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The biological function of the cellular prion
protein: an update
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Abstract

The misfolding of the cellular prion protein (PrPC)
causes fatal neurodegenerative diseases. Yet PrPC is
highly conserved in mammals, suggesting that it
exerts beneficial functions preventing its evolutionary
elimination. Ablation of PrPC in mice results in
well-defined structural and functional alterations
in the peripheral nervous system. Many additional
phenotypes were ascribed to the lack of PrPC, but
some of these were found to arise from genetic
artifacts of the underlying mouse models. Here, we
revisit the proposed physiological roles of PrPC in the
central and peripheral nervous systems and highlight
the need for their critical reassessment using new,
rigorously controlled animal models.
octarepeat region (OR) and a hydrophobic domain (HD).
The cellular prion protein (PrPC) is a cell surface protein
expressed in a variety of different organs and tissues
with high expression levels in the central and peripheral
nervous systems [1]. It is mainly known for its infamous
role in prion diseases, where its misfolding and aggrega-
tion cause inevitably fatal neurodegenerative conditions
[2]. Prion diseases are transmissible and misfolded prion
protein (PrPSc) is—according to the “protein-only
hypothesis’”—the only disease-causing agent [3]. Under
this view, it is puzzling that a protein underlying such
severe diseases is highly conserved throughout mammals
[4]. This suggests the existence of distinct benefits and,
potentially, important physiological functions.
A definitive, fully satisfactory understanding of the

physiological function of PrPC has been lacking for a
long time. Very recently, we identified a native function
of PrPC in the peripheral nervous system and the
underlying mechanism of that function [5]. However,
PrPC is also highly expressed in the central nervous
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system (CNS) and its biological activity there is still far
from being clear. This review will focus on the pro-
posed roles of cellular prion protein in the central and
peripheral nervous systems.
The prion protein undergoes post-translational
proteolytic processing
The cellular prion protein is encoded by the Prnp gene.
In mice, the entire protein-coding open-reading frame is
encoded within the third exon of Prnp [6–8]. After
translation and cotranslational extrusion into the lumen
of the endoplasmic reticulum, PrPC adopts its physio-
logical structure with a C-terminal globular domain and
an N-terminal flexible tail [9] (Fig. 1). The N-terminal
tail consists of two charged clusters (CC1 and CC2), the

Additionally, two N-glycosylation sites are located in the
globular domain upstream of the sialylated GPI-anchor
at the C-terminus [10, 11].
After being transported to the cell membrane, PrPC

resides extracellularly in lipid rafts, where it is attached
to the outer leaflet by a glycosyl phosphoinosityl (GPI)
anchor [12]. It undergoes rapid constitutive endocytosis
and subsequently either recycling or degradation [13, 14].
PrPC endocytosis can occur by both clathrin-dependent
[15] and caveolin pathways [16].
As part of its post-translational metabolism, PrPC can

undergo proteolytic cleavage events termed, in analogy
to amyloid precursor protein processing, α-, β-, and
possibly also γ-cleavage (Fig. 1). These cleavage events
release the so-called N1 +C1, N2 + C2, and C3 fragments,
respectively [17–20]. These events may be important for
both physiology and pathology. Alpha cleavage prevents
the C1 fragment from being converted into PrPSc [21], the
rate of the beta cleavage is increased in the disease [19],
and PrPC deletion mutants lacking the alpha-cleavage
site show spontaneous neurodegeneration exhibiting
pathological features distinct from those of prion dis-
eases (reviewed in [22]).
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Fig. 1. Structural organization of PrPC. Schematic representation of mature mouse PrPC, showing protein domains, sites of post-translational
modification, and binding sites for divalent cations and protein interactors of functional relevance. CC1 charge cluster 1, OR octapeptide
repeats, CC2 charge cluster 2, HD hydrophobic domain, FT flexible tail, GD globular domain. Structurally defined domains are depicted by
pink (α-helix) and green (β-strand) boxes. GPI glycosylphosphatidylinositol anchor, CHO glycosylation site, S-S disulfide bridge. α, β, and γ
cleavage sites are indicated. Copper binding sites (Cu2+) within and outside the octapeptide region are reported as well as the sites involved
in the interaction with Aβ oligomers and with the G-protein-coupled receptor Adgrg6
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The enzyme responsible for PrPC cleavage may not be
unique, and several members of the ADAM (a_disinte-
grin and metalloproteinase) family have been implicated
[23–26]. PrPC can bind divalent cations such as copper
and zinc [27] by the octarepeat-containing flexible tail
and it has been reported to interact with a plethora of
different proteins. These interactions have been taken to
reflect its putative role in several cellular processes, but
they may also simply be a consequence of the unstruc-
tured, flexible conformation of the N-terminus of PrPC.

