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Abstract

Genetic redundancy refers to a situation where an individual with a loss-of-function mutation in one gene (single
mutant) does not show an apparent phenotype until one or more paralogs are also knocked out (double/higher-order
mutant). Previous studies have identified some characteristics common among redundant gene pairs, but a predictive
model of genetic redundancy incorporating a wide variety of features derived from accumulating omics and mutant
phenotype data is yet to be established. In addition, the relative importance of these features for genetic redundancy
remains largely unclear. Here, we establish machine learning models for predicting whether a gene pair is likely redun-
dant or not in the model plant Arabidopsis thaliana based on six feature categories: functional annotations, evolutionary
conservation including duplication patterns and mechanisms, epigenetic marks, protein properties including posttrans-
lational modifications, gene expression, and gene network properties. The definition of redundancy, data transforma-
tions, feature subsets, and machine learning algorithms used significantly affected model performance based on holdout,
testing phenotype data. Among the most important features in predicting gene pairs as redundant were having a
paralog(s) from recent duplication events, annotation as a transcription factor, downregulation during stress conditions,
and having similar expression patterns under stress conditions. We also explored the potential reasons underlying
mispredictions and limitations of our studies. This genetic redundancy model sheds light on characteristics that may
contribute to long-term maintenance of paralogs, and will ultimately allow for more targeted generation of functionally
informative double mutants, advancing functional genomic studies.
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Introduction

Genetic redundancy, which refers to multiple genes that per-
form the same function, has been defined in many ways since
the mid-1900s (Gabriel 1960). An early study of genetic re-
dundancy in Saccharomyces cerevisiae discussed it in the con-
text of unlinked genes encoding enzymes catalyzing the same
reaction (Mortimer 1969). A later study took a broader view
of genetic redundancy, with the degree of redundancy rang-
ing from “complete redundancy” among genes with house-
keeping functions to “partial overlap of function” among
genes with primarily regulatory functions (Pickett and
Meeks-Wagner 1995). In studies from a number of model
organisms, multiple examples of what is considered genetic
redundancy have been given, including: genes derived from

convergent evolution encoding enzymes that perform the
same function (Pickett and Meeks-Wagner 1995); biochemi-
cal pathways that are redundant due to interconnected met-
abolic networks (Weintraub 1993); and genes from the same
family (paralogs) that maintain some of the same function-
ality (Kempin et al. 1995). Discussions of genetic redundancy
in recent literature mostly encompass this last definition,
where a duplication event results in multiple copies of a
gene that retain overlapping functions (e.g, Chen et al.
2010, Bolle et al. 2013, Rutter et al. 2017). Practically, genetic
redundancy is commonly observed as a single gene knockout
mutant that shows no phenotype or a mild phenotype com-
pared with a wild-type organism, with a double or higher-
order mutant showing a more severe phenotype.
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After a gene is duplicated, selection may be relaxed on
each copy, allowing accumulation of mutations, which can
lead to pseudogenization of one of the duplicates (Brookfield
1992); thus, the presence of genetically redundant paralogs
long after the duplication event would seem to be an evolu-
tionary paradox (Nowak et al. 1997). In spite of this, the lit-
erature is replete with examples of genetic redundancy, and
many redundant genes in species such as S. cerevisiae and
Caenorhabditis elegans originated from duplication events
that happened over 600 million years ago (Ma; Vavouri
et al. 2008). At least two mechanisms may explain how this
is possible. Redundant copies can be retained for a long time
due to the slow pace of genetic drift in large populations.
Based on a few key assumptions, it is estimated that a mu-
tation deleterious to the function of a duplicate copy could
take 0.75-5 Ma to be fixed in Arabidopsis thaliana (Panchy
et al. 2016). However, this cannot account for the apparent
redundancy among paralogs from the most recent whole-
genome duplication (WGD) that occurred in the
Arabidopsis lineage approximately 50 Ma (Bowers et al.
2003). Another possibility is that genetic redundancy is se-
lected for due to its ability to buffer the effect of a deleterious
mutation in one paralog (Zhang 2012). The issue is that such
a mechanism requires selection based on future needs, which
is counter to our understanding of evolution. A mathematical
model has been used to demonstrate that redundancy can be
stably maintained over time (Nowak et al. 1997). However,
the model requirement for perfect equivalency in gene func-
tions and in mutations between paralogs seems unrealistic.
Due to the challenges in assessing functions of paralogs, the
extent of genetic redundancy and the factors contributing to
it remain largely unclear.

Plants are an excellent resource for studying the fate of
duplicated genes due to the relatively high rate of WGD
events. Although pseudogenization (loss of gene function)
is the most common fate of duplicated genes in plants
(Panchy et al. 2016), some duplicates are retained.
Duplicates may persist without selection for a few million
years simply due to genetic drift (Panchy et al. 2016). In other
cases, duplicates may be retained due to selection on novel,
adaptive function through neo-functionalization (Ohno
1970) or mechanisms relevant to escape from adaptive con-
flict (Des Marais and Rausher 2008), and/or due to selection
on existing functions through gene dosage increase (Ohno
1970), duplication degeneration complementation (i.e,, sub-
functionalization; Force et al. 1999), gene balance (Freeling
and Thomas 2006), or paralog interference (Baker et al. 2013).

