(Ar−As)/Ar] × 100, where,
Ar = absorbance of reference (minimal medium + CAS assay
solution), As= absorbance of the sample.

To detect the production of ammonia, the strain was grown
in 4% peptone broth and incubated for 7 days at 37◦C. Following
incubation, 0.5 mL of Nessler’s reagent was added to the bacterial
suspension. The development of deep yellow color with brown
precipitation indicated ammonia production.

Production of indole-3-acetic acid (IAA) by the strain
AB211, was estimated by growing the isolate in M9 medium,
supplemented with L-tryptophan as a precursor of IAA at
different concentrations (0, 50, 100, 200, 300, 400, and 500 mg
l−1), and incubated for 48 h. The supernatant of the culture
fluid was mixed with Salkowski’s coloring reagent (50 ml of 35%
HClO4, 1 ml of 0.5 M FeCl3) in the ratio of 2:1 and incubated in
the dark for 30 min. The absorbance was measured at 540 nm.

The synthesis of exopolysaccharides (EPS) was estimated
following the method described previously (Chiba et al., 2015).
Quantification of proteins in the isolated EPS fractions was
carried out using standard Bradford protein assay and total
saccharide was estimated following phenol-sulfuric acid method.

Identification and Characterization of
B. aryabhattai AB211
Bacterial identification was conducted based on morphology and
biochemical characterization. The morphological, cultural, and
physiological characteristics of the isolated strain was compared
with data from Bergey’s Manual of Determinative Bacteriology
(Holtz, 1993). To identify the strain AB211 by carbon source
utilization pattern, the GEN III MicroPlateTM test (Biolog
Inc., Hayward, CA, USA) was carried out, which provides a
standardized micro-method using 94 biochemical tests to profile,
and characterize a broad range of bacteria (Bochner, 1989). This
technique analyzes a microorganism depending on phenotypic
tests which include 71 carbon source utilization assays and 23
chemical sensitivity assays.

Genomic DNA Isolation and Genome
Sequencing
Total DNA was isolated from B. aryabhattai AB211 as
described for B. subtilis according to the method of Bron and
Venema (1972). Genome sequencing of B. aryabhattai AB211
was performed at Bionivid Technology Pvt. Ltd (Bengaluru,
Karnataka, India) using an Illumina platform using HiSeq
Illumina paired-end technology with 151 bp of reads. All reads
were quality assessed using NGSQC toolkit. Primary genome
assembly using Velvet (v 1.2.10) (Zerbino and Birney, 2008), and

further scaffolding of primary assembly using SSPASE (v 3.0)
(Boetzer et al., 2011) were performed. De novo genome validation
and quality control were performed using Bowtie 2 (v 2.2.2)
(Langmead et al., 2009).

Genome Analysis and Annotation
Putative coding sequences (CDS) were identified by the RAST
server (Aziz et al., 2008; Overbeek et al., 2014). All CDS identified
were manually reviewed, and false CDS were flagged as “artifact.”
The remaining CDS were then submitted to automatic functional
annotation via BLAST searches against the UniProt databank to
determine significant homology. Putative tRNAs were identified
using ARAGORN (v 1.2.36) (Laslett and Canback, 2004), and
rRNAs were identified using RNAmmer 1.2 server (Lagesen et al.,
2007). The presence of plasmid derived sequence was verified
using Webcutter (v 2.0), and Plasmid Finder (v1.3) (Carattoli
et al., 2014). Detection of bacteriophage sequences was performed
using PHAST (Zhou et al., 2011). The taxonomic identification
was performed using MEGA6 (Tamura et al., 2013). Finally,
genome finishing was carried out using CONTIGuator (V 2.7)
(Galardini et al., 2011) applying closest homolog of the assembled
genome as a reference.

Genome Comparisons
For comparative genomic analysis of AB211 strain, genome
sequences of seven other B. aryabhattai strains (Table 1) were
downloaded from NCBI1. For identification of reference genome,
a whole genome nucleotide based alignment (BLAST) with strain
AB211 in the NCBI ‘nr’ database was performed with >95%
identity and coverage values. Identified highly similar genomes
(Table 1) were then subjected to ANI analysis, and the most
identical complete genome sequence, viz. B. megaterium Q3,
also having close evolutionary relationship with strain AB211
as evident in phylogenetic analysis, was selected as reference
genome for genome alignment of AB211. To arrange the genomic
assemblies of the draft genome sequences, contigs were ordered
and oriented by promer (Kurtz et al., 2004) based on their
genomic alignments with the complete genome sequence of
B. megaterium Q3. Ordered contigs were then pasted together
to form a pseudo-chromosome, where contig boundaries were
separated by a spacer sequence, as suggested previously (Tettelin
et al., 2005).

Core and Strain-Specific Gene
Extrapolation
To identify the core and strain-specific genes of AB211, a
pan-genome analysis of gene distribution of AB211 was carried
out against other B. aryabhattai strains. In this study, five
strains of B. megaterium (Table 1), having high genomic and
evolutionary similarities with B. aryabhattai AB211, were also
considered. The pan-genome analysis of these 13 genomes
was carried out in BPGA pipeline (Chaudhari et al., 2016),
with default criteria. The specific set of genes (present and/or
absent) of AB211 was then subjected to Clusters of Orthologous

1ftp.ncbi.nlm.nih.gov/
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Group (COG) category-wise classification scheme by performing
PSI-BLAST against NCBI COG database in WebMGA analysis
server with default parameters (Wu et al., 2011). The statistical
significance of the abundance of individual COG categories was
determined by a 2× 2 contingency table in STATISTICA version
6 (StatSoft Inc., 2001).

Identification of Recombination Specific
Genes in B. aryabhattai AB211
To understand the genome-wise distribution of orthologous
clusters and to find out whether recombination has played any
role in the evolution of B. aryabhattai strains, a genome-wide
synteny analysis was performed in GSV (Revanna et al., 2011)
with various criteria. Multiple genome alignment utility in
progressive Mauve (Darling et al., 2010) was also used for
the same. The probable recombination regions were identified
from these syntenic blocks. Individual gene sequences were
extracted from these homologous clusters and further aligned
with ClustalW in MEGA6 (Tamura et al., 2013) to search for
any recombination signature present in them by RDP analysis
(Martin et al., 2010).

Phylogenetic Analysis
Based on the obtained 16S rRNA gene sequence of B. aryabhattai
AB211, and multiple alignments, a phylogenetic tree was
constructed by the Neighbor-Joining method, and confidence
level was estimated for 1,000 replicates using MEGA6 (Molecular
Evolutionary Genetics Analysis) (Tamura et al., 2013). Unaligned
regions and gaps were excluded from the analyses. Sequences
of representative Bacillus strains and out-group were obtained
from NCBI GenBank2. Core and pan-genome phylogenetic
studies were performed in BPGA pipeline with default criteria
(Chaudhari et al., 2016).

Biofilm Assay
The assay was performed in 96-well tissue culture plates
(Nunclon Delta Surface, Thermo Scientific) to study the
efficiency of the strain AB211 in biofilm formation under varied
incubation time in M9 medium (Koerdt et al., 2011). After
inoculation with the culture and incubation for 48, 72, and 96 h,
respectively, the microtiter plates were cooled down to room
temperature and the OD600 of the planktonic cells from each
well was measured using a plate reader (FLUOstar, OPTIMA)
at a wavelength of 600 nm. Culture supernatant was then
removed from each well and the cells attached to the well were
quantitatively estimated using crystal violet (CV). Ten microliter
of a 0.5% solution of CV was added to each well and incubated
at room temperature for 10 min. Subsequently, the liquid
supernatant was removed from each well and the biofilm cells
attached to the well were washed with water. Hundred percentage
ethanol was added to release the CV from the biofilm. The
absorbance of CV from each well was measured at a wavelength of
570 nm. The percentage of cells within the biofilm was calculated
by determining the correlation between the growth of the cells

2http://www.ncbi.nlm.nih.gov/nucleotide
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(OD600 nm) and the absorbance of CV (OD570 nm). Each set was
performed in triplicate.

Scanning Electron Microscopic (SEM)
Analysis of B. aryabhattai AB211
Planktonic Cells, Biofilm and Its
Interaction with Maize Roots
A 16 h grown culture of AB211 was inoculated (1% v/v) in
M9 minimal medium and incubated for 24 h at 37◦C. After
incubation, cells were harvested by centrifugation and washed
thrice with sodium phosphate buffer (pH 7.4). Cells were then
fixed with 0.5% glutaraldehyde solution and washed thrice with
sodium phosphate buffer. Dehydration of cells was carried out
in a gradient of ethanol and finally incubated in 100% ethanol
for 1 h. Two–three microliter of fixed cells were placed on a
small glass slide and dried (Focardi et al., 2010; Banerjee et al.,
2011). SEM observation was performed using a scanning electron
microscope (Zeiss-EVO18).

For biofilm study, 16 h grown culture of the strain AB211 was
inoculated on cover slips (1% v/v) kept in M9 minimal medium
and incubated for 48, 72, and 96 h, respectively, at 37◦C without
disturbance. The biofilm was fixed following the same protocol
as mentioned earlier. After complete dehydration, the cover slips
were dried and viewed under SEM.

To assess the ability of B. aryabhattai AB211 to colonize
on maize roots, 50 ml of M9 minimal medium (supplemented
with 0.5% w/v glucose), inoculated with the strain AB211 was
incubated overnight at 37◦C under shaking conditions. The cells
were harvested by centrifugation at 6000 rpm for 5 min and
were washed twice in M8 buffer (22 mM Na2HPO4, 22 mM
KH2PO4, 100 mM NaCl, pH 7.0). Finally, the harvested cells were
suspended in 250 ml of M8 buffer. Roots of the maize seedlings
were washed thoroughly with sterile water to get rid of attached
soil particles, and then soaked in bacterial suspension for 1 h
under aseptic conditions, and transferred back to sterile bottles.
Control was maintained by following the same protocol with
M8 buffer, excluding the cells. Both the plants were transferred
to plant growth chamber at 28◦C with a 16 h light regimen.
The roots were then cut and fixed in 2.5% glutaraldehyde in
0.075 M phosphate buffer overnight, and processed further for
dehydration and visualization as described above.