Genetic pitfalls of PrPC gene ablation
Soon after PrPSc was proposed to be the causative agent
of prion diseases, Prnp knockout mice lacking PrPC were
generated in order to answer the question whether the
loss of physiological PrPC function would lead to neu-
rodegeneration in prion diseases. The first Prnp null
mouse strain, designated Prnp-/-, or Zurich I (ZrchI,
PrnpZH1/ZH1), was produced in a mixed C57BL/6 J ×
129/Sv(ev) background [28] and a second line of PrPC-
deficient mice, known as Npu or Edinburgh (Edbg),
was produced with a pure 129/Ola genetic background
[29]. In a first round of characterization, these mice
were not found to show any clear abnormality except
for their resistance to prion infection [30]. They devel-
oped and bred normally, and although they displayed
subtle alterations in behavior [28], their otherwise ap-
parent normality seemed to rule out a physiological
function of PrPC that is essential for life. If there is one,
it is highly redundant or it can be compensated for.
PrPC-deficient mice from which the entire Prnp gene
was removed [31–34] develop progressive cerebellar
ataxia, which was originally attributed to the loss of
PrPC but was later discovered to be due to the deletion
of a splice acceptor site in exon 3 of Prnp [35]. This led
to aberrant overexpression of the PrPC paralogue gene
(Prnd) encoding Doppel (Dpl) [36, 37], causing selective
neurodegeneration of cerebellar Purkinje cells. Notably,
the reintroduction of Prnp in mice overexpressing Prnd
in the brain rescued the phenotype, suggesting a func-
tional link between the two proteins [38].
Later, using the Cre-loxP system, conditional PrPC

knockout NFH-Cre/tg37 mice were generated to examine
the effects of acute PrPC depletion on neuronal viability
and function in the brain of 9-week-old adults. This ap-
proach was thought to avoid compensatory mechanisms
active at the embryonal stage that would have masked
PrPC loss of function phenotypes [39]. Again, depleting
neuronal PrPC in adult mice did not result in neurodegen-
eration or histopathological changes, but it led to subtle
electrophysiological abnormalities in the hippocampus
(Table 1). A closer look at different neuronal and other
cell functions in PrPC-ablated mice revealed a number
of differences from wild-type mice that were attributed
to the physiological function of PrPC. While some of
these studies were consistent among different PrPC-de-
ficient lines, others yielded contradictory results de-
pending on methodologies and the mouse models that
were used (Table 2).
A genetic confounder has been shown to underlie

some of these inconsistencies [40, 41]. For many years,
knockout alleles were usually created in embryonic stem
cells from the Sv129 strain of mice, and the resulting
mice were backcrossed to C57BL/6 mice [42]. This prac-
tice typically leads to variable, poorly controlled Mendelian
segregation of polymorphic alleles whose distribution
depends on their genetic linkage to the knockout allele.
All Prnp knockout mouse lines have been generated in
this way with the exception of the “Edinburgh” mouse,
which was maintained in a pure 129 background [42].



Table 1 Lines of PrPC-ablated mice covered in this review

Name Year produced Reference Genetic background “Doppel artifact“

Zurich I (ZrchI, ZH1) 1992 [28] Mixed C57BL/6J x 129/Sv(ev) No

Edinburgh (Edbg) 1994 [29] 129/Ola No

Nagasaki (Ngsk) 1996 [31] Mixed C57BL/6J x 129/Sv(ev) Yes

Rcm0 1997 [33] Mixed C57BL/6J x 129/Sv(ev) Yes

Zurich II (ZrchII, ZH2) 2001 [34] Mixed C57BL/6J x 129/Sv(ev) Yes

NFH-Cre/tg37 (adult onset) 2002 [39] Mixed C57BL/6J x 129/Sv(ev) No

Zurich III (ZrchIII, ZH3) 2016 [42] C57BL/6J No

Bold indicates mixed genetic background of at least two distinct mouse strains, possibly leading to the “flanking-gene problem”. Italic indicates mice maintained
on single, pure genetic background

Table 2 Proposed physiological roles of cellular prion protein

Role of PrPC in Phenotype of Prnp-/- model system Report
(mouse model/cell line used)

Contradictory
reports

Synaptic transmission
and plasticity

Reduced long-term potentiation [58] (ZH1)
[29] (Edgb)

[61] (ZH1, other a)
[98] (ZH1)

Reduced excitatory and inhibitory synaptic transmission [58] (ZH1)
[62] (ZH1, Ngsk)