Beyond the mechanism of retention, by identifying and
comparing characteristics of paralogous gene pairs and sin-
gleton genes, studies have revealed unique characteristics
among retained duplicates. For example, there is a lower syn-
onymous substitution rate among retained (i.e, not pseudo-
genized) paralogs derived from WGDs (Jiang et al. 2013),
suggesting that these gene pairs are relatively recent dupli-
cates or that there is selective pressure to retain the ancestral
(or a more recently evolved) function. Retention bias is also
seen for some gene functions. For example, paralogous
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transcription factor (TF) and signaling genes are retained at
a higher rate than DNA repair genes (Blanc and Wolfe 2004).
Retention rates of paralogs also vary by duplication mecha-
nism—tandem duplicates (TDs) involved in stress responses
are more frequently retained (Hanada et al. 2008), and genes
involved in signaling processes are preferentially retained
when derived from WGD rather than smaller duplication
events (Maere et al. 2005). Although these studies reveal
some characteristics of genes that are retained after duplica-
tion, they do not directly address whether these retained
paralogs maintain redundant functions. A landmark study
in Arabidopsis addressed this question using machine learn-
ing to integrate 43 gene features related to sequence similarity
and gene expression, and predicted that approximately 50%
genes in the Arabidopsis genome have at least one redundant
paralog (Chen et al. 2010). In this study, a gene whose single
mutant showed no abnormal phenotype (or a mild pheno-
type) and its closest match in the genome based on sequence
similarity were defined as a redundant pair. The most impor-
tant features for predicting redundancy included differences
in isoelectric point, molecular weight, and predicted protein
domains between genes in a pair. Although this pioneer study
provided insights into the prevalence of genetic redundancy,
redundancy was defined in only one way. Also, in the decade
since that study substantially more functional genomic data
have become available; inclusion of these data in addition to
sequence similarity and gene expression may improve the
accuracy of redundancy predictions.

Although the definition of redundancy presented above is
prevalent, observation of unequal genetic redundancy, where
the single mutant for one paralog shows a much more severe
phenotype than the other and the double mutant (DM) has a
still more severe phenotype (Briggs et al. 2006), promotes the
idea that redundancy is more accurately conceptualized as a
continuum. However, the time-consuming nature of precise
phenotyping required to quantify redundancy in this manner
means that such data are available for relatively few paralogs,
and discussions of genetic redundancy frequently exclude
single mutants with severe phenotypes. Here we build
upon previous work by modeling genetic redundancy using
multiple definitions of redundancy by including single
mutants in multiple phenotypic categories, and incorporating
over 4,000 gene features from six categories, including func-
tional annotations, evolutionary properties, protein sequence
properties, gene expression patterns, epigenetic modifica-
tions, and network properties. We compared several machine
learning algorithms and feature selection methods to identify
which of the features have the most predictive power with
respect to redundancy. We additionally performed statistical
analysis to identify features common among redundant gene
pairs using nonredundant gene pairs as a contrast. To esti-
mate the prevalence of genetic redundancy throughout the
genome, we used two of the best-performing genetic redun-
dancy definitions (RDs) to predict whether approximately
18,000 gene pairs in the Arabidopsis genome are genetically
redundant. Finally, to assess the accuracy of our model, we
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Fic. 1. (A) Phenotype severity classification from Lloyd and Meinke (2012) and our corresponding phenotype classes. (B) Definitions of redundancy
and NR based on phenotype classes of both single mutants (SM1and SM2) and the DM for each gene pair. Descriptive definition names as well as a
definition number and the number of gene pairs assigned to the definition are shown for each. RD5 (classic redundancy) is RD1-4 combined and

RD9 (inclusive redundancy) is RD1-8 combined.

validated predictions using a “holdout” testing data set and a
handful of experimentally well-characterized gene pairs.

Results and Discussion

Definitions of Genetic Redundancy

The designation of a gene pair as genetically redundant
requires phenotype data for DMs and the corresponding sin-
gle mutants. To define a set of benchmark redundant and
nonredundant gene pairs, we used phenotype data for 2,400
single and 347 higher-order Arabidopsis mutants (including
271 DMs) from a previous study (Lloyd and Meinke 2012) in
which mutants were classified as having no phenotype, a less
severe phenotype (i.e, conditional, cellular/biochemical, or
morphological), or a severe phenotype (i.e, lethal, indicating
the gene is essential) based on comparison with wild-type
individuals. We assigned these categories phenotype class
numbers: 0 (no phenotype), 1A (conditional), 1B (cellular/
biochemical), 1C (morphological), and 2 (lethal) (fig. 1A) and
applied this same phenotype classification to 29 additional
gene pairs (Bolle et al. 2013), resulting in a final benchmark set
of 300 single and DM trios (two single mutants and one
corresponding DM). Note that our data are from experiments
generally not designed to assess genetic redundancy and typ-
ically conducted in one or a limited number of conditions and
environments. Thus, it is more straightforward to identify an
abnormal phenotype in a single mutant (i.e, phenotype dis-
tinct from wildtype, indicative of nonredundancy [NR]) than
to prove the absolute absence of an abnormal phenotype
(indicative of redundancy).