Pot Experiments: Plant Growth
Promotion Assay Using Maize Seedlings
Based on the performance in the in vitro experiments,
B. aryabhattai AB211 was further evaluated for its plant growth
promoting potential on maize seedlings in pot trials. Surface
sterilized maize seeds (variety: Early Golden Bantam) were
sown in sterile pots (one seed/pot) filled with sterile soilrite
(Keltech Energies Limited, Bangalore, India). After germination,
rhizospheres of 7-day-old seedlings were inoculated with the
isolate (inoculation with about 108 cfu/ml of AB211 culture; and
in soil, resulting cfu of AB211 was approximately 107 cfu/gm).
Control was maintained by applying sterile medium without
culture on the plants. Sixteen replicates were maintained for both
control and treatment sets. The plants were regularly irrigated.

Observations were taken on the 15th day of treatment. Growth
parameters such as total chlorophyll content, height, wet weight,
dry weight of the shoot and root were measured and statistically
analyzed.

Accession Number
The whole-genome shotgun project of B. aryabhattai AB211 was
deposited at DDBJ/EMBL/GenBank under the accession number
MCAN00000000. The accession number for submitted 16S rRNA
gene sequence is KP896525.1.

RESULTS AND DISCUSSION

General Genomic Features
The main features of the B. aryabhattai AB211 genome have been
summarized in Table 1. The circular chromosome (5,403,026 bp)
was found to be somewhat smaller to that of the closely related
B. megaterium (Arya et al., 2014; Wang et al., 2016). The whole
genome sequence of strain AB211 was obtained by an Illumina
platform using HiSeq Illumina paired-end technology with
151 bp reads. Primary genome assembly using Velvet (v 1.2.10)
(Zerbino and Birney, 2008), and further scaffolding of primary
assembly using SSPASE (v 3.0) (Boetzer et al., 2011) revealed
that the draft genome consists of 23 scaffolds with an average
genome length of ∼5.4 Mbp, G+C content of 37.82%, and N50
size of 4199117 (∼4.19 Mb) bp. Genome annotation by RAST
server revealed that the draft genome has 5226 protein CDSs,
16 rRNA genes, 120 tRNAs, 8 ncRNAs, 58 non-protein coding
genes, and 11 prophage regions. No plasmid was identified
when analyzed using Webcutter (v 2.0) and Plasmid Finder
(v1.3) (Carattoli et al., 2014). The taxonomic identification using
MEGA6 (Tamura et al., 2013) revealed that the strain AB211
exhibits closest phylogenetic relationship to the B. megaterium
strain Q3.

In RAST annotation, genes encoding for transport system,
plant–bacterial interaction, secretion system, antibiotic
resistance, surface appendages/exopolysaccharides synthesis,
heavy metal resistance/mobilization, and stress response
were observed. In general, B. aryabhattai AB211 genome
revealed high metabolic diversity. In reference to plant-microbe
interaction, the AB211 genome analysis revealed 300 proteins
in carbohydrate metabolism, 54 proteins in flagella assembly,
function and signaling; 19 proteins in nitrogen metabolism, 19
proteins in phosphorous metabolism, 29 proteins in siderophore
biosynthesis and iron acquisition, 74 proteins in stress response,
43 proteins in antibiotic and heavy metal resistance, 17 proteins
in plant hormone/volatile compound synthesis and 16 proteins
in aromatic compound degradation pathway (Supplementary
Table S1).

Comparative Genomics of B. aryabhattai
AB211
To understand the evolutionary relationship of B. aryabhattai
AB211 with other Bacilli, a 16S rRNA Neighbor-Joining
phylogeny of AB211 with 24 other known Bacillus species was
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FIGURE 1 | Phylogenetic tree based on 16S rRNA gene sequences obtained by the neighbor-joining (NJ) method showing the phylogenetic
relationship of the Bacillus aryabhattai AB211 with the related species. The bootstrap consensus tree inferred from 1000 replicates is taken to represent the
evolutionary history of the taxa analyzed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are
shown next to the branches. The evolutionary distances were computed using the Jukes–Cantor method and are in the units of the number of base substitutions per
site. Evolutionary analyses were conducted in MEGA6. Accession numbers are written after the species or strain name. The tree is rooted with thermoacidophilic
crenarchaeon Sulfolobus acidocaldarius DSM639 (NR_074267.1).

performed. Phylogenetic analysis revealed the close evolutionary
relationship of AB211 with B. megaterium (Figure 1). To
further illustrate the evolutionary relationship, both core
and pan-genomic phylogeny of B. aryabhattai strains were
constructed with those strains of B. megaterium that have
high sequence similarities with B. aryabhattai AB211 (>95%
identity and coverage) (Table 1). Core and pan-matrix phylogeny
revealed that, in genome scale, there was very little difference in
B. aryabhattai and B. megaterium strains. In fact, in both core
and pan-genome phylogeny, few strains of B. megaterium were
found to be more related to AB211 than other B. aryabhattai
strains (Supplementary Figure S1). Among these strains of
B. megaterium, complete genome sequence of strain Q3, having
maximum genomic similarity with AB211, and also having
close relationship in both core and pan-matrix phylogeny, was
being selected as a reference genome for comparative analysis.
Average Nucleotide Identity (Goris et al., 2007) (ANI) value also
indicated a high degree of reciprocal sequence similarity (Average
ANI = 96.35%) between these two genomes (Supplementary
Figure S2). This close homology of B. megaterium with
B. aryabhattai strains have been well reported in the previous

analyses (Ray et al., 2012), emphasizing a common evolutionary
path of these two species of Bacilli.

For genomic comparisons, seven other B. aryabhattai genome
sequences were downloaded from NCBI (Table 1). Genomic
alignments were performed for all of these draft genomes against
a complete genome sequence of B. megaterium strain Q3. Contigs
were reordered, and pseudochromosomes were constructed for
each of the draft genomes. To check the consistency of the
draft genome sequences of B. aryabhattai strains, a whole
genome-wide synteny analysis was performed both with the
complete genome of B. megaterium Q3 and with each other
(Supplementary Figure S3), applying different orthology criteria.
Synteny analysis of strain AB211 with B. megaterium Q3 revealed
an overall consistent genomic arrangement in each of these
closely related species (Supplementary Figure S3A). Locally
Collinear Blocks (LCB) in progressive Mauve (Darling et al.,
2010) also showed no major recombination chunks among the
eight strains of B. aryabhattai (Supplementary Figure S3B).
Furthermore, a genome synteny analysis among these strains
was performed with different criteria of identifying probable
recombination blocks (such as e-value, base pair length etc.)
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in GSV (Revanna et al., 2011). Probable recombination regions
were marked, and individual gene sequences from these regions
were extracted and aligned with ClustalW in MEGA6 (Tamura
et al., 2013) for recombination study with RDP (Martin et al.,
2005). Three different recombination detection methods were
tested in these sequences, viz. GENECONV (Sawyer, 2000),
Bootscan (Martin et al., 2005) and MaxChi (Smith, 1992), but
none of the above mentioned program showed any evidence of
recombination in these gene alignments.

By a comparative BLASTN analysis with BLAST Ring Image
Generator (BRIG), the newly sequenced genome of B. aryabhattai
strain AB211 was compared with partially assembled genomes of
seven other B. aryabhattai strains (Figure 2). Complete genome
sequence of B. megaterium strain Q3, being phylogenetically
close and having maximum genome identity (Supplementary
Table S2) with strain AB211 (beside type strain), was taken as
a reference genome. The overall genome of AB211 has a high
degree of sequence similarities with other B. aryabhattai strains.
The GC content and overall GC skew, when compared with
B. megaterium Q3, showed certain patches of atypical GC usage,
possibly implying regions of horizontal gene transfer (HGT).

To further understand the gene usage of AB211, a
pan-genomic analysis was carried out among eight B. aryabhattai
strains and five evolutionary as well as genetically similar
B. megaterium strains (Table 1 and Supplementary Figure S4).
In these 13 highly similar genomes, the core-genome constitutes
of 3558 genes, whereas the pan-genome has 7392 genes
(Supplementary Tables S3, S4). The power law regression in the
BPGA pipeline estimated that the pan-genome of B. aryabhattai
and B. megaterium was still open (Supplementary Table S4). The
core genes, that were shared among all these strains, constituted
of 3558 genes and the dispensable genes, which were shared
by some but not all, were mainly responsible for differential
characteristics of these strains. 158 gene families were found to
be exclusively present in AB211 but absent in all other strains of
B. aryabhattai (Supplementary Table S5). These 158 unique genes
are probably foreign in nature and could be inherited by HGT
events. GC% analyses of those genes showed that these genes have
significantly lower G+C content than the genomic GC of strain
AB211 (Supplementary Figure S5), supporting the probable HGT
events from lower G+C content organism. Although most of
these unique gene products were uncharacterized, the annotated
ones were mostly related to transport of small molecules and ions,
transcriptional regulators, and membrane proteins. Interestingly
enough, when these genes were arranged in AB211 chromosome
after contig re-ordering, they appeared to be contiguous in
AB211 genome. Among these, a continuous stretch of∼200 kbps
region (Figure 2), encoding 85 proteins, were exclusively
present in B. aryabhattai AB211. To functionally characterize
these proteins, COGs analysis of the encoded proteins was
performed, and their significant abundance levels were assessed
with a 2 × 2 chi-square contingency table in STATISTICA 6.0
(StatSoft Inc., 2001). The significantly abundant COG categories
(p < 0.05) have been shown in Figure 3. The most abundant
COG categories among these exclusively present proteins of
AB211, were COG category M (Cell wall/membrane/envelope
biogenesis, P = 0.09), and COG category G (Carbohydrate

transport and metabolism, p = 0.07). The other most abundant
COG categories, although not statistically significant, were COG
category K (Transcription), and COG category E (Amino acid
transport and metabolism). Individual COG categories, and their
relative abundances have been shown in Supplementary Table S6.
Abundances of these specific functional categories indicate
the unique functional attributes of AB211 within its distinct
ecological niche, which require further thorough examination by
biochemical studies.

Biochemical Characterization of
B. aryabhattai AB211
Bacillus aryabhattai AB211 is a Gram-positive rod shaped spore
forming firmicute. Classical biochemical test evidenced that
the strain AB211 was positive for MR- VP test and indole
production, and negative for catalase, amylase and gelatinase test
(Supplementary Figure S6A). Results of other biochemical tests
have been summarized in Supplementary Figures S6A,B. Besides,
strain AB211 showed positive motility through diffused cloudy
growth away from the line of inoculation in semisolid M9 agar
medium (Supplementary Figure S7D). It also showed resistance
to the antibiotic tetracycline at 35 µg/ml concentration. The
isolate was resistant against all the tested heavy metals at 5 mM
concentration. It was found that the strain AB211 can grow in
M9 medium supplemented with either of 0.5% (w/v) sucrose,
D-glucose, D-fructose, D-maltose, D-galactose, L-arabinose, and
D-mannitol as a sole source of carbon, which was further
confirmed using GEN III MicroPlateTM test. Identification of the
strain AB211 on the basis of carbon source utilization pattern,
using the GEN III MicroPlateTM test revealed that the strain
AB211 could utilize several other carbohydrates and amino acids,
grow at high salt concentration (at 8%), and is resistant to several
antibiotics like- rifamycin, troleandomycin, lincomycin, nalidixic
acid, and aztreonam (Supplementary Figure S6B).