[61] (ZH1, othera)
[147] (ZH1)

Memory formation Reduced spatial learning and memory [64] (otherb) [28] (ZH1)

Reduced avoidance learning and memory [65] (ZH1)
[148] (Ngsk)

[68] (ZH1)

Stabilization of sleep
and circadian rhythm

Altered circadian rhythm, increased sleep fragmentation,
increased SWA after sleep deprivation

[71] (ZH1, Edgb) [74] (Otherb)

Neuronal excitability Reduced Kv4.2 currents [77] (ZH1, HEK293T)

Reduced sAHP and calcium-activated potassium currents [79] (ZH1)
[80] (ZH1)
[82] (ZH1)
[39] (Tg35)
[83] (ZH1)

Increased susceptibility to Kainate-induced seizures [84] (ZH1) [41] (Otherb)

Calcium homeostasis Reduced VGCC currents [80] (ZH1) [83] (ZH1)

Increased calcium buffering [83] (ZH1)

Glutamate receptor
function

Increased NMDA currents, nociception and depressive-like behavior [90] (ZH1)
[91, 92] (ZH1)

Upregulation of Kainate receptor subunits [84] (ZH1)

Neurite outgrowth Delayed development of cerebellar circuitry [120] (ZH1)

Reduced neurite outgrowth in vitro [106] (ZH1)

Toxicity elicited by
oligomeric species

Protected from LTP reduction induced by toxic Aβ species [98] (ZH1, otherc) [102] (ZH1)
[103] (ZH1)
[104] (Otherb)
[105] (Othera)

Neuroprotection Larger lesions in model of acute cerebral ischemia [122] (ZH1)
[123] (ZH1)
[124] (ZH1)

Decreased SOD activity [133] (ZH1) [135] (ZH1)

Copper, zinc, iron, and
lactate metabolism

Reduced zinc content in primary neurons [95] (ZH1, SH-SY5Y)

Increased lactate-uptake in cultured astrocytes [96] (ZH1)

Altered iron and copper metabolism [139] (Othera)

Peripheral myelin
maintenance

Age-dependent demyelinating neuropathy [141] (ZH1, Edgb)
[42] (ZH3)

Bold indicates mixed genetic background of at least two distinct mouse strains, possibly leading to the “flanking-gene problem”. Italic indicates mice maintained
on single, pure genetic background. Mouse lines specified as “other” are: aZH1 backcrossed to FVB; bEdgb (back-)crossed to C57BL/10; cEdbg backcrossed
to C57BL6
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Even after more than 12 generations of backcrossing, a
small part of the chromosome around the Prnp locus
still stems from the 129 strain, raising the question
whether any observed phenotypes were actually due to
polymorphisms in genes flanking Prnp. Indeed, we found
that SIRPα, a polymorphic Prnp-flanking gene, is actu-
ally responsible for an alleged Prnp-/- phenotype: the in-
hibition of macrophage phagocytosis of apoptotic cells
that was observed in PrPC-deficient mice with mixed
genetic background but not in co-isogenic Prnp-/- mice
[40]. Recently, a new PrPC-deficient mouse strain,
PrnpZH3/ZH3, was produced in our lab using TALEN-
mediated genome editing in fertilized mouse oocytes
and maintained in a pure C57BL/6 J genetic background
[42]. These strictly co-isogenic C57BL/6 J-PrnpZH3/ZH3

mice differ from wild-type mice only by eight deleted
nucleotides in the Prnp reading frame. In an effort to
improve the quality of studies on the function of the cel-
lular prion protein, we are distributing PrnpZH3/ZH3 mice
without requesting any kind of Material Transfer Agree-
ment, hence enabling better-controlled future studies. In
view of the broad availability of PrnpZH3/ZH3 mice, we
contend that the use of mixed-background PrPC-defi-
cient mice is obsolete and liable to artifacts.
Do further mammal species teach us more about the

function of PrPC? The gene encoding PrPC has been
ablated experimentally in cattle [43] and goats [44], and
a naturally occurring Prnp knockout goat has been
reported [45]. While no pathological phenotypes were
reported in any of these animals, it may be rewarding
to perform specific investigations of these animals, e.g.,
concerning the integrity of the peripheral nervous sys-
tem in advanced age.
A large set of human genomic data was analyzed to

quantify the penetrance of variants of the human PrPC

gene (PRNP) in prion disease [46]. Surprisingly, hetero-
zygous loss-of-function variants were identified in three
individuals. These individuals in their 50s and 70s are
probably healthy, and no evidence of any neurological
defect or peripheral neuropathy was documented. This
result suggests that heterozygous loss of PRNP in
humans may not be haploinsufficient. It remains to be
assessed, however, whether homozygous deletion and
therefore complete loss of PrPC may create a disease
in humans.