Using the benchmark phenotype data and the core idea
for defining genetic redundancy based on comparison of the
phenotype severity between single mutants and the corre-
sponding DM, we established nine RDs (fig. 1B). These were

intended to capture the heterogeneity in how genetic redun-
dancy is viewed and defined, accounting for several different
ways of thinking about what constitutes genetic redundancy
and allowing us to examine less-studied types of redundancy
(e.g, where a single mutant has a severe phenotype, or where
a DM has a relatively mild phenotype): 1) clear and extreme
examples of genetic redundancy, where single mutants have
no apparent abnormal phenotype and the DM is lethal
(RD4); 2) classic genetic redundancy, where single mutants
have no abnormal phenotype and the DM has any of a range
of phenotype severities (RDs 1-5); 3) subtle genetic redun-
dancy, where single mutants have an abnormal phenotype
that may be only slightly less severe than that of the DM (RDs
6-8); and 4) inclusive genetic redundancy, which encom-
passes all of the above in a single definition (RD9). Under
our inclusive genetic RD, 190 of the gene pairs in our data
set were classified as redundant.

This use of multiple definitions offered insulation against
errors due to the inherent challenges of classifying phenotypes
into specific categories. For example, some morphological phe-
notypes are much more severe than others; under specific
conditions, conditional lethal is effectively the same as lethal).
Another example is that, although RD4 (extreme redundancy)
excluded DMs with conditional phenotypes (phenotype class
1A), both lethal and conditional lethal were included in the
classic redundancy and inclusive RDs. Although we acknowl-
edge that this classification of phenotype severity has caveats,
in the absence of quantitative phenotype data on a large scale,
qualitative categories together with our multiple definitions of
redundancy allow us to better utilize the data set and begin
addressing redundancy more as a continuum than as a binary
problem.

To define nonredundant gene pairs, a single definition was
used: two genes were considered nonredundant if the DM
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was in the same phenotype class as either single mutant or in only DMs with mild or no phenotypes had too few gene pairs
a class with a lower number; that is, at least one single mutant (RDs 1, 2, and 6, which had 16, 10, and 13 gene pairs, respec-
had an equal or more severe phenotype than the DM (fig. 1B). tively) to generate robust models and were therefore ex-
The nonredundant set contained 110 gene pairs. The nearly cluded from further analyses.
2:1 ratio of redundant to nonredundant gene pairs may re-
flect a bias in the literature. In the case of single mutants, Optimal Parameters for Prediction of Genetic
plants are generally examined for phenotypes in large-scale Redundancy with Machine Learning
screens in standard growth chamber conditions where they Machine learning allows integration of multiple data types to
are not challenged, potentially masking conditional pheno- build a statistical model that can predict a specific outcome.
types. This would give the false impression that many single In our case, we were interested in establishing a machine
mutants have no abnormal phenotype, implying they are learning model that could predict whether a gene pair was
redundant. In the case of DMs, the presence of a more severe redundant or not using six broad categories of data: func-
phenotype would tend to be reported, with negative results tional annotations, evolutionary properties, protein proper-
less likely to appear in the literature. Because comparably ties, gene expression patterns, epigenetic modifications, and
fewer gene pairs for which the DM has no abnormal pheno- network properties (supplementary table S1, Supplementary
type have been reported, our data set likely contains compa- Material online). The general approach we took is illustrated
rably fewer nonredundant gene pairs (and conversely more in figure 2A. Here the input for the model consisted of bench-
redundant gene pairs) than there are in nature. DMs with mark gene pairs (instances), classified as redundant or non-
much more dramatic phenotypes compared with the single redundant (labels) according to our nine definitions, and
mutants were also overrepresented in our data set (supple- information about the genes and gene pairs from the six
mentary fig. S1, Supplementary Material online), likely for categories of data (referred to as features). Performance was
similar reasons. As a result, some definitions that included measured using the area under the curve-receiver operating
A B . C
InpUt Data 1.0 1.0 RD3:0.71 MRD7: 0.69
Labels Features [) BRD4: 0.82 MRD8: 0.66
®0.8 0.9 RDS5: 0.76 HRD9: 0.72
Gene ; g AU-PRC
pair an ——
20. » 08
1 £ 00  AuC-ROC ]
§ Yes 94 1 1500 0.1 80 4 s RD3: 0.71 & 0.7
S Q- HRD4: 0.84 a
E o ’ RD5: 0.75 0.6
= Yes 99 2 2200 0.2 50.2 HRD7:0.70
= BRDS8: 0.70 054 LN
HBRDY: 0.74 .
Training/ ; . 0.0 -
testing Modeling overview Cross- 00 02 04 06 08 1.0 00 02 04 06 0.8 1.0
S eidaton False positive rate Recall
performance
Training set Split Cross-validation folds 1\ D E
training/ 123456780910 4 Optimal 1.04 1.0
——— validation Cross-  model ®
90% subsets validate o 15 AUC-ROC: 0.9
§ Training aﬁ b | 065 P g
o Validation ¢ ’ ‘% 0.8
B4 'S
Testing set (80'5 § 0.7
10%
{@_Qprem . g a %
Actual labels Predicted labels g | 0.6
(T;‘id;';;zm Evaluate model I:
) Testing Feature 0.0 T T T T 0.5 e
set importance 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
performance scores False positive rate Recall