Phosphate solubilizing bacteria increases phosphorus uptake
of crop plants by releasing insoluble and fixed forms of
phosphorus from soil (Rodriguez and Fraga, 1999). After
7 days of incubation, the strain AB211 was found to
form a clear zone around the point of inoculation on
Pikovskaya’s agar plate, indicating phosphate solubilization. In
the quantitative estimation, strain AB211 was found to solubilize
199.09 ± 0.18 µg/ml of inorganic phosphate. The pH of the
broth was found to decline to 4.8 from 7.0 (control), due to
the bacterial activity. Furthermore, quantitative estimation of
exopolysaccharides revealed that the isolated EPS fraction from
72 h grown AB211 contained about 272.5 µg/ml of protein and
185 µg/ml of carbohydrate.

Survival in the Plant Rhizosphere:
Overview of B. aryabhattai AB211
Genomic Signature Linked to
Experimental Evidence
The ability of B. aryabhattai AB211 to efficiently colonize on
the surfaces of plant roots is a prerequisite for phytostimulation.
Based on the genome analysis, B. aryabhattai AB211 seems
well adopted to thrive in the plant rhizosphere as it encodes
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FIGURE 2 | Blast Ring Image Generator (BRIG) diagram is showing homologous chromosome segments of B. aryabhattai strains with B. megaterium
strain Q3. The B. aryabhattai strain AB211 is shown in the inner purple circle (AB211). The outer brown circle (others) contains combined genomic regions of other
seven strains (see Table 1) of B. aryabhattai considered in our analysis. GC content and genomic GC skew are also shown in the figure. The marked area represents
a stretch of exclusively present genes in AB211 when compared with other B. aryabhattai strains (see text for details).

essential features required for its survival. In general, colonization
of the root surfaces followed by phytostimulation involves
different events: (a) movement (swimming) of bacteria toward
plant root, (b) survival within the rhizospheric environment,
e.g., survival in the presence of plant responses (oxidative
stress and root exudates) and inter-species competition between
microbial communities (antibiotic sensitivity), (c) adhesion and
colonization of the root surfaces (biofilm), and finally (d)
synergistic interactions with host plant (metabolic versatility) viz

a viz plant growth promotion. An overview of each of these events
as evident from genome analysis and supporting experimental
results is presented in the subsequent section.

Movement (Swimming) of Bacteria toward Plant Root
In the very first step bacteria move toward plant roots either
passively via soil water fluxes or actively via specific flagellar
activity induced by plant-released compounds or root exudates
(chemotaxis). B. aryabhattai AB211 is well equipped to actively
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FIGURE 3 | Significantly abundant COG categories among exclusively
present genes of B. aryabhattai AB211. Significance levels are assessed
using chi-square test (p < 0.05). Y-axis represents COG frequency values.

move toward plant roots, the preferred site of active colonization.
Its genome contains all the flagellar biosynthesis genes as well as
gene products involved in chemotaxis (Supplementary Table S7).
Under laboratory conditions, B. aryabhattai AB211 displayed a
robust swimming phenotype (Supplementary Figure S7D). Its
genome contains genomic islands encoding flagellar biosynthetic
genes, which are very similar to those found in other Bacillus
species (Chen et al., 2007). Inside the flagellar biosynthesis gene
cluster, determinants involved in chemotaxis were identified.
Interestingly, flagellar proteins are thought to elicit a host basal
defense against the potential pathogen. In B. amyloliquefaciens
FZB42, it was proposed that variation of flagellins and other
exposed bacterial proteins during colonization of plant roots
might enhance the ability of bacteria to tolerate unfavorable plant
responses and thereby facilitate an increased competence in the
rhizosphere (Chen et al., 2007). A similar scenario might be
possible in case of B. aryabhattai AB211. Beside flagella, no other
surface appendages such as pilus-like structures were evident
from either the genome sequence analysis or from electron
microscopic examination of strain AB211.

Survival within the Rhizospheric Environment
To survive within the rhizosphere, bacteria need to employ
diverse defensive machinery that operate in an orchestrated
manner. Plants use a variety of defense mechanisms against
bacterial, viral, and fungal pathogens, including the production of
reactive oxygen species (ROS) in the form of hydrogen peroxide,
hydroperoxyl radicals, hydroxyl radicals, superoxide, nitric oxide,
and phytoalexins (Hammond-Kosack and Jones, 1996; Zeidler
et al., 2004). A prerequisite for bacterial colonization of root
surfaces within such an oxidative rhizospheric environment is
to mount specific, rapid and intense defense responses. In the
rhizospheric environment, root exudates stimulate up-regulation
of bacterial enzymes probably involved in combating oxidative
stress generated by plant roots (Doornbos et al., 2012). The
B. aryabhattai AB211 chromosome was observed to encode
three superoxide dismutases (a Mn superoxide dismutase, a
Fe superoxide dismutase, and a Cu-Zn superoxide dismutase),

and one catalase (Supplementary Table S8). It also revealed
the presence of an organic hydroperoxide resistant protein and
its transcription regulator (Supplementary Table S8). Besides,
a gene encoding alkyl hydroperoxide reductase subunit C, and
peroxide stress regulator PerR were identified in the genome
(Supplementary Table S8). B. aryabhattai AB211 seems to be
able to detoxify free radical nitric oxide by the presence of a
flavohemoprotein nitric oxide dioxygenase, and nitrate reduction
gene cluster (Supplementary Tables S8, S9). Also, the AB211
chromosome seems to encode genes involved in heat shock
responses, carbon starvation, osmoregulation, and other osmotic
responses (Supplementary Table S8). To this end, we believe that
B. aryabhattai AB211 genome is well equipped to thrive in the
oxidative rhizospheric environment.

Beside the cross-talk with plant defense responses, a bacterium
needs to cope with competing microorganisms in the plant
rhizosphere. As B. aryabhattai AB211 colonizes plant root, it
requires strategy to achieve positive selection either by inhibiting
the growth of phytopathogenic bacteria or fungi by depriving
them of the essential iron or by protecting itself from the action
of antibiotic/bacteriocins secreted by competing microorganisms
(Whipps, 2001; Berendsen et al., 2012). B. aryabhattai AB211
genome was observed to encode a robust framework for
iron acquisition and siderophore biosynthesis (Supplementary
Table S10 and Figure S7A). It also revealed the presence of a
number of antibiotic resistance cassettes (bacitracin, vancomycin,
tetracycline, fluoroquinolones, and beta-lactamase) to survive
inter-species competition in the rhizospheric environment
(Supplementary Table S11).

To survive within the native environment, bacteria acquire
traits that help the organism to thrive, and its genome retains
the signature for all these traits. B. aryabhattai AB211 was
isolated from tea rhizosphere of Darjeeling district, West Bengal,
India. As a pest, pathogen and weeds are severe constrains
in the productivity and quality of tea, tea planters in this
part of the world use a wide range of pesticides, fungicides,
or microbicides to combat these problems for high quality
and economic return (Bishnu et al., 2009). Though broad-
spectrum chemicals offer powerful incentives, they have serious
drawbacks on microbial resistance, pest resurgence, harmful
effect on human health and environment, etc. Persistence
of pesticides/fungicides or their undesirable residues within
the tea growing soil and adjacent water bodies contribute
toward shaping the resident microbial communities. Bacterial
degradation of pesticides/fungicides has been reported in
diverse agricultural soil (Bishnu et al., 2012; Verma et al.,
2014). Also, a number of bacterial species have been isolated
from soil and characterized on their potential in degrading
harmful pesticide/fungicide residues (Ahmad et al., 2012;
Lovecka et al., 2015; Pailan et al., 2015; Gilani et al., 2016).
B. aryabhattai AB211 genome was found to encode several genes
involved in degradation of aromatic compounds (Supplementary
Table S12). Among these degradation pathways, identification of
enzymes involved in biphenyl degradation, gentisate degradation,
salicylate degradation, quinate degradation, etc. indicate a
possible role of strain AB211 in pesticide and fungicide removal
in tea rhizospheric soil (Supplementary Table S12).
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The B. aryabhattai AB211 genome revealed genes that
are putatively involved in copper (Cu), cadmium (Cd), Zinc
(Zn), Cobalt (Co), and arsenic (As) resistance/mobilization
(Supplementary Table S11). A genetic locus dedicated to copper
resistance includes a P-type ATPase (CopA) (EC 3.6.3.4),
putative copper resistance proteins CopC/CopD, and a multidrug
resistance transporter of Bcr/CflA family involved in copper
homeostasis (Supplementary Table S11). AB211 genome was
also observed to encode an arsenic/arsenate resistance gene
cassette (Supplementary Table S11). The presence of heavy metal
resistance gene cassettes in strain AB211 is not unexpected, as
the strain was isolated from Darjeeling tea rhizospheric soil,
which was recently being shown to contain different heavy
metals (Salahinejad and Aflaki, 2010; Lagad et al., 2012). The
major source of heavy metals in tea soil is the irrigation with
contaminated ground water. To this end, we believe that the
presence of heavy metal resistance/mobilization cassettes in
strain AB211 provides a selective advantage over other bacteria
to survive in the rhizosphere, especially when these metals are
present.

Adhesion and Colonization of the Root Surfaces
Surface attachment is a prerequisite for successful colonization of
bacteria to root surfaces. In general, root colonization is believed
to occur in two steps: non-specific adhesion (surface attachment),
followed by firm anchoring (biofilm formation). Bacterial surface
adhesion (attachment) relies on a variety of cell surface factors
that allow adhesion to the host surfaces. Among the cell surface
factors pili, flagella and extracellular polysaccharides play a major
role in initial surface adhesion followed by biofilm formation
of bacteria (Bogino et al., 2013). The B. aryabhattai AB211
genome does not encode proteins involved in pili-biosynthesis.
However, it encoded components of flagella assembly system and
for chemotaxis (Supplementary Table S7). Furthermore, AB211
genome encoded genes involved in extracellular polysaccharide
biosynthesis. Flagella have been suggested to contribute in
overcoming surface repulsive forces and, possibly, to alleviate
in spreading of cells along a surface (Friedlander et al.,
2013). Additionally, extracellular polysaccharides help to develop
biofilm morphology (Irie et al., 2012). Our experimental results
indicated that strain AB211 is capable of forming in vitro static
biofilm on glass surfaces (Figures 4A,B,E). Furthermore, we
could show that strain AB211 adheres to plant root surfaces and
possibly forms biofilm-like structures (Figures 4C,D). Besides
our biochemical analysis confirms that strain AB211 synthesizes
extracellular polysaccharides. To this end, we believe strain
AB211 is well equipped with machineries that help in establishing
root surface association by this bacterium.