Evidence for a role of synaptic PrPC in memory
and sleep
PrPC is strongly expressed in both neurons and glial cells
of the CNS [1]. In neurons, PrPC is preferentially localized
in the pre- and postsynaptic compartments of nerve ter-
minals. Immunocytochemical studies by light and electron
microscopy in primate and rodent brains [47, 48], as well
as examination of an EGFP-tagged PrPC in transgenic
mice, showed that PrPC is enriched along axons and in
pre-synaptic terminals [49, 50] and that it undergoes
anterograde and retrograde axonal transport [51, 52].
PrPC is also present in postsynaptic structures [53, 54].
It has recently been shown that sialic acid within the
GPI-anchor is important for targeting PrPC to synapses
[55]. This expression pattern implies that PrPC might
be involved in preserving normal synaptic structure and
function by regulating synaptic transmission and plasti-
city (Fig. 3). Supporting this notion, synaptic dysfunc-
tion and synaptic loss are a prominent and early event
in prion diseases [56, 57].
Early reports showed that PrPC-deficient mice (both

ZH1 and Edbg) display reduced long-term potentiation
(LTP) in hippocampal Schaffer collaterals and weakened
inhibitory GABAergic synaptic transmission [58, 59].
These defects have been claimed to be rescued by a
human PRNP transgene [60]. However, none of these
results were reproduced in PrPC-deficient mice of
three different genetic backgrounds (Table 2). These
discrepancies have remained essentially unexplained
for the past 20 years [61]. Later studies reported a
PrPC dosage-dependent facilitation of synaptic trans-
mission, with PrPC-over-expressing mice exhibiting
supra-physiological synaptic transmission [62]. This
effect seemed to result from a more efficient recruit-
ment of pre-synaptic fibers that, in turn, may depend
on PrPC expression levels.
LTP is one of the neurophysiological correlates of syn-

aptic plasticity, the ability of synapses to change their
strength in response to previous activity. Because synap-
tic plasticity (LTP) in the hippocampus underlies learn-
ing and memory formation [63], any LTP deficits may
result in cognitive defects. Initial reports did not show
any reduction in memory performance of PrnpZH1/ZH1

mice in the Morris Water Maze test [28]. However, a
later study found deficiencies in spatial learning and
memory in PrPC-deficient mouse lines on various back-
grounds [64]. These deficits were explained by reduced
LTP in the dentate gyrus in PrPC-deficient mice in vivo,
and were rescued by neuronal expression of PrPC.
PrnpZH1/ZH1 mice were reported to have impaired mem-
ory performance only when aged (9 months). Several
molecular mechanisms for this defect have been pro-
posed, but none were verified at the mechanistic level
[65–67]. These results stand in contrast to another study
carried out in PrnpZH1/ZH1 mice that did not reveal any
memory impairment up to an age of 2 years [68]. Thus,
a role for PrPc in memory is still contentious.
A role of PrPC in sleep homeostasis and sleep continu-

ity has also been proposed and loss of such a function
for PrPC would be of clinical relevance. Indeed, it would
explain the disruption of the sleep pattern that occurs as
a prominent symptom in some forms of prion diseases
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like sporadic and familial fatal insomnia [69, 70]. Both
PrnpZH1/ZH1 and co-isogenic PrnpEdbg/Edbg mice were
reported to display altered circadian rhythms, increased
sleep fragmentation, and increased slow wave activity
(SWA) following sleep deprivation [71]. The latter
phenotype was rescued by reintroduction of PrPC ex-
pression [72]. It was suggested that the difference in
SWA between wild-type and Prnp null mice reflected a
function of PrPC in neurotransmission or a protective
role on synapses [73]. Another study confirmed sleep
disturbance in Prnp knockout mice. However, using a
prolonged sleep deprivation protocol, the defect was
found to be associated with reduced slow-wave activity
and to altered hormonal reactivity to prolonged stress
[74]. Interestingly, deterioration of slow-wave activity
was found to contribute to sleep deficits in Alzheimer’s
disease (AD) and was reversed by enhancing GABAAergic
inhibition [75].
The molecular bases of sleep regulation are not com-

pletely understood. Tantalizingly, recent work indicates
that calcium-dependent hyperpolarization is critical to
a b d

c

Fig. 2. PrPC exerts its functions via distinct mechanisms. The cellular prion
As schematically depicted in a, PrPC may directly alter the function of its ta
by promoting the S-nitrosylation of the NMDA receptor. Alternatively, PrPC