Fic. 2. (A) Machine learning pipeline workflow. Input data consisted of instances (gene pairs) with labels (redundant or nonredundant) and values
of features (characteristics of gene pairs). Example features, as shown in the table, include DNA sequence similarity, the number of genes in a pair
annotated as having TF activity, maximum gene expression level, and the average level of CpG methylation among genes in the pair. The full input
data are provided in supplementary data, Supplementary Material online. Instances were first split into training and testing sets. The training set
was further split into a training subset (90%) and validation subset (10%) in a 10-fold cross-validation scheme. The optimal model after tuning the
model parameters was used to provide performance metrics based on cross-validation, predict labels in the testing set for model evaluation
purposes, and to obtain feature importance scores. (B, C) Cross-validation performance of models built using six of the nine RDs based on (B) AUC-
ROC and (C) AU-PRC for each RD. RD1, 2, and 6 were not included due to small training data sizes. A model classifying gene pairs perfectly would
have AUC-ROC and AU-PRC scores of 1.0; black dotted lines represent the performance of a model classifying at random, in which AUC-ROC and
AU-PRC scores would be 0.5 given that we used balanced data (i.e., equal number of redundant and nonredundant instances). These curves
represent the average scores from 100 iterations of model building; curves including standard deviation from this process are shown in supple-
mentary figure S3, Supplementary Material online. (D) AUC-ROC and (E) AU-PRC for a model trained using extreme redundancy (RD4) gene pairs
and balanced nonredundant pairs was applied to inclusive redundancy (RD9) gene pairs (excluding RD4) and nonredundant pairs that did not
overlap with those used in training the RD4 model.
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characteristic (AUC-ROC); higher scores indicate a higher true
positive rate (proportion of all redundant gene pairs correctly
predicted) over the range of false positive rates (proportion of
gene pairs incorrectly predicted as redundant). Performance
was additionally measured using the area under the preci-
sion—recall curve (AU-PRC); higher scores here indicate
greater precision (proportion of gene pair predictions that
are correct) over the range of true positive rates (“recall”).
Because we used a binary classification scheme (redundant or
not) for machine learning, a model classifying gene pairs at
random would have a score of 0.5 for both the AUC-ROC and
AU-PRC measures, whereas a perfect model would have a
score of 1. Comparing three commonly used machine learn-
ing algorithms, we determined that Support Vector Machines
(SVM) performed the best on our data (see Materials and
Methods and supplementary fig. S2A and B, Supplementary
Material online). Thus, only models built using SVM are dis-
cussed in the following sections.

We next explored how the number of features examined
and feature value transformation affected model perfor-
mance. Although models using multiple features generally
perform better than those based on single features, the pres-
ence of uninformative features can decrease model perfor-
mance. Therefore, comparing two algorithms for feature
selection, we tested model performance with different num-
bers of features. Additionally, we looked at the effect of trans-
formation because transforming feature values (e.g, taking
the square of values) can amplify small differences, allowing
subtle patterns to be more readily identified. Using the inclu-
sive RD (RD9), we tested 24 feature combinations (see
Materials and Methods and supplementary table S2,
Supplementary Material online) by asking how well the
model based on each feature combination performed in pre-
dicting the benchmark gene pairs in a cross-validation
scheme. We found that using 200 features selected with
Random Forest, using the best transformations of each, led
to the best performing model (AUC-ROC = 0.74, supplemen-
tary fig. S2C, Supplementary Material online, and AU-PRC =
0.72, supplementary fig. S2D, Supplementary Material online),
with a 15% and 18% improvement in performance over a
model using all of the untransformed features (AUC-ROC =
0.64, supplementary fig. S2E, Supplementary Material online,
and AU-PRC = 0.61, supplementary fig. S2F, Supplementary
Material online).

The selected features included many that were different
representations of the same, raw feature. For example, several
features related to total synonymous substitution rate (Ks),
namely maximum Ks, minimum Ks, average Ks, difference in
Ks, and total (sum) Ks for genes in a pair (see Materials and
Methods) were all among the features selected for the inclu-
sive redundancy model, demonstrating that representing a
characteristic such as Ks in a variety of ways provides distinct
and useful information for building the model. Including mul-
tiple representations and transformations of some features as
described above explicitly introduced collinearity among fea-
tures as a potentially confounding factor; collinearity likely
already existed in our data set among different but related
features, for example, duplication event and Ks. To determine

whether this presented an issue for model performance
(Dormann et al. 2013), we used principal component analysis
(PCA) for the inclusive redundancy model to generate a new
set of ten features based on the top ten PCs (explaining 53.4%
of the total variance) from the selected 200 features. This
model performed poorly (AUC-ROC = 0.65 and AU-PRC
= 0.63), demonstrating that, although the PCA approach
controls for collinearity, the resulting model is underfitted
(even after inclusion of a total of 20 PCs explaining 69.8%
of the variance: AUC-ROC = 0.70 and AU-PRC = 0.67).