Synergistic Interactions with Host Plant (Metabolic
Versatility) viz a viz Plant Growth Promotion
Plant roots release a wide range of carbon-containing
compounds, including carbohydrates, amino acids, organic
acids, phenolic compounds, fatty acids, sterol, vitamins,
enzymes, purines/nucleotides as well as inorganic molecules
such as HCO3

−, that are collectively known as rhizodeposits
(Dakora and Phillips, 2002; Carvalhais et al., 2011). To achieve

a synergistic interaction with host plant, a bacterium needs to
possess the metabolic potential to deal with available nutrients
within the rhizospheric environment. The B. aryabhattai AB211
genome was found to encode various pathways of central
carbohydrate metabolism, including the tricarboxylic acid cycle,
the Entner-Doudoroff, the Embden-Meyerhof-Parnas and the
pentose phosphate pathway (Supplementary Table S13). Also,
it revealed the presence of proteins involved in the anaerobic
fermentation process, and for photorespiration (Supplementary
Table S13). The strain AB211 showed the ability to utilize a
large variety of plant-derived compounds such as D-mannitol,
sucrose, salicin, trehalose, D-mannose, L-arabinose, maltose,
xylose, glucose, etc. (Supplementary Figure S6). The genome
of strain AB211 does not encode proteins involved in cellulose
degradation, which is consistent with its non-pathogenic
behavior.

Unlike many other rhizobacteria, B. aryabhattai AB211
is unable to fix nitrogen and lacks required nif genes.
However, it contained genes required for assimilatory nitrate
reduction pathways (Supplementary Table S9). Genes involved
in denitrification and ammonia assimilation were evident in the
genome sequence as well (Supplementary Table S9). Besides, the
strain AB211 seems capable in generation of nitrosative stress
(Supplementary Table S9).

Microorganisms play an important role in the
natural phosphorous cycling by solubilizing fixed and
precipitated phosphorous in soil. In general, the phenomena
of fixation and precipitation of phosphorous in agricultural
soil is dependent on pH and soil type. Thus, in acid soils,
e.g., in a tea plantation, phosphorus is fixed by free oxides
and hydroxides of aluminum and iron, while in alkaline soils,
e.g., in rice plantation, it is fixed by calcium, thereby causing
a low availability of soluble phosphate (Mahdi et al., 2012).
Biological solubilization of insoluble phosphate has recently
attracted immense attention. Several enzymes have been shown
to be involved in making insoluble phosphorous compounds
available for cellular growth (Ohtake et al., 1996; Richardson
and Hadobas, 1997; McGrath et al., 1998; Skraly and Cameron,
1998; Rodriguez and Fraga, 1999). These processes are achieved
via the action of phosphatases, phytases, phosphonoacetate
hydrolases, D-α-glycerophosphatases, and C-P lyases. The
B. aryabhattai AB211 genome encodes potential candidates
representing exopolyphosphatase (EC 3.6.1.11), manganese-
dependent inorganic pyrophosphatase (EC 3.6.1.1) and an
alkaline phosphatase (EC 3.1.3.1) (Supplementary Table S14).
Besides, some genes involved in transport and assimilation
of inorganic phosphate (Pho regulon) were identified as well
(Supplementary Table S14). Experiments in our group have
confirmed that strain AB211 is capable of solubilizing insoluble
inorganic phosphate compounds, such as tri-calcium phosphate
and rock phosphate.

Plant growth promoting rhizobacteria often enhance
plant growth through the synthesis of the plant auxin IAA.
In general, biosynthesis of bacterial IAA occurs either by
tryptophan-dependent or independent manners. Biosynthesis
of IAA from tryptophan has been documented in many
different bacterial strains (Spaepen and Vanderleyden, 2011).
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FIGURE 4 | Biofilm formation and maize root colonization of B. aryabhattai AB211. (A) SEM micrograph of AB211 strain. (B) SEM micrograph of 96 h old
static biofilm formed by AB211 strain. (C) SEM micrograph of control maize root (D) SEM micrograph of maize roots colonized by AB211 strain. (E) In vitro static
biofilm formation by AB211 strain for 48, 72, and 96 h of incubation in M9 medium. The graph shows the correlation of the measured crystal violet (CV) absorbance
of attached cells (OD570 nm) and the growth of the planktonic cells (OD600 nm) to emphasize some cells in a sessile lifestyle at the tested condition. Each point and
the standard deviation is the mean of three independent samples per condition.

It follows three major alternative pathways: indole pyruvate,
tryptamine, and indole-3-acetamide (Spaepen and Vanderleyden,
2011). Experimental results showed that B. aryabhattai AB211
synthesizes IAA with and without the addition of tryptophan
in the medium (Supplementary Figure S7B). While IAA
production was higher in the presence of tryptophan, measurable
quantity of IAA was also detected in the absence of tryptophan
(Supplementary Figure S7B). The B. aryabhattai AB211 genome
encodes all the genes required for biosynthesis of tryptophan
from chorismate (Supplementary Figure S8 and Table S15).
However, no downstream genes possibly involved in IAA
production from tryptophan were identified (Supplementary
Figure S8). Furthermore, analysis of the genome revealed the
presence of a putative nitrilase (EC 3.5.5.1) indicating the
existence of a possible tryptophan-independent IAA biosynthetic
pathway in strain AB211 (Supplementary Figure S8 and
Table S15). We believe that in the presence of tryptophan in the
medium, being a feedback inhibitor of its biosynthesis, an excess
amount of tryptophan available in the cell possibly channelizes
anthranilate toward biosynthesis of IAA via production of
indole-3-acetonitrile (Supplementary Figure S8). However,
further studies are necessary to confirm such a proposal.

A blend of volatile compounds, especially 3-hydroxy-2-
butanone (acetoin) and 2,3-butanediol, are disembogued by some
of the most efficient PGPR to enhance plant growth (Ryu et al.,
2003). Previous plant growth promotion studies using B. subtilis
GB03 and B. amyloliquefaciens IN937a revealed that both
these strains were capable of promoting plant growth utilizing
volatile compounds such as 3-hydroxy-2-butanone (acetoin) and
2,3-butanediol (Ryu et al., 2003). Besides, these volatiles have
been implicated in eliciting induced systemic resistance by both

these Bacillus species (Ryu et al., 2003). The B. aryabhattai AB211
genome carries all the necessary components essential for the
biosynthesis of both these volatile compounds (Supplementary
Table S15). The major pathway for the production of acetoin
and 2,3-butanediol by strain AB211 is via formation of (S)
2-acetolactate (Figure 5). Depending on availability of oxygen,
(S) 2-acetolactate is converted either directly to (R) acetoin
using enzyme alpha-acetolactate decarboxylase (EC 4.1.1.5) or is
spontaneously converted into diacetyl (2,3-butanedione) which
in turn can be converted into acetoin by acetoin dehydrogenase
(EC 1.2.4.-) (Figure 5). Acetoin is either released by the bacteria
or subsequently converted into 2,3-butanediol by the action of
(R, R)-2,3-butanediol dehydrogenase (EC 1.1.1.4) (Figure 5).
Although the major pathway for biosynthesis of 3-hydroxy-
2-butanone (acetoin) and 2,3-butanediol is identified, further
biochemical analysis is required to understand their roles in plant
growth promotion by B. aryabhattai AB211.

The plant growth promotion studies employing B. aryabhattai
AB211 revealed that the application of strain AB211 increased
plant growth parameters of maize seedling and was found
to be statistically significant (P = ±0.05) (Table 2 and
Supplementary Figure S7C). Experiments showed an increase in
all the parameters like shoot length (73%), root length (50%),
fresh weight (122%), and dry weight (70%), total chlorophyll
content (136%) over the uninoculated control. Furthermore, the
ability of strain AB211 to survive in soil was assessed primarily
based on the cumulative cfu data recorded as on day-7 and
15 from the plating on NA (Nutrient Agar). The survival of
AB211 was assessed based on the difference in cfu keeping
the day-0 cfu in soil as the reference point (Supplementary
Figure S9).

Frontiers in Microbiology | www.frontiersin.org 11 March 2017 | Volume 8 | Article 411

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00411 March 18, 2017 Time: 15:46 # 12

Bhattacharyya et al. Genome Analysis of Bacillus aryabhattai AB211

FIGURE 5 | Biosynthesis of acetoin and butane-2,3-diol based on the annotation of the AB211 genome.

TABLE 2 | Effect of inoculation of B. aryabhattai AB211 on maize seedlings.

Plant sample Root length (cm) Shoot length (cm) Wet weight (gm) Dry weight (gm) Total chlorophyll content (mg)

Control£ 22.83 ± 1.34 22.8 ± 1.14 1.27 ± 0.23 0.15 ± 0.02 277.61 ± 11.7

Treated£ 34.27 ± 0.50 39.43 ± 0.49 2.83 ± 0.11 0.27 ± 0.02 656.35 ± 39.73

£Values are means of sixteen independent replicates ± standard deviation. Control was used without culture.

CONCLUSION

Plant roots host a wide variety of microorganisms, many of
them cooperating with the plant by providing support for
plant nutrition, stress tolerance, and health. Several different
modes of action are documented in these PGPR. B. aryabhattai
AB211 genome contains many of the signature genes that
are functionally linked to the plant growth promotion trait.
In general, genome analyses, as well as experimental studies,
confirm that B. aryabhattai AB211 can solubilize inorganic
phosphate, synthesize siderophores, and produce IAA. Besides,
genome analysis also confirms its ability to survive the
oxidative, heavy metal, and antibiotic stresses imposed within
the rhizospheric micro-niche. Furthermore, the AB211 genome
encodes necessary arsenal required for adhesion to host root
surfaces. Our experimental studies have confirmed that strain
AB211 is capable of adhering to root surfaces and promotes plant
growth by synthesizing IAA and other volatiles. AB211 forms
biofilm under static condition and also produces extracellular
polysaccharides (EPS) necessary for optimal colonization.
Besides, strain AB211 possesses a complete set of chemotaxis
genes and metabolic versatility to utilize plant root exudates. Our
comparative genome analysis revealed that strain AB211 shares
about 3558 conserved genes with other B. aryabhattai strains.