biophysical properties of the channel (b) or its trafficking (c). Another funct
(Zn2+) or copper (Cu2+). It was claimed that PrPC may buffer these cations
receptors. Some better-defined actions of PrPC include its binding to mis
other membrane receptors (e). Additionally, PrPC can signal in trans by its
prominently including the G-protein-coupled receptor Adgrg6 (f)
sleep duration, and that sleep deterioration is associated
with impairment of calcium-dependent potassium chan-
nels, voltage-gated calcium channels (VGCC), and N-
methyl-D-aspartate (NMDA) glutamate receptors [76].
Since both hyperpolarization linked to calcium dysho-
meostasis and NMDA receptor-related hyperexcitability
were documented in Prnp ablated mice (discussed in the
next section), loss of PrPC-dependent control of these
ion channels may underlie the sleep disruption in PrPC-
deficient mice and perhaps also in prion diseases.

Possible functions for PrPC are suggested by
interaction partners
Albeit controversial, the participation of PrPC in neuro-
biological processes, and particularly in sleep regulation
and memory, raises the question whether the cellular
prion protein modulates synaptic mechanisms and neur-
onal excitability at a molecular level. Insights into possible
mechanisms may be provided by the documented inter-
action of PrPC with several ion channels and metabotropic
glutamate receptors (Fig. 2). However, caution is needed
e f

protein may utilize several mechanisms to modulate cellular functions.
rget protein by mediating posttranslational modifications, for example,
modulates auxiliary proteins of ion channels, thereby regulating the
ion of PrPC arises from its ability to bind divalent cations such as zinc
within the synaptic cleft and may facilitate their uptake (d) via AMPA
folded oligomeric protein species and signaling in complex with
N-terminal cleavage products, which may bind to other receptors,
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while screening the crowded PrPC interactome: only inter-
actions with molecular partners displaying a functional
correlate to PrPC binding should be considered of poten-
tial biological relevance.
PrPC interacts with Dipeptidyl peptidase-like 6 (DPP6),

an auxiliary subunit of the voltage-gated potassium
channel 4.2 (Kv4.2), which leads to increased and pro-
longed currents through this channel, thereby reducing
cellular excitability [77]. Also, PrPC and a mutant PrPC

version that is linked to a genetic prion disease have
been shown to co-immunoprecipitate with the auxiliary
subunit α2δ-1 of VGCCs in transgenic mice [78].
Mutant PrPC affected α2δ-1 trafficking and function at
the synapses. The molecular role of PrPC in VGCC
Fig. 3. Schematic overview of possible physiological functions of PrPC and
and neurotransmitter receptors at the pre- and postsynaptic levels. a PrPC

with the α2δ-1 VGCC subunit. b Postsynaptically, PrPC dampens NMDA re
this channel. It was speculated that control of NMDA receptor function m
c PrPC may also control the glutamatergic system by modulating the subu
susceptibility of PrPC-ablated mice to kainate-induced seizures. d PrPC asso
subunits. This facilitates zinc uptake at the synaptic cleft via AMPA recepto
of lactate. e PrPC binds to toxic oligomeric protein species. PrPC binds to A
(mGluR5), was proposed to trigger intracellular signaling related to Alzheim
with different ion channels. Additionally, PrPC was claimed to regulate ca
ATPase (SERCA). g PrPC positively modulates potassium currents as exem
potassium channel. Control of calcium and potassium channels might be
endoplasmic reticulum
function under physiological conditions remains un-
clear (Fig. 3). However, deficits in VGCC currents and
calcium homeostasis were reported in PrnpZH1/ZH1

neurons [79, 80] and were proposed to underlie the
reduced slow after hyperpolarization (sAHP) seen in
PrPC-deficient mice. The sAHP is a property of many
neurons that is evoked by repetitive action potentials
and controls subsequent action potential firing. The
intermediate-conductance, calcium-activated potassium
channel (IkCa) has been claimed to control this neuro-
physiological parameter [81].
Not only could the sAHP defect be reproduced by inde-

pendent research groups in PrnpZH1/ZH1 mice [80, 82, 83],
it has also been shown in an adult-onset model of PrPC
their effect in the central nervous system. PrPC regulates ion channels
might modulate VGCC trafficking at the presynapse via interaction