Comparison of Models Built with Different
Redundancy Definitions

We anticipated that the training sets established using some
RDs would result in more accurate predictions than others.
Therefore, we next identified the RD that resulted in the best
predictions of redundancy using the optimal algorithm
(SVM) and input feature set that we identified (200 features
selected with Random Forest, using only the best transforma-
tion of each feature). When comparing how well each model
performed on the cross-validation sets, the model built using
the extreme RD (RD4; trained model referred to as the ex-
treme redundancy model) had the best performance (AUC-
ROC = 084 fig 2B and supplementary fig. S3A,
Supplementary Material online; AU-PRC = 0.82, fig. 2C and
supplementary fig. S3B, Supplementary Material online; light
blue lines). This RD had the highest contrast between phe-
notypes of the single mutants (phenotype class 0: no appar-
ent phenotype) and DMs (class 2: lethal). A likely reason for
the better performance of the extreme redundancy model is
that it was more straightforward to build a model to distin-
guish between redundant and nonredundant gene pairs
when the phenotype differences were the most extreme.
The second-best models were the ones with the largest train-
ing sample sizes, that is, classic redundancy (RD5) and inclu-
sive redundancy (RD9; yellow and green lines, respectively,
fig. 2B and C and supplementary fig. S3, Supplementary
Material online). Thus, it appears that phenotype class con-
trast and sample size were the most important factors
influencing model performance. We therefore focused on
models built with the highest phenotype class contrast (ex-
treme redundancy) and the largest sample sizes (classic re-
dundancy and inclusive redundancy) for further model
building.

Although the extreme redundancy model performed the
best in cross-validation, the majority of redundant gene pairs
in the Arabidopsis genome do not have such a high pheno-
type class contrast. We therefore tested whether the extreme
redundancy model would prove useful in predicting redun-
dancy between gene pairs when there were less extreme phe-
notype differences between the single and DMs. The extreme
redundancy model was applied to a test set composed of
inclusive redundancy gene pairs (after removing extreme re-
dundancy pairs) and balanced nonredundant gene pairs.
Although the AUC-ROC was only 0.65 (fig. 2D), the high
AU-PRC score (0.82, fig. 2E) indicated that, as expected
from applying a model built with a more conservative defi-
nition of redundancy, this model errs on the side of having a
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higher number of false negatives rather than false positives.
We also applied the extreme redundancy model to the RD3,
RDS, RD7, and RD8 data sets and the result is summarized in
supplementary table S3, Supplementary Material online; in
several cases, the performance of the extreme redundancy
model on these definitions was comparable to or better than
the performance of the definitions in cross-validation.
Similarly, the classic redundancy model (RD5) was applied
to a test set composed of inclusive redundancy gene pairs
(after removing classic redundancy pairs) and balanced non-
redundant gene pairs. The performance of this model on the
inclusive redundancy gene pairs was significantly worse
(AUC-ROC = 0.57, supplementary fig. S2G, Supplementary
Material online; AU-PRC = 0.59, supplementary fig. S2H,
Supplementary Material online) than the performance of
the extreme redundancy model. Taken together, the best-
performing models for predicting redundancy among gene
pairs with all types of phenotype contrasts were those trained
using the extreme redundancy and the inclusive RDs, but the
extreme redundancy model can better predict redundancy
based on other definitions. Therefore, these two models were
used in the following analyses.

Important Evolutionary Features in Predicting
Redundant and Nonredundant Gene Pairs
Because the identification of features that are distinct be-
tween redundant and nonredundant gene pairs can provide
insights about the biological underpinnings of redundancy,
we next assessed whether the distribution of values for each
feature among the six feature categories was significantly dif-
ferent between redundant and nonredundant gene pairs (i.e,,
statistically associated with redundancy) based on the ex-
treme redundancy and inclusive RDs (see Materials and
Methods). For both extreme redundancy and inclusive redun-
dancy, evolutionary properties had the highest percentage of
features statistically associated with redundancy (55% and
53% respectively, multiple testing-adjusted P-value [q]
<0.05; fig. 3A and B), and evolutionary property features
tended to be the most significantly correlated with redun-
dancy (median g-value of significant features = 3.0 x 10 *
and 40 x 1072 respectively; supplementary fig. S4A and B,
Supplementary Material online). Overall, a shared set of 159
features were significantly associated with redundancy in
models trained with both the extreme and inclusive RDs,
and there was a correlation between —log(g-values) for
each feature in the extreme and inclusive redundancy models
(Spearman’s rank p =075, P <22 x 10" '% fig. 3C). This
suggested that some features may be significantly associated
with redundancy regardless of definition. However, among
the top 200 features selected for building the extreme and
inclusive models, we found that only 33% and 25%, respec-
tively, were significantly associated with redundancy when
considered individually (supplementary fig. S4C and D,
Supplementary Material online), highlighting the utility of
considering features jointly using machine learning.

We next looked into individual features that distinguished
redundant gene pairs defined using extreme redundancy and
inclusive redundancy from nonredundant gene pairs using
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feature importance scores output from the trained models
(supplementary table S4, Supplementary Material online). In
this case, an importance score represents the degree to which
an individual feature contributes to the separation of redun-
dant from nonredundant gene pairs by the algorithm, with
features with a higher importance score having a larger con-
tribution (see Materials and Methods). In total, 51 features
were shared between the two models (supplementary table
S4, Supplementary Material online) with well correlated im-
portance ranks (Pearson’s correlation coefficient [PCC] =
0.63, supplementary fig. S5A, Supplementary Material online),
suggesting that a core set of features are important for pre-
dicting redundancy using multiple definitions. However, a
shared set of 51 features leaves approximately 75% of the
200 features selected for each model as unique, highlighting
the significant effect of RD on the models and the types of
important features recovered.