All the genes related to plant growth promotion attributes were
found to be conserved across all the B. aryabhattai genomes.
B. aryabhattai strain AB211 has 158 exclusively present genes,
most of them have uncharacterized function but few of these
gene products were found to be involved in the transport
of small molecules and ions, transcriptional regulators and
membrane proteins, etc. To this end, we believe plant growth
promotion trait is common for all the B. aryabhattai strains,
but only tested for a few. Together, the presence of these
features makes B. aryabhattai an excellent microorganism for
utilization in agriculture. More studies are necessary to firmly
establish the molecular mechanism of plant growth promotion
by strain AB211 and its possible usefulness in a less controlled
environment.

AUTHOR CONTRIBUTIONS

AG conceived the project and collected the rhizosphere soil
sample. CB isolated the bacterial strain, performed biochemical,
microbiological and plant growth promotion experiments, and
prepared the strain for the sequencing analysis. IM and SM
helped in electron microscopic analysis and plant growth
promotion studies. AG, UB, and BB performed the comparative

Frontiers in Microbiology | www.frontiersin.org 12 March 2017 | Volume 8 | Article 411

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00411 March 18, 2017 Time: 15:46 # 13

Bhattacharyya et al. Genome Analysis of Bacillus aryabhattai AB211

genomics analysis. AG, CB, and UB wrote the manuscript. All
authors read and approved the final manuscript.

FUNDING

This work was supported by a research grant from Ramanujan
Fellowship from SERB (Science and Engineering Research
Board), Department of Science and Technology, India
(SR/S2/RJN-106/2012) and an extramural grant [BT(Estt)/
RD-3/2014] from the Department of Biotechnology, Government
of West Bengal, India. CB was supported by INSPIRE-Fellowship
(IF150075/2015) from SERB, Government of India, IM was
supported by Department of Biotechnology, Government of
West Bengal, India and SM was supported by a fellowship from
UGC (University Grant Commission), Government of India.

ACKNOWLEDGMENTS

We would like to acknowledge the Electron Microscopic
facility at CRNN (Centre for Research in Nanoscience and
Nanotechnology), University of Calcutta, India. We would
also like to thank Dr. Sagarmoy Ghosh of Department of
Microbiology, University of Calcutta for allowing us to use Biolog
facility and Dr. Anupama Ghosh, Division of Plant Biology, Bose
Institute for her help with plant growth promotion experiments.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fmicb.
2017.00411/full#supplementary-material

REFERENCES
Ahemad, M., and Khan, M. S. (2012). Evaluation of plant-growth-promoting

activities of rhizobacterium Pseudomonas putida under herbicide stress. Ann.
Microbiol. 62, 1531–1540. doi: 10.1007/s13213-011-0407-2

Ahmad, F., Iqbal, S., Anwar, S., Afzal, M., Islam, E., Mustafa, T., et al. (2012).
Enhanced remediation of chlorpyrifos from soil using ryegrass (Lolium
multiflorum) and chlorpyrifos-degrading bacterium Bacillus pumilus C2A1.
J. Hazard. Mater. 237, 110–115. doi: 10.1016/j.jhazmat.2012.08.006

Alexander, D. B., and Zuberer, D. A. (1991). Use of chrome azurol-S reagents to
evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils 12,
39–45. doi: 10.1007/BF00369386

Arshad, M., and Frankenberger, W. T. (1991). Microbial-production of plant
hormones. Plant Soil 133, 1–8. doi: 10.1007/BF00011893

Arya, G., Petronella, N., Crosthwait, J., Carrillo, C. D., and Shwed, P. S. (2014).
Draft genome sequence of Bacillus megaterium Type Strain ATCC 14581.
Genome Announc. 2:e01124–14. doi: 10.1128/genomeA.01124-14

Aziz, R. K., Bartels, D., Best, A. A., Dejongh, M., Disz, T., Edwards, R. A., et al.
(2008). The RAST server: rapid annotations using subsystems technology. BMC
Genomics 9:75. doi: 10.1186/1471-2164-9-75

Banerjee, S., Datta, S., Chattyopadhyay, D., and Sarkar, P. (2011). Arsenic
accumulating and transforming bacteria isolated from contaminated soil for
potential use in bioremediation. J. Environ. Sci. Health A Tox. Hazard. Subst.
Environ. Eng. 46, 1736–1747. doi: 10.1080/10934529.2011.623995

Berendsen, R. L., Pieterse, C. M. J., and Bakker, P. A. H. M. (2012). The rhizosphere
microbiome and plant health. Trends Plant Sci. 17, 478–486. doi: 10.1016/j.
tplants.2012.04.001

Bishnu, A., Chakrabarti, K., Chakraborty, A., and Saha, T. (2009). Pesticide residue
level in tea ecosystems of Hill and Dooars regions of West Bengal, India.
Environ. Monit. Assess. 149, 457–464. doi: 10.1007/s10661-008-0222-9

Bishnu, A., Chakraborty, A., Chakrabarti, K., and Saha, T. (2012). Ethion
degradation and its correlation with microbial and biochemical parameters of
tea soils. Biol. Fertil. Soils 48, 19–29. doi: 10.1080/03601230802388850

Blom, D., Fabbri, C., Connor, E. C., Schiestl, F. P., Klauser, D. R., Boller, T., et al.
(2011). Production of plant growth modulating volatiles is widespread among
rhizosphere bacteria and strongly depends on culture conditions. Environ.
Microbiol. 13, 3047–3058. doi: 10.1111/j.1462-2920.2011.02582.x

Bochner, B. R. (1989). Sleuthing out Bacterial Identities. Nature 339, 157–158.
doi: 10.1038/339157a0

Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D., and Pirovano, W. (2011).
Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27, 578–579.
doi: 10.1093/bioinformatics/btq683

Bogino, P. C., Oliva, M. D., Sorroche, F. G., and Giordano, W. (2013). The role of
bacterial biofilms and surface components in plant-bacterial associations. Int. J.
Mol. Sci. 14, 15838–15859. doi: 10.3390/ijms140815838

Bron, S., and Venema, G. (1972). Ultraviolet inactivation and excision-repair
in Bacillus-Subtilis.1. Construction and characterization of a transformable

eightfold auxotrophic strain and 2 ultraviolet-sensitive derivatives. Mutat. Res.
15, 1–10. doi: 10.1016/0027-5107(72)90086-3

Carattoli, A., Zankari, E., Garcia-Fernandez, A., Larsen, M. V., Lund, O., Villa, L.,
et al. (2014). In silico detection and typing of plasmids using plasmidfinder
and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58,
3895–3903. doi: 10.1128/AAC.02412-14

Carvalhais, L. C., Dennis, P. G., Fedoseyenko, D., Hajirezaei, M. R., Borriss, R., and
Von Wiren, N. (2011). Root exudation of sugars, amino acids, and organic acids
by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency.
J. Plant Nutr. Soil Sci. 174, 3–11. doi: 10.1002/jpln.201000085

Chanasit, W., Sueree, L., Hodgson, B., and Umsakul, K. (2014). The production
of poly(3-hydroxybutyrate) [P(3HB)] by a newly isolated Bacillus sp ST1C
using liquid waste from biodiesel production. Ann. Microbiol. 64, 1157–1166.
doi: 10.1007/s13213-013-0755-1

Chaudhari, N. M., Gupta, V. K., and Dutta, C. (2016). BPGA- an ultra-fast
pan-genome analysis pipeline. Sci. Rep. 6:24373. doi: 10.1038/srep24373

Chen, X. H., Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K.,
Heinemeyer, I., et al. (2007). Comparative analysis of the complete genome
sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens
FZB42. Nat. Biotechnol. 25, 1007–1014. doi: 10.1038/nbt1325

Chiba, A., Sugimoto, S., Sato, F., Hori, S., and Mizunoe, Y. (2015). A refined
technique for extraction of extracellular matrices from bacterial biofilms and
its applicability. Microb. Biotechnol. 8, 392–403. doi: 10.1111/1751-7915.12155

Compant, S., Clement, C., and Sessitsch, A. (2010). Plant growth-promoting
bacteria in the rhizo- and endosphere of plants: their role, colonization,
mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42,
669–678. doi: 10.1016/j.soilbio.2009.11.024

Compant, S., Duffy, B., Nowak, J., Clement, C., and Barka, E. A. (2005). Use of
plant growth-promoting bacteria for biocontrol of plant diseases: principles,
mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71,
4951–4959. doi: 10.1128/AEM.71.9.4951-4959.2005

Dakora, F. D., and Phillips, D. A. (2002). Root exudates as mediators of mineral
acquisition in low-nutrient environments. Plant Soil 245, 35–47. doi: 10.1023/A:
1020809400075

Darling, A. E., Mau, B., and Perna, N. T. (2010). progressiveMauve: multiple
genome alignment with gene gain, loss and rearrangement. PLoS ONE 5:e11147.
doi: 10.1371/journal.pone.0011147

Doornbos, R. F., Van Loon, L. C., and Bakker, P. A. H. M. (2012). Impact of
root exudates and plant defense signaling on bacterial communities in the
rhizosphere. A review. Agron. Sustain. Dev. 32, 227–243. doi: 10.1007/s13593-
011-0028-y

Focardi, S., Pepi, M., Ruta, M., Marvasi, M., Bernardini, E., Gasperini, S., et al.
(2010). Arsenic precipitation by an anaerobic arsenic-respiring bacterial strain
isolated from the polluted sediments of Orbetello Lagoon, Italy. Lett. Appl.
Microbiol. 51, 578–585. doi: 10.1111/j.1472-765X.2010.02938.x

Friedlander, R. S., Vlamakis, H., Kim, P., Khan, M., Kolter, R., and Aizenberg, J.
(2013). Bacterial flagella explore microscale hummocks and hollows to increase