ceptor-mediated currents by modulating various receptor subunits of
ight be related to certain reported phenotypes of PrPC-ablated mice.
nit composition of kainate receptors. This possibly relates to increased
ciates with, and promotes cell surface localization of, AMPA receptor
rs. On astrocytes, a PrPC–AMPA complex may be involved in the uptake
β oligomers and, in complex with metabotropic glutamate receptor 5
er's disease pathology. f PrPC controls calcium influx via interaction
lcium storage via the sarcoplasmic/endoplasmic reticulum calcium
plified by association with DPP6, an auxiliary subunit of the Kv 4.2
related to the alleged function of PrPC in neuronal excitability. ER
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depletion, indicating that this is not a developmental
phenotype [39]. At the cellular level, reduced sAHP is ex-
pected to result in increased neuronal firing. Increased
neuronal excitability in the PrPC-deficient hippocampus
has also been reported in the context of higher vulnerabil-
ity of PrPC-deficient mice to kainate-induced seizures
(Fig. 3). This was related to the interaction of PrPC with
the kainate receptor subunit GluR6/7 [84]. Additionally,
in the absence of PrPC, GluR6/7-containing KA receptors
were upregulated and the neurotoxic signaling was en-
hanced [84–86]. This suggests a neuroprotective role of
PrPC against excitotoxic insults.
However, whether this represents a bona fide PrPC

phenotype remains controversial. Prnp-/- mice on a differ-
ent genetic background displayed a reduced susceptibility
to kainate-induced seizures in the absence of PrPC. As this
phenotype could not be rescued by reintroduction of an
exogenous Prnp gene, it is suspected that polymorphisms
in some unidentified Prnp-flanking genes may underlie
the discrepant phenotypes [41]. More recently, however,
although the effect of the “Prnp-flanking gene” in the KA-
mediated responses was confirmed in PrPC-deficient mice
of a mixed background (B6129 and B6.129), enhanced
sensitivity to epileptogenic drugs was found in the co-
isogenic PrnpEdbg/Edbg mouse [87]. The molecular
mechanism underlying this phenotype is unclear but the
aa32–93 region of PrPC (spanning the octapeptide repeats)
and its glycosylphosphoinositol anchor may be involved.
Consistent with the higher neuronal excitability of PrPC-
deficient mice, anatomical changes within the hippocam-
pus indicated a reorganization of neuronal circuitry
similar to the “epileptic neuronal network” seen in certain
human epilepsies [88].
PrPC might also act as a modulator of glutamate recep-

tors of the NMDA subtype. These are heterotetramers
composed of two GluN1 subunits and two GluN2 sub-
units of different subtypes [89]. It was found that PrPC

inhibited NMDA receptors and prevented potentially exci-
totoxic calcium influx through these channels by associ-
ation with NMDA receptors containing the GluN2D
subunit [90], as shown by co-immunoprecipitation and
immunofluorescence imaging. Absence of PrPC led to up-
regulation of GluN2D-containing NMDA receptors and
enhanced signaling due to prolonged kinetics of NMDA-
mediated currents [90]. This was subsequently linked to
increased depressive-like behavior and increased noci-
ception in PrPC-deficient mice. Both phenotypes were
rescued by pharmacological inhibition of NMDA recep-
tors [91, 92]. Additionally, copper-dependent interaction
of PrPC with the GluN1 subunit was documented,
which was involved in nitrosylation of NMDA subunits
GluN2A and GluN1. This represents a second mechanism
by which the presence of PrPC reduces NMDA currents
and signaling [93, 94].
The putative control of ionotropic glutamate receptors
by PrPC may be even more complex, since PrPC also
interacts with α-amino-3-hydroxy-5-methyl-4-isoxazo-
lepropionic acid (AMPA) receptor subunits GluA1 and
GluA2. This interaction may be relevant to the PrPC-
mediated cellular uptake of zinc through AMPA recep-
tors [95] and to the regulation of lactate transport in
astrocytes [96]. Whether the binding of PrPC with
AMPA receptor subunits also plays a role in AMPA re-
ceptor function remains to be elucidated.

PrPC interactions with metabotropic glutamate
receptors and Aβ
Recently, PrPC has been shown to interact not only
with ionotropic but also with metabotropic glutamate
receptors of group I, mGluR1 and mGluR5 (Fig. 2). Me-
tabotropic glutamate receptors are members of the G
protein-coupled receptor (GPCR) superfamily of seven
transmembrane-domain proteins that are activated by
glutamate and transduce intracellular signals via G pro-
teins. PrPC binds to and signals through mGluR5 in
disease-related conditions [97].
Several studies found that Aβ oligomers, the neuro-

toxic protein species involved in AD, can bind to PrPC

[98, 99] (Figs. 1 and 2) and activate the Fyn kinase
through mGluR5 [97]. Aβ–PrPC–mGluR5 complexes
are responsible for facilitation of long-term depression
(LTD) in vivo [100] and dendritic spine loss in cultured
neurons [97]. The Aβ–PrPC–mGlu5R complex might act
upstream of the phosphorylation of the NMDA receptor
subunit GluN2B. This event within the pathogenic cas-
cade triggered by Aβ oligomers requires PrPC-dependent
Fyn activation [54] and underlies the Aβ oligomer-
induced disruption of LTP in AD.
Focusing on the role of PrPC, two main considerations