The relative importance of the six feature categories—
ranked from best to worst based on median importance
ranks for features in those categories in extreme redun-
dancy/inclusive redundancy-based models—was as follows:
functional annotations (32/17), evolutionary properties
(63.5/81.5), network properties (123/81.5), gene expression
patterns (110.5/101.5), epigenetic modifications (108/140),
and protein properties (139/133.5). Note that the importance
ranks do not mirror the findings in figure 3A and B, indicating
that, for example, although the distributions of >50% of evo-
lutionary property-based features significantly differed be-
tween redundant and nonredundant pairs, these features
were not as important in predicting redundancy as functional
annotation features. At first glance it may seem paradoxical
that features significantly different between redundant and
nonredundant gene pairs were not ranked as important by
the model. However, this may occur when the difference is
significant but the effect size is too small to reliably distinguish
between the classes. The most important feature in both the
extreme redundancy and the inclusive redundancy models, as
determined by feature importance scores, was whether the
gene pairs were duplicates from the a-WGD event (for the
importance scores of the top 20 features, see supplementary
fig. S5B and C, Supplementary Material online), with a-WGD-
derived gene pairs more likely to be redundant (fig. 3D). The a
event is the most recent WGD event in the Arabidopsis lin-
eage, and despite it having likely occurred approximately 50
Ma, the importance of this feature suggests that gene pairs
derived from this event have not diverged in sequence and
function sufficiently to appear nonredundant.

Two other evolutionary property features that were impor-
tant for both definitions were whether two genes are recipro-
cal best matches (rank=7 and 15 for extreme redundancy
and inclusive redundancy, respectively, supplementary fig. S5B
and C, Supplementary Material online) and a lethality score-
derived feature (discussed below). Reciprocal best matches are
paralogous gene pairs that do not have additional retained
paralogs generated since their divergence; gene pairs that were
reciprocal best matches were more likely to be redundant. As a
pair of genes without more recent duplicates are themselves
likely to be the product of a relatively recent duplication event
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GO annotation “other biological function.

”au

Max. breadth, biotic down” is the maximum number of genes in a pair downregulated under biotic

stress. “Stress coexpression, hierarchical: 25” and “Stress coexpression, k-means: 5” refer to coexpression clusters generated from stress data sets
with hierarchical (split into 25 clusters) and k-means (k = 5) clustering, respectively; plots indicate the number of gene pairs in our data set for

which genes in a pair are in the same cluster.

(supplementary fig. S5D, Supplementary Material online), they
are expected to have had less time to diverge in sequence and
function, explaining their enrichment among redundant gene
pairs. Consistent with this, Ka-Ks-related features ranked as
high as 30 and 32 in the extreme and inclusive redundancy
models, respectively. Nonetheless, contrary to our expecta-
tions, these evolutionary rate-related features were not the
most informative. Instead, other characteristics confounded
with rates of evolution, such as mechanism/mode of duplica-
tion and, as discussed in the following sections, gene functions
and expression profiles, played more important roles in the
model.

The difference in lethality score was an important feature
in both models (reciprocal lethality score, defined as the re-
ciprocal of the difference in lethality score between genes in a
pair, rank =2 and 9 for extreme and inclusive redundancy,
respectively, supplementary fig. S5B and C, Supplementary
Material online). Lethality score is the likelihood that muta-
tion of a gene will lead to a lethal phenotype in Arabidopsis
(Lloyd et al. 2015). Thus, we would expect that each gene in a
redundant pair would have a low lethality score, and there-
fore a relatively small difference in lethality score for the gene
pair. In contrast to our expectation, we found that redundant
gene pairs generally had a smaller difference in reciprocal
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lethality scores (which equates to a larger difference in raw
lethality score) compared with nonredundant gene pairs, al-
though the difference between redundant and nonredundant
gene pairs was not significant (Wilcoxon test, g-value < 0.11).
This unexpected result was likely an artifact of a bias in our
data—lethality scores were predicted by Lloyd et al. (2015) for
genes without known single mutant phenotypes, but 92% of
the genes included in our benchmark data set have known
(nonlethal) phenotypes. In the absence of a predicted lethal-
ity score, we used a score of 0 for known nonlethal mutants,
which likely artificially lowered the average lethality scores in
our benchmark set. To determine whether the use of lethality
score skewed the results, we ran the inclusive redundancy
model with the lethality score-associated features excluded
and found an insignificant difference in model performance:
the model without lethality score-associated features had an
AUC-ROC = 0.74 and AU-ROC = 0.73. We posit that the in-
significant difference in model performance, despite the
highly ranked importance of lethality score, is likely due to
the presence of collinear features that would provide similar
information.