Frontiers in Microbiology | www.frontiersin.org 13 March 2017 | Volume 8 | Article 411

http://journal.frontiersin.org/article/10.3389/fmicb.2017.00411/full#supplementary-material
http://journal.frontiersin.org/article/10.3389/fmicb.2017.00411/full#supplementary-material
https://doi.org/10.1007/s13213-011-0407-2
https://doi.org/10.1016/j.jhazmat.2012.08.006
https://doi.org/10.1007/BF00369386
https://doi.org/10.1007/BF00011893
https://doi.org/10.1128/genomeA.01124-14
https://doi.org/10.1186/1471-2164-9-75
https://doi.org/10.1080/10934529.2011.623995
https://doi.org/10.1016/j.tplants.2012.04.001
https://doi.org/10.1016/j.tplants.2012.04.001
https://doi.org/10.1007/s10661-008-0222-9
https://doi.org/10.1080/03601230802388850
https://doi.org/10.1111/j.1462-2920.2011.02582.x
https://doi.org/10.1038/339157a0
https://doi.org/10.1093/bioinformatics/btq683
https://doi.org/10.3390/ijms140815838
https://doi.org/10.1016/0027-5107(72)90086-3
https://doi.org/10.1128/AAC.02412-14
https://doi.org/10.1002/jpln.201000085
https://doi.org/10.1007/s13213-013-0755-1
https://doi.org/10.1038/srep24373
https://doi.org/10.1038/nbt1325
https://doi.org/10.1111/1751-7915.12155
https://doi.org/10.1016/j.soilbio.2009.11.024
https://doi.org/10.1128/AEM.71.9.4951-4959.2005
https://doi.org/10.1023/A:1020809400075
https://doi.org/10.1023/A:1020809400075
https://doi.org/10.1371/journal.pone.0011147
https://doi.org/10.1007/s13593-011-0028-y
https://doi.org/10.1007/s13593-011-0028-y
https://doi.org/10.1111/j.1472-765X.2010.02938.x
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00411 March 18, 2017 Time: 15:46 # 14

Bhattacharyya et al. Genome Analysis of Bacillus aryabhattai AB211

adhesion. Proc. Natl. Acad. Sci. U.S.A. 110, 5624–5629. doi: 10.1073/pnas.
1219662110

Galardini, M., Biondi, E. G., Bazzicalupo, M., and Mengoni, A. (2011).
CONTIGuator: a bacterial genomes finishing tool for structural insights on
draft genomes. Source Code Biol. Med. 6:11. doi: 10.1186/1751-0473-6-11

Ghosh, A., Hartung, S., Van Der Does, C., Tainer, J. A., and Albers, S. V. (2011).
Archaeal flagellar ATPase motor shows ATP-dependent hexameric assembly
and activity stimulation by specific lipid binding. Biochem. J. 437, 43–52.
doi: 10.1042/BJ20110410

Ghosh, A., Maity, B., Chakrabarti, K., and Chattopadhyay, D. (2007). Bacterial
diversity of east calcutta wet land area: possible identification of potential
bacterial population for different biotechnological uses. Microb. Ecol. 54,
452–459. doi: 10.1007/s00248-007-9244-z

Gilani, R. A., Rafique, M., Rehman, A., Munis, M. F. H., Rehman, S. U., and
Chaudhary, H. J. (2016). Biodegradation of chlorpyrifos by bacterial genus
Pseudomonas. J. Basic Microbiol. 56, 105–119. doi: 10.1002/jobm.201500336

Glick, B. R. (2004). Bacterial ACC deaminase and the alleviation of plant stress.
Adv. Appl. Microbiol. 56, 291–312. doi: 10.1016/S0065-2164(04)56009-4

Glick, B. R., Penrose, D. M., and Li, J. (1998). A model for the lowering of plant
ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol. 190,
63–68. doi: 10.1006/jtbi.1997.0532

Godino, A., Principe, A., and Fischer, S. (2016). A ptsP deficiency in PGPR
Pseudomonas fluorescens SF39a affects bacteriocin production and bacterial
fitness in the wheat rhizosphere. Res. Microbiol. 167, 178–189. doi: 10.1016/j.
resmic.2015.12.003

Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye, T., Vandamme, P.,
and Tiedje, J. M. (2007). DNA-DNA hybridization values and their relationship
to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57, 81–91.
doi: 10.1099/ijs.0.64483-0

Goswami, D., Patel, K., Parmar, S., Vaghela, H., Muley, N., Dhandhukia, P.,
et al. (2015). Elucidating multifaceted urease producing marine Pseudomonas
aeruginosa BG as a cogent PGPR and bio-control agent. Plant Growth Regul.
75, 253–263. doi: 10.1007/s10725-014-9949-1

Haas, D., and Defago, G. (2005). Biological control of soil-borne pathogens by
fluorescent pseudomonads. Nat. Rev. Microbiol. 3, 307–319. doi: 10.1038/
nrmicro1129

Haas, D., and Keel, C. (2003). Regulation of antibiotic production in root-
colonizing Peudomonas spp. and relevance for biological control of plant
disease. Annu. Rev. Phytopathol. 41, 117–153. doi: 10.1146/annurev.phyto.41.
052002.095656

Hammer, P. E., Hill, D. S., Lam, S. T., Vanpee, K. H., and Ligon, J. M. (1997).
Four genes from Pseudomonas fluorescens that encode the biosynthesis of
pyrrolnitrin. Appl. Environ. Microbiol. 63, 2147–2154.

Hammond-Kosack, K. E., and Jones, J. D. G. (1996). Resistance gene-dependent
plant defense responses. Plant Cell 8, 1773–1791. doi: 10.1105/tpc.8.10.1773

Holtz, J. D. (1993). Bergey’s Manual of Determinative Bacteriology. Baltimore, MD:
Williams and Wilkins.

Irie, Y., Borlee, B. R., O’connor, J. R., Hill, P. J., Harwood, C. S., Wozniak,
D. J., et al. (2012). Self-produced exopolysaccharide is a signal that stimulates
biofilm formation in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A. 109,
20632–20636. doi: 10.1073/pnas.1217993109

Kang, S. M., Radhakrishnan, R., Khan, A. L., Kim, M. J., Park, J. M., Kim,
B. R., et al. (2014). Gibberellin secreting rhizobacterium, Pseudomonas
putida H-2-3 modulates the hormonal and stress physiology of soybean
to improve the plant growth under saline and drought conditions.
Plant Physiol. Biochem. 84, 115–124. doi: 10.1016/j.plaphy.2014.
09.001

Khalid, A., Arshad, M., and Zahir, Z. A. (2004). Screening plant growth-promoting
rhizobacteria for improving growth and yield of wheat. J. Appl. Microbiol. 96,
473–480. doi: 10.1046/j.1365-2672.2003.02161.x

Kloepper, J. W., Leong, J., Teintze, M., and Schroth, M. N. (1980). Enhanced plant-
growth by siderophores produced by plant growth-promoting rhizobacteria.
Nature 286, 885–886. doi: 10.5941/MYCO.2014.42.2.158

Kloepper, J. W., Ryu, C. M., and Zhang, S. (2004). Induced systemic resistance
and promotion of plant growth by Bacillus spp. Phytopathology 94, 1259–1266.
doi: 10.1094/PHYTO.2004.94.11.1259

Koerdt, A., Orell, A., Pham, T. K., Mukherjee, J., Wlodkowski, A., Karunakaran, E.,
et al. (2011). Macromolecular fingerprinting of sulfolobus species in biofilm: a

transcriptomic and proteomic approach combined with spectroscopic analysis.
J. Proteome Res. 10, 4105–4119. doi: 10.1021/pr2003006

Kudoyarova, G. R., Melentiev, A. I., Martynenko, E. V., Timergalina, L. N.,
Arkhipova, T. N., Shendel, G. V., et al. (2014). Cytokinin producing bacteria
stimulate amino acid deposition by wheat roots. Plant Physiol. Biochem. 83,
285–291. doi: 10.1016/j.plaphy.2014.08.015

Kurtz, S., Phillippy, A., Delcher, A. L., Smoot, M., Shumway, M., Antonescu, C.,
et al. (2004). Versatile and open software for comparing large genomes. Genome
Biol. 5, R12. doi: 10.1186/gb-2004-5-2-r12

Lagad, R. A., Alamelu, D., Chaudhary, A. K., and Aggarwal, S. K. (2012).
Determination of heavy metals and lanthanides in indian tea by Inductively
Coupled Plasma Mass Spectrometry (ICP-MS). At. Spectrosc. 33, 109–116.

Lagesen, K., Hallin, P., Rodland, E. A., Staerfeldt, H. H., Rognes, T., and Ussery,
D. W. (2007). RNAmmer: consistent and rapid annotation of ribosomal RNA
genes. Nucleic Acids Res. 35, 3100–3108. doi: 10.1093/nar/gkm160

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. (2009). Ultrafast and
memory-efficient alignment of short DNA sequences to the human genome.
Genome Biol. 10:R25. doi: 10.1186/gb-2009-10-3-r25

Laslett, D., and Canback, B. (2004). ARAGORN, a program to detect tRNA
genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32, 11–16.
doi: 10.1093/nar/gkh152

Lee, S., Ka, J. O., and Song, H. G. (2012). Growth promotion of Xanthium italicum
by application of rhizobacterial isolates of Bacillus aryabhattai in Microcosm
Soil. J. Microbiol. 50, 45–49. doi: 10.1007/s12275-012-1415-z

Lemanceau, P., Bauer, P., Kraemer, S., and Briat, J. F. (2009). Iron dynamics in the
rhizosphere as a case study for analyzing interactions between soils, plants and
microbes. Plant Soil 321, 513–535. doi: 10.1007/s11104-009-0039-5

Lovecka, P., Pacovska, I., Stursa, P., Vrchotova, B., Kochankova, L., and
Demnerova, K. (2015). Organochlorinated pesticide degrading microorganisms
isolated from contaminated soil. New Biotechnol. 32, 26–31. doi: 10.1016/j.nbt.
2014.07.003

Lugtenberg, B., and Kamilova, F. (2009). Plant-growth-promoting rhizobacteria.
Annu. Rev. Microbiol. 63, 541–556. doi: 10.1146/annurev.micro.62.081307.
162918

Mahdi, S. S., Talat, M. A., Dar, M. H., Hamid, A., and Ahmad, L. (2012). Soil
phosphorus fixation chemistry and role of phosphate solubilizing bacteria
in enhancing its efficiency for sustainable cropping–a review. J. Pure Appl.
Microbiol. 6, 1905–1911.