can be drawn from these studies. First, PrPC appears to
function as a cell surface receptor for synaptotoxic oligo-
mers of the Aβ peptide and, as reported by Resenberger
and colleagues [101], of other β-sheet-rich neurotoxic
proteins. However, whereas the physical interaction of
PrPC with Aβ oligomers was confirmed [99, 102], it is
unclear whether PrPC is necessary for the synaptotoxic
effect of Aβ oligomers [102–105]. Secondly, although
the interplay between mGluR5 and PrPC may be relevant
to AD pathology, it remains unclear whether the binding
to PrPC affects physiological functions of group I me-
tabotropic glutamate receptors. Intriguingly, a role for
the PrPC–mGluR1 complex in neurite outgrowth has
been reported [106].

Role of PrPC in development
During murine embryonic development, PrPC is expressed
as early as a few days post-implantation, suggesting a
possible role in development [107, 108]. Transcriptomic
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analysis of PrPC knockout embryos showed several differ-
entially expressed genes (DEGs), while the number of
DEGs in brains of adult PrPC-deficient mice is almost neg-
ligible [42, 109]. Interestingly, the number of DEGs is
higher in brains where PrPC had been knocked out postna-
tally, suggesting that the function of PrPC may be compen-
sated for by other proteins during development [110]. To
date, only a few in vivo studies on the role of PrPC in CNS
development are available. They suggest that PrPC-ablated
mice exhibit reduced proliferation rates of neuronal pro-
genitor cells in the embryonic, newborn, and adult CNS
[111, 112]. Additionally, increased proliferation of oligo-
dendrocyte precursor cells with a concomitant maturation
delay of oligodendrocytes and astrocytes has been reported
[111, 113]. These observations were supported by the
results of several in vitro experiments [111, 113, 114].
However, as the genetic background can influence brain
development and adult neurogenesis [115], these studies
should be confirmed in coisogenic PrPC-ablated mice.
Additionally, in vitro studies suggest that PrPC is im-

plicated in the regulation of neuritogenesis [116, 117] as
well as axonal growth [48, 118, 119]. Also, there is some
evidence that PrPC is involved in the development of the
cerebellar circuitry, leading to delayed motor develop-
ment of PrPC-deficient mice [120].

Possible neuroprotective roles of PrPC

PrPC may have a neuroprotective role in a mouse model
of cerebral ischemia, as PrPC-deficient mice show larger
lesions in acute cerebral ischemia. Furthermore, overex-
pression of PrPC can reduce the lesion size compared to
wild-type mice [121–124]. Attenuation of NMDA signal-
ing by PrPC has been proposed to be the basis of a neu-
roprotective role of PrPC against NMDA-mediated
toxicity in ischemia [125]. Additionally, it was found that
cleavage of PrPC into its N- and C-terminal fragments is
enhanced under ischemic conditions and these cleavage
products can themselves be neuroprotective [124]. In
particular, the N-terminal cleavage fragment (N1) might be
neuroprotective against staurosporine-induced Caspase-3
activation in a model of pressure-induced ischemia in the
rat retina [126]. These results are supported by several
in vitro studies, where expression of PrPC was protective
against staurosporine or anisomycin-induced apoptosis
[127, 128]. Conversely, loss of PrPC was beneficial against
glutamate-induced excitotoxicity in vitro, an effect sup-
posedly mediated by increased uptake of glutamate in
PrPC-ablated astrocytes [129].
The protective function of the N1 fragment is also

very intriguing in the context of the Aβ oligomer-related
synaptotoxicity. This intrinsically disordered N-terminal
portion of PrPC is involved in binding to β-sheet-rich
peptides like Aβ oligomers [99, 101] and mediates the
detrimental effects of Aβ oligomers on synaptic function
as mentioned before. However, in its soluble form as
secreted upon PrPC cleavage, N1 acted in a decoy
receptor-like mode: it prevented Aβ peptide fibrillization
and reduced the neurotoxicity of amyloid-β oligomers
in vitro and in vivo [130]. Additionally, the rate of PrPC

alpha-cleavage is increased in brain tissue from patients
suffering from AD and it was proposed that alpha-
cleavage represents an endogenous protective mechanism
against amyloid-β toxicity in humans [131].
However, PrPC-deficient mice do not exhibit altered