Important Gene Expression, Functional, and Network
Features

Features related to gene expression made up the largest
portion of features selected for extreme and inclusive re-
dundancy model building, with a total of 126 gene expres-
sion features selected for one or both models. The
predicted directionality of four features varied between
the two definitions, meaning that for a given feature, re-
dundant gene pairs according to one RD had higher values
compared with nonredundant gene pairs, whereas the re-
verse was true for the other definition. For example, ex-
pression variation in the developmental expression data set
(after transforming average values reciprocally) was higher
for redundant gene pairs according to the extreme RD
than for nonredundant gene pairs, but lower for redundant
gene pairs according to the inclusive RD. We also found
that tissue-specific stress responses varied by RD; the mean
rank of features related to abiotic stress response for ex-
treme redundancy was higher for root tissue (97) than
shoot tissue (120), whereas the opposite was true for in-
clusive redundancy (99 and 94, respectively). Features de-
rived from the developmental data set were not
consistently informative across definitions; although there
were four developmental gene expression features in the
top 30 for inclusive redundancy, no such features ranked
higher than 54 for extreme redundancy. The most impor-
tant gene expression feature for inclusive redundancy was
the maximum number of biotic stress conditions under
which one or both genes in a pair was downregulated,
with redundant gene pairs having a lower maximum
than nonredundant gene pairs (fig. 3D). Thus, redundant
gene pairs tend not to be downregulated under stress
conditions. This is consistent with previous findings indi-
cating that duplicate genes involved in stress responses are
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retained at a higher rate than genes involved in other
processes (Maere et al. 2005). The most important gene
expression feature for extreme redundancy was the maxi-
mum number of hormone treatments under which one or
both genes in a pair was differentially expressed compared
with the control, with nonredundant gene pairs having a
higher maximum (fig. 3D).

Among 2,627 functional annotation features, 19 and 13
were among the top 200 for the extreme redundancy and
inclusive redundancy models, respectively. Although only
one of these features was selected for both models, given
that functional enrichment among redundant gene pairs
varies by RD (supplementary fig. S6, Supplementary
Material online), it was expected that different functional
annotation features would be important for predicting re-
dundancy using different RDs. The most important gene
function feature for the extreme redundancy model was
the number of genes in a pair (0, 1, or 2) annotated as
DNA-dependent TFs (referred to as TFs). In the trained
extreme redundancy model, gene pairs in which both genes
had this annotation were more frequently predicted as non-
redundant, consistent with the feature value distributions
(fig. 3D). This was somewhat unexpected as previous studies
have shown that TFs are more likely to be retained after
gene duplication than other types of genes (Blanc and
Wolfe 2004). The most important functional annotation
feature for the inclusive redundancy model was the number
of genes in the pair having the annotation “other biological
processes” (fig. 3D). This term, which encompasses a broad
range of processes including responses to stressors or hor-
mones, ion transport, circadian rhythm, aging, and cell
growth, among many others, was an important predictor
of nonredundant gene pairs.

Finally, although no network properties or protein prop-
erties were among the 20 most important features in predict-
ing extreme redundancy, two network property features were
in the top 20 important features for inclusive redundancy:
presence in the same gene coexpression clusters, with gene
pairs in the same cluster more likely to be redundant (fig. 3D).
Consistent with this, Chen et al. (2010) found that gene
coexpression during pathogen infection was one of the
most important features for predicting redundancy in
Arabidopsis. In that study, isoelectric point, overlap in protein
domain annotations, and sequence similarity were also
among the features found to be important predictors of re-
dundancy. Although these features were included in our
model building based on extreme and inclusive redundancy,
they ranked between 26 and 166 depending on the RD (sup-
plementary table S4, Supplementary Material online). The
minimal overlap in features found to be important in predict-
ing redundancy is likely due to the difference in how redun-
dant gene pairs were defined; in Chen et al, they were
“paralogous genes whose single mutants show little or no
phenotypic defects but whose double and higher order mu-
tant combination, when available, show a significant
phenotype.” Our extreme RD is more stringent,
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Fic. 4. (A) Distribution of feature separation scores for features used
to build the inclusive redundancy (RD9) model. To identify features
that may contribute to mis-predictions, feature values were com-
pared between 1) nonredundant gene pairs predicted as nonredun-
dant (NR/NR), 2) nonredundant pairs predicted as redundant (NR/
RDY), and 3) redundant pairs predicted as redundant (RD9/RD9).
Redundant pairs predicted as nonredundant (RD9/NR) were not in-
cluded in this analysis due to the small sample size. Using the median
value (Med) in each class/predicted class category, we calculated a
normalized feature separation score as follows:
(Mednr/rps — Medyr/nr)/ (Medrpo/rpe — Medng/ng). For each
feature, the feature separation score represents the difference in fea-
ture values between correctly and incorrectly predicted nonredun-
dant gene pairs, with a score of 0 meaning that correctly and
incorrectly predicted pairs had the same feature values and a score
of 1 meaning that incorrectly predicted pairs had the same feature
values as redundant gene pairs. Close to 20% of the features had a
separation score of 1. (B) Distribution of values for selected features
among the three categories of actual and predicted redundancy de-
scribed in (A). Horizontal bars indicate the median. “Min. dev. expr.” is
the minimum number of tissues and developmental stages in which a
gene in the pair is differentially expressed. “Recip. (max. b. expr.
down)” is the reciprocal of the maximum number of biotic stress
conditions in which one or both genes in the pair are downregulated.
“Recip. (min. CpG root)” is the reciprocal of the minimum level of
CpG methylation in root tissue for genes in the pair. “Recip. (diff. CpG
sperm)” is the reciprocal of the difference in CpG methylation level in
sperm cells for genes in the pair. These four features had a feature

encompassing only gene pairs whose DMs are lethal. Our
inclusive RD takes into account phenotype severity in the
context of the single and corresponding DM trios; that is,
we include gene pairs whose DMs have relatively mild phe-
notypes so long as the single mutant phenotypes are less
severe.