Malfanova, N., Kamilova, F., Validov, S., Shcherbakov, A., Chebotar, V.,
Tikhonovich, I., et al. (2011). Characterization of Bacillus subtilis HC8, a novel
plant-beneficial endophytic strain from giant hogweed. Microb. Biotechnol. 4,
523–532. doi: 10.1111/j.1751-7915.2011.00253.x

Martin, D. P., Lemey, P., Lott, M., Moulton, V., Posada, D., and Lefeuvre, P.
(2010). RDP3: a flexible and fast computer program for analyzing
recombination. Bioinformatics 26, 2462–2463. doi: 10.1093/bioinformatics/
btq467

Martin, D. P., Posada, D., Crandall, K. A., and Williamson, C. (2005). A modified
bootscan algorithm for automated identification of recombinant sequences
and recombination breakpoints. AIDS Res. Hum. Retroviruses 21, 98–102.
doi: 10.1089/aid.2005.21.98

Matilla, M. A., Ramos, J. L., Bakker, P. A. H. M., Doornbos, R., Badri, D. V.,
Vivanco, J. M., et al. (2010). Pseudomonas putida KT2440 causes induced
systemic resistance and changes in Arabidopsis root exudation. Environ.
Microbiol. Rep. 2, 381–388. doi: 10.1111/j.1758-2229.2009.00091.x

McGrath, J. W., Hammerschmidt, F., and Quinn, J. P. (1998). Biodegradation of
phosphonomycin by Rhizobium huakuii PMY1. Appl. Environ. Microbiol. 64,
356–358.

Mesa, J., Mateos-Naranjo, E., Caviedes, M. A., Redondo-Gomez, S., Pajuelo, E.,
and Rodriguez-Llorente, I. D. (2015). Scouting contaminated estuaries: heavy
metal resistant and plant growth promoting rhizobacteria in the native
metal rhizoaccumulator Spartina maritima. Mar. Pollut. Bull. 90, 150–159.
doi: 10.1016/j.marpolbul.2014.11.002

Meyer, J. R., and Linderman, R. G. (1986). Response of subterranean clover to dual
inoculation with vesicular arbuscular mycorrhizal fungi and a plant growth-
promoting bacterium, Pseudomonas putida. Soil Biol. Biochem. 18, 185–190.
doi: 10.1016/0038-0717(86)90025-8

Molina, L., Ramos, C., Duque, E., Ronchel, M. C., Garcia, J. M., Wyke, L., et al.
(2000). Survival of Pseudomonas putida KT2440 in soil and in the rhizosphere

Frontiers in Microbiology | www.frontiersin.org 14 March 2017 | Volume 8 | Article 411

https://doi.org/10.1073/pnas.1219662110
https://doi.org/10.1073/pnas.1219662110
https://doi.org/10.1186/1751-0473-6-11
https://doi.org/10.1042/BJ20110410
https://doi.org/10.1007/s00248-007-9244-z
https://doi.org/10.1002/jobm.201500336
https://doi.org/10.1016/S0065-2164(04)56009-4
https://doi.org/10.1006/jtbi.1997.0532
https://doi.org/10.1016/j.resmic.2015.12.003
https://doi.org/10.1016/j.resmic.2015.12.003
https://doi.org/10.1099/ijs.0.64483-0
https://doi.org/10.1007/s10725-014-9949-1
https://doi.org/10.1038/nrmicro1129
https://doi.org/10.1038/nrmicro1129
https://doi.org/10.1146/annurev.phyto.41.052002.095656
https://doi.org/10.1146/annurev.phyto.41.052002.095656
https://doi.org/10.1105/tpc.8.10.1773
https://doi.org/10.1073/pnas.1217993109
https://doi.org/10.1016/j.plaphy.2014.09.001
https://doi.org/10.1016/j.plaphy.2014.09.001
https://doi.org/10.1046/j.1365-2672.2003.02161.x
https://doi.org/10.5941/MYCO.2014.42.2.158
https://doi.org/10.1094/PHYTO.2004.94.11.1259
https://doi.org/10.1021/pr2003006
https://doi.org/10.1016/j.plaphy.2014.08.015
https://doi.org/10.1186/gb-2004-5-2-r12
https://doi.org/10.1093/nar/gkm160
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1093/nar/gkh152
https://doi.org/10.1007/s12275-012-1415-z
https://doi.org/10.1007/s11104-009-0039-5
https://doi.org/10.1016/j.nbt.2014.07.003
https://doi.org/10.1016/j.nbt.2014.07.003
https://doi.org/10.1146/annurev.micro.62.081307.162918
https://doi.org/10.1146/annurev.micro.62.081307.162918
https://doi.org/10.1111/j.1751-7915.2011.00253.x
https://doi.org/10.1093/bioinformatics/btq467
https://doi.org/10.1093/bioinformatics/btq467
https://doi.org/10.1089/aid.2005.21.98
https://doi.org/10.1111/j.1758-2229.2009.00091.x
https://doi.org/10.1016/j.marpolbul.2014.11.002
https://doi.org/10.1016/0038-0717(86)90025-8
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00411 March 18, 2017 Time: 15:46 # 15

Bhattacharyya et al. Genome Analysis of Bacillus aryabhattai AB211

of plants under greenhouse and environmental conditions. Soil Biol. Biochem.
32, 315–321. doi: 10.1016/S0038-0717(99)00156-X

Ohtake, H., Wu, H., Imazu, K., Anbe, Y., Kato, J., and Kuroda, A. (1996).
Bacterial phosphonate degradation, phosphite oxidation and polyphosphate
accumulation. Resour. Conserv. Recycl. 18, 125–134. doi: 10.1016/S0921-
3449(96)01173-1

Onofre-Lemus, J., Hernandez-Lucas, I., Girard, L., and Caballero-Mellado, J.
(2009). ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a
widespread trait in Burkholderia species, and its growth-promoting effect on
tomato plants. Appl. Environ. Microbiol. 75, 6581–6590. doi: 10.1128/AEM.
01240-09

Overbeek, R., Olson, R., Pusch, G. D., Olsen, G. J., Davis, J. J., Disz, T.,
et al. (2014). The SEED and the Rapid Annotation of microbial genomes
using Subsystems Technology (RAST). Nucleic Acids Res. 42, D206–D214.
doi: 10.1093/nar/gkt1226

Pailan, S., Gupta, D., Apte, S., Krishnamurthi, S., and Saha, P. (2015). Degradation
of organophosphate insecticide by a novel Bacillus aryabhattai strain SanPS1,
isolated from soil of agricultural field in Burdwan, West Bengal, India. Int.
Biodeterior. Biodegradation 103, 191–195. doi: 10.1016/j.ibiod.2015.05.006

Park, J. M., Park, S. J., Kim, W. J., and Ghim, S. Y. (2012). Application of Antifungal
CFB to increase the durability of cement mortar. J. Microbiol. Biotechnol. 22,
1015–1020. doi: 10.4014/jmb.1112.12027

Paulsen, I. T., Press, C. M., Ravel, J., Kobayashi, D. Y., Myers, G. S. A., Mavrodi,
D. V., et al. (2005). Complete genome sequence of the plant commensal
Pseudomonas fluorescens Pf-5. Nat. Biotechnol. 23, 873–878. doi: 10.1038/
nbt1110

Perez, J., Munoz-Dorado, J., Brana, A. F., Shimkets, L. J., Sevillano, L.,
and Santamaria, R. I. (2011). Myxococcus xanthus induces actinorhodin
overproduction and aerial mycelium formation by Streptomyces coelicolor.
Microb. Biotechnol. 4, 175–183. doi: 10.1111/j.1751-7915.2010.00208.x

Piechulla, B., and Degenhardt, J. (2014). The emerging importance of microbial
volatile organic compounds. Plant Cell Environ. 37, 811–812. doi: 10.1111/pce.
12254

Pikovskaya, R. I. (1948). Mobilization of phosphorus in soil in connection with the
vital activity of some microbial species. Mikrobiologiya 17, 362–370.

Podile, A. R. A. K., and Kishore, G. K. (2006). Plant Growth-Promoting
Rhizobacteria. Dordrecht: Springer. doi: 10.1007/978-1-4020-4538-7_6

Ray, S., Datta, R., and Mitra, A. K. (2012). From space to Earth: Bacillus aryabhattai
found in the Indian sub-continent. Biosci. Discov. 3, 138–145.

Revanna, K. V., Chiu, C. C., Bierschank, E., and Dong, Q. F. (2011). GSV: a web-
based genome synteny viewer for customized data. BMC Bioinformatics 12:316.
doi: 10.1186/1471-2105-12-316

Reyes-Darias, J. A., Garcia, V., Rico-Jimenez, M., Corral-Lugo, A., Lesouhaitier, O.,
Juarez-Hernandez, D., et al. (2015). Specific gamma-aminobutyrate chemotaxis
in pseudomonads with different lifestyle. Mol. Microbiol. 97, 488–501.
doi: 10.1111/mmi.13045

Richardson, A. E., and Hadobas, P. A. (1997). Soil isolates of Pseudomonas spp.
that utilize inositol phosphates. Can. J. Microbiol. 43, 509–516. doi: 10.1139/
m97-073

Rodriguez, H., and Fraga, R. (1999). Phosphate solubilizing bacteria and their role
in plant growth promotion. Biotechnol. Adv. 17, 319–339. doi: 10.1016/S0734-
9750(99)00014-2

Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Pare, P. W., et al.
(2003). Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci.
U.S.A. 100, 4927–4932. doi: 10.1073/pnas.0730845100

Salahinejad, M., and Aflaki, F. (2010). Toxic and essential mineral elements content
of black tea leaves and their tea infusions consumed in iran. Biol. Trace Elem.
Res. 134, 109–117. doi: 10.1007/s12011-009-8449-z

Sawyer, S. A. (2000). GENECONV: Statistical Tests for Detecting Gene Conversion
(version 1.81). St. Louis, MO: Department of Mathematics, Washington
University.