amyloid-β toxicity [102–105] and there was no protective
effect of PrPC in mouse models of other neurodegenera-
tive diseases, including Parkinson's and Huntington's dis-
ease, as well as a mouse model of tauopathy [124, 132].
Based on in vitro studies, by virtue of its ability to bind

copper, PrPC has been proposed to participate in resist-
ance to oxidative stress by preventing reactive oxygen
species (ROS) generation via free copper-mediated redox
reactions. Also, PrPC was at some point thought to regu-
late the function of superoxide dismutase (SOD) [133].
It was even proposed that PrPC could act as a SOD by it-
self [27, 134]. However, a function of PrPC in copper me-
tabolism is still controversial and the influence of PrPC on
either SOD level or the intrinsic dismutase activity of PrPC

was shown by us and others to be artifactual [135, 136].
There might be, however, alternative ways in which
PrPC protects against ROS toxicity. For instance, PrPC-
dependent expression of antioxidant enzymes was sug-
gested as an explanation for resistance to oxidative stress
mediated by PrPC [137, 138] as well as a conjectured
PrPC function in iron metabolism and control of redox-
iron balance in cell lines [139, 140].

Role of PrPC in the peripheral nervous system
PrPC-deficient mice of five different PrPC-knockout
strains, including the PrnpZH3/ZH3 mice (coisogenic to
BL/6 mice), develop a late-onset peripheral neuropathy,
indicating that peripheral myelin maintenance is a bona
fide physiological function of PrPC [42, 141, 142]. PrPC

neuronal expression and amino-proximal cleavage
(Fig. 2) are necessary for the promyelinating signal [141].
It was then discovered that the very N-terminal polyca-
tionic cluster of PrPC binds to the G-protein-coupled re-
ceptor Adgrg6 (Gpr126) on Schwann cells (Fig. 1),
eliciting a promyelinating cAMP response in vitro and
in vivo in mice and zebrafish (Fig. 4) [5]. This pointed to
the N-terminal fragment of PrPC as a promyelinating
factor that might serve as a possible treatment in other
peripheral chronic demyelinating polyneuropathies.
In the CNS, Gpr126 is expressed by the Bergmann glia

of the developing cerebellum, but not on mature oligo-
dendrocytes, which are responsible for myelination
[143]. However, some PrPC deletion mutants lacking the
cleavage site for the N-terminal fragment production
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Fig. 4. Axonal PrPC promotes myelin maintenance in trans via Adgrg6 on Schwann cells. Mice devoid of PrPC develop a chronic demyelinating
neuropathy, which suggested a pro-myelinating function of PrPC. In the peripheral nervous system, the N1 fragment of axonal PrPC interacts with
Adgrg6 expressed on Schwann cells. This binding elicits activation of Adgrg6, which signals via adenylyl cyclase, thereby leading to increased
cellular levels of cAMP. This triggers a well-defined downstream signaling cascade promoting myelin maintenance
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also showed severe demyelination in both the spinal
cord and cerebellar white matter in vivo [144, 145].
Thus, although in the CNS an eventual PrPC function
in myelin homeostasis is dispensable, a contribution of
aberrant PrPC function in demyelinating diseases in the
brain is a conceivable scenario. Moreover, whether the
N-terminal cleavage product of PrPC is also signaling
via other G-protein-coupled receptors in distinct bio-
logical processes is likely, but remains to be elucidated.

PrPC function: the next chapters
All available data point to PrPC exerting its function in
concert with additional membrane proteins. On one hand,
PrPC can regulate the cellular transport and localization of
its binding partners. On the other hand, PrPC can directly
modulate the functionality of the binding partner—as seen
for certain ion channels and ionotropic glutamate recep-
tors. Also, PrPC can signal in trans via its N-terminal cleav-
age products. Finally, PrPC appears to scavenge amyloid
aggregates of Aβ, and it will be interesting to see whether
further pathological aggregates can also be recognized by
PrPC. Given these findings, the question arises whether the
cellular prion protein needs its misfolding-prone structure
with a disordered flexible tail to fulfill its physiological
function. The fact that the functional domains of PrPC are
conserved from avians to mammals speaks in favor of this
hypothesis [4, 146]. Even though the interpretation of
many studies is hampered by the genetic impurity of the
mouse models used, there is enough evidence that PrPC

plays a role in several physiological functions in the central
and peripheral nervous systems. Nevertheless, it appears
implausible that PrPC is involved in such a large number of
cellular functions, particularly in view of the small number
of validated pathological phenotypes in PrPC-deficient
mice. The emergence of new, rigorously controlled animal
models will be of help for revisiting and critically assessing
some of these phenotypes.
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