We also examined the potential causes of the mis-
prediction of nonredundant gene pairs as redundant (the
reverse case was rare and therefore not analyzed in detail)
in the inclusive redundancy model, by comparing feature
values between correctly and incorrectly predicted pairs
and generating a score representing whether mis-predicted
nonredundant pairs had feature values similar to inclusive
redundancy pairs (fig. 4A, see Materials and Methods). We
also identified features likely contributing to mis-predictions
by considering the feature importance; although features
with high importance scores generally aid in correct classifi-
cation, they can contribute to mispredictions in specific cases.
This is because features with high importance scores are
weighted more heavily in generating predictions; therefore,
if a nonredundant pair happens to have a value similar to
those commonly seen in redundant gene pairs, the pair could
be incorrectly predicted as redundant. We identified several
features for which incorrectly predicted nonredundant pairs
had values more like redundant gene pairs (using the inclusive
RD) than correctly predicted nonredundant pairs, and that
also had high feature importance scores, suggesting they may
play a role in mis-predictions (fig. 4B). Additionally, in a PCA
of correctly and incorrectly predicted nonredundant pairs
(fig. 4C), the top 24 features contributing to the first principal
component were related to CpG methylation (supplemen-
tary table S5, Supplementary Material online), implicating this
type of methylation as a major contributor to mis-prediction.

Given the enrichment of some GO categories in gene pairs
comprising the extreme redundancy and inclusive RDs (sup-
plementary fig. S6, Supplementary Material online), one con-
sideration is that our models may be biased toward features
distinguishing genes in the enriched GO categories and thus
are not generalizable to the whole genome, particularly to
genes not in the enriched categories. To address this, we
compared performance of the model on gene pairs in
enriched and unenriched categories and found that there is
no significant difference  (supplementary table S6,
Supplementary Material online). We therefore do not find
evidence that any such enrichment in functions for our paral-
ogs would lead to less accurate predictions on gene pairs
without these annotations.

separation score close to 1 and had feature importance scores in the
top 10 for the inclusive redundancy model, implicating them in mis-
predictions. (C) Dimensions 1 and 2 of a PCA performed to identify
features that were different between correctly and incorrectly pre-
dicted nonredundant pairs. Dimension 1 explains 18.1% of the vari-
ance and Dimension 2 explains 10.0% of the variance. The top 24
features contributing to Dimension 1 were related to CpG methyla-
tion levels (supplementary table S5, Supplementary Material online).
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Redundancy Predictions for Arabidopsis Gene Pairs
Not in the Benchmark Data Set
With the predictive model of redundancy in place, we sought
to answer two questions about genetic redundancy in
Arabidopsis more broadly: 1) given the models, to what ex-
tent are paralogs in the genome redundant, and 2) whether
paralogs derived from different duplication mechanisms and
events differ in redundancy. As it was extremely computa-
tionally intensive to generate predictions for every paralogous
gene pair in the Arabidopsis genome, we selected a subset of
paralogous gene pairs to address these two questions: 1) all of
the WGD and TD pairs in the Arabidopsis genome (7,764
total, collectively referred to as the WG/TD set; supplemen-
tary data, Supplementary Material online); 2) paralogs in a
large gene family. The second data set was used because a
gene family consists of a group of paralogs derived from a
variety of duplication mechanisms and with differing evolu-
tionary distances, it offers a wide spectrum of relatedness
among gene pairs. For this analysis, we used the protein kinase
(Kin) superfamily to generate all possible combinations of
gene pairs, then randomly selected 10,000 pairs for analysis
(supplementary data, Supplementary Material online). We
expected that applying our model to both data sets would
provide information about genetic redundancy at the
genome-wide scale and at the more fine-grained gene family
level. Although both the extreme and inclusive redundancy
models showed high accuracy in predicting redundant gene
pairs in cross-validation (87% and 92% of redundant gene
pairs correctly predicted, respectively; supplementary fig.
S7A and B, Supplementary Material online), the extreme re-
dundancy model predicted nonredundant gene pairs with
much higher accuracy than the inclusive redundancy model
(75% and 36%, respectively; supplementary fig. S7A and B,
Supplementary Material online). Because of the high error
rate in predicting nonredundant pairs with the inclusive re-
dundancy model, we focused on using the extreme redun-
dancy model to estimate the prevalence of genetic
redundancy in the Arabidopsis genome.

Although we analyzed machine learning results primarily as
a binary variable (gene pairs were classified as either redundant
or nonredundant), these binary predictions were generated
from likelihood scores output by the machine learning pipeline.
The likelihood score, referred to as a “redundancy score,” ranges
on a continuum from 0 to 1, with 0 being most likely non-
redundant and 1 most likely redundant. Using this redundancy
score, a threshold score was determined (as part of the ma-
chine learning pipeline) that would maximize the harmonic
mean of precision (in this case, the