Schalk, I. J., Hannauer, M., and Braud, A. (2011). New roles for bacterial
siderophores in metal transport and tolerance. Environ. Microbiol. 13,
2844–2854. doi: 10.1111/j.1462-2920.2011.02556.x

Shah, S., Li, J., Moffatt, B. A., and Glick, B. R. (1998). Isolation and
characterization of ACC deaminase genes from two different plant growth-
promoting rhizobacteria. Can. J. Microbiol. 44, 833–843. doi: 10.1139/
w98-074

Shivaji, S., Chaturvedi, P., Begum, Z., Pindi, P. K., Manorama, R., Padmanaban,
D. A., et al. (2009). Janibacter hoylei sp nov., Bacillus isronensis sp nov
and Bacillus aryabhattai sp nov., isolated from cryotubes used for collecting
air from the upper atmosphere. Int. J. Syst. Evol. Microbiol. 59, 2977–2986.
doi: 10.1099/ijs.0.002527-0

Simons, M., Permentier, H. P., Deweger, L. A., Wijffelman, C. A., and Lugtenberg,
B. J. J. (1997). Amino acid synthesis is necessary for tomato root colonization
by Pseudomonas fluorescens strain WCS365. Mol. Plant Microbe Interact. 10,
102–106. doi: 10.1094/MPMI.1997.10.1.102

Skraly, F. A., and Cameron, D. C. (1998). Purification and characterization of a
Bacillus licheniformis phosphatase specific for D-alpha-glycerophosphate. Arch.
Biochem. Biophys. 349, 27–35. doi: 10.1006/abbi.1997.0433

Smith, J. M. (1992). Analyzing the mosaic structure of genes. J. Mol. Evol. 34,
126–129. doi: 10.1007/BF00182389

Spaepen, S., and Vanderleyden, J. (2011). Auxin and plant-microbe interactions.
Cold Spring Harb. Perspect. Biol 3:a001438. doi: 10.1101/cshperspect.a001438

Spaepen, S., Vanderleyden, J., and Remans, R. (2007). Indole-3-acetic acid
in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31,
425–448. doi: 10.1111/j.1574-6976.2007.00072.x

StatSoft Inc. (2001). STATISTICA (Data Analysis Software System), Version 6.
Tulsa, OK: StatSoft Inc.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6:
Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 30,
2725–2729. doi: 10.1093/molbev/mst197

Tanamool, V., Imai, T., Danvirutai, P., and Kaewkannetra, P. (2013). An alternative
approach to the fermentation of sweet sorghum juice into biopolymer of
poly-beta-hydroxyalkanoates (PHAs) by newly isolated, Bacillus aryabhattai
PKV01. Biotechnol. Bioprocess Eng. 18, 65–74. doi: 10.1007/s12257-012-
0315-8

Tettelin, H., Masignani, V., Cieslewicz, M. J., Donati, C., Medini, D., Ward, N. L.,
et al. (2005). Genome analysis of multiple pathogenic isolates of Streptococcus
agalactiae: implications for the microbial ’pan-genome’ (vol 102, pg 13950,
2005). Proc. Natl. Acad. Sci. U. S. A. 102, 16530–16530.

Uroz, S., Buee, M., Murat, C., Frey-Klett, P., and Martin, F. (2010). Pyrosequencing
reveals a contrasted bacterial diversity between oak rhizosphere and
surrounding soil. Environ. Microbiol. Rep. 2, 281–288. doi: 10.1111/j.1758-2229.
2009.00117.x

Van Wees, S. C. M., Van Der Ent, S., and Pieterse, C. M. J. (2008). Plant immune
responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11, 443–448.
doi: 10.1016/j.pbi.2008.05.005

Vassilev, N., Vassileva, M., and Nikolaeva, I. (2006). Simultaneous P-solubilizing
and biocontrol activity of microorganisms: potentials and future trends. Appl.
Microbiol. Biotechnol. 71, 137–144. doi: 10.1007/s00253-006-0380-z

Verma, J. P., Jaiswal, D. K., and Sagar, R. (2014). Pesticide relevance and their
microbial degradation: a-state-of-art. Rev. Environ. Sci. Bioetchnol. 13, 429–466.
doi: 10.1007/s11157-014-9341-7

Vial, L., Chapalain, A., Groleau, M. C., and Deziel, E. (2011). The various lifestyles
of the Burkholderia cepacia complex species: a tribute to adaptation. Environ.
Microbiol. 13, 1–12. doi: 10.1111/j.1462-2920.2010.02343.x

Wang, S., Wu, H., Qiao, J., Ma, L., Liu, J., Xia, Y., et al. (2009). Molecular
mechanism of plant growth promotion and induced systemic resistance to
tobacco mosaic virus by Bacillus spp. J. Microbiol. Biotechnol. 19, 1250–1258.
doi: 10.4014/jmb.0901.008

Wang, W., Zheng, S. S., Sun, H., Cao, J., Yang, F., Wang, X. L., et al.
(2016). Draft genome sequence of Bacillus megaterium BHG1.1, a strain
isolated from bar-headed goose (Anser indicus) feces on the qinghai-
tibet plateau. Genome Announc. 4:e00317–16. doi: 10.1128/genomeA.
00317-16

Wen, J., Ren, C., Huang, N., Liu, Y., and Zeng, R. Y. (2015). Draft genome of
bagasse-degrading bacteria Bacillus aryabhattai GZ03 from deep sea water. Mar.
Genomics 19, 13–14. doi: 10.1016/j.margen.2014.11.004

Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere.
J. Exp. Bot. 52, 487–511. doi: 10.1093/jexbot/52.suppl_1.487

Wu, S. T., Zhu, Z. W., Fu, L. M., Niu, B. F., and Li, W. Z. (2011). WebMGA:
a customizable web server for fast metagenomic sequence analysis. BMC
Genomics 12:444. doi: 10.1186/1471-2164-12-444

Zeidler, D., Zahringer, U., Gerber, I., Dubery, I., Hartung, T., Bors, W., et al. (2004).
Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric

Frontiers in Microbiology | www.frontiersin.org 15 March 2017 | Volume 8 | Article 411

https://doi.org/10.1016/S0038-0717(99)00156-X
https://doi.org/10.1016/S0921-3449(96)01173-1
https://doi.org/10.1016/S0921-3449(96)01173-1
https://doi.org/10.1128/AEM.01240-09
https://doi.org/10.1128/AEM.01240-09
https://doi.org/10.1093/nar/gkt1226
https://doi.org/10.1016/j.ibiod.2015.05.006
https://doi.org/10.4014/jmb.1112.12027
https://doi.org/10.1038/nbt1110
https://doi.org/10.1038/nbt1110
https://doi.org/10.1111/j.1751-7915.2010.00208.x
https://doi.org/10.1111/pce.12254
https://doi.org/10.1111/pce.12254
https://doi.org/10.1007/978-1-4020-4538-7_6
https://doi.org/10.1186/1471-2105-12-316
https://doi.org/10.1111/mmi.13045
https://doi.org/10.1139/m97-073
https://doi.org/10.1139/m97-073
https://doi.org/10.1016/S0734-9750(99)00014-2
https://doi.org/10.1016/S0734-9750(99)00014-2
https://doi.org/10.1073/pnas.0730845100
https://doi.org/10.1007/s12011-009-8449-z
https://doi.org/10.1111/j.1462-2920.2011.02556.x
https://doi.org/10.1139/w98-074
https://doi.org/10.1139/w98-074
https://doi.org/10.1099/ijs.0.002527-0
https://doi.org/10.1094/MPMI.1997.10.1.102
https://doi.org/10.1006/abbi.1997.0433
https://doi.org/10.1007/BF00182389
https://doi.org/10.1101/cshperspect.a001438
https://doi.org/10.1111/j.1574-6976.2007.00072.x
https://doi.org/10.1093/molbev/mst197
https://doi.org/10.1007/s12257-012-0315-8
https://doi.org/10.1007/s12257-012-0315-8
https://doi.org/10.1111/j.1758-2229.2009.00117.x
https://doi.org/10.1111/j.1758-2229.2009.00117.x
https://doi.org/10.1016/j.pbi.2008.05.005
https://doi.org/10.1007/s00253-006-0380-z
https://doi.org/10.1007/s11157-014-9341-7
https://doi.org/10.1111/j.1462-2920.2010.02343.x
https://doi.org/10.4014/jmb.0901.008
https://doi.org/10.1128/genomeA.00317-16
https://doi.org/10.1128/genomeA.00317-16
https://doi.org/10.1016/j.margen.2014.11.004
https://doi.org/10.1093/jexbot/52.suppl_1.487
https://doi.org/10.1186/1471-2164-12-444
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00411 March 18, 2017 Time: 15:46 # 16

Bhattacharyya et al. Genome Analysis of Bacillus aryabhattai AB211

oxide synthase (NOS) and induce defense genes. Proc. Natl. Acad. Sci. U.S.A.
101, 15811–15816. doi: 10.1073/pnas.0404536101

Zerbino, D. R., and Birney, E. (2008). Velvet: algorithms for de novo short read
assembly using de Bruijn graphs. Genome Res. 18, 821–829. doi: 10.1101/gr.
074492.107

Zhang, Z., and Yuen, G. Y. (2000). The role of chitinase production by
Stenotrophomonas maltophilia strain C3 in biological control of Bipolaris
sorokiniana. Phytopathology 90, 384–389. doi: 10.1094/PHYTO.2000.90.4.384

Zhou, Y., Liang, Y. J., Lynch, K. H., Dennis, J. J., and Wishart, D. S. (2011). PHAST:
a fast phage search tool. Nucleic Acids Res. 39, W347–W352. doi: 10.1093/nar/
gkr485

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 Bhattacharyya, Bakshi, Mallick, Mukherji, Bera and Ghosh. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) or licensor are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Microbiology | www.frontiersin.org 16 March 2017 | Volume 8 | Article 411

https://doi.org/10.1073/pnas.0404536101
https://doi.org/10.1101/gr.074492.107
https://doi.org/10.1101/gr.074492.107
https://doi.org/10.1094/PHYTO.2000.90.4.384
https://doi.org/10.1093/nar/gkr485
https://doi.org/10.1093/nar/gkr485
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive

	Genome-Guided Insights into the Plant Growth Promotion Capabilities of the Physiologically Versatile Bacillus aryabhattai Strain AB211
	Introduction
	Materials And Methods
	Strain and Culture Media
	Identification and Characterization of B. aryabhattai AB211
	Genomic DNA Isolation and Genome Sequencing
	Genome Analysis and Annotation
	Genome Comparisons
	Core and Strain-Specific Gene Extrapolation
	Identification of Recombination Specific Genes in B. aryabhattai AB211
	Phylogenetic Analysis
	Biofilm Assay
	Scanning Electron Microscopic (SEM) Analysis of B. aryabhattai AB211 Planktonic Cells, Biofilm and Its Interaction with Maize Roots
	Pot Experiments: Plant Growth Promotion Assay Using Maize Seedlings
	Accession Number

	Results And Discussion
	General Genomic Features
	Comparative Genomics of B. aryabhattai AB211
	Biochemical Characterization of B. aryabhattai AB211
	Survival in the Plant Rhizosphere: Overview of B. aryabhattai AB211 Genomic Signature Linked to Experimental Evidence
	Movement (Swimming) of Bacteria toward Plant Root
	Survival within the Rhizospheric Environment
	Adhesion and Colonization of the Root Surfaces
	Synergistic Interactions with Host Plant (Metabolic Versatility) viz a viz Plant Growth Promotion


	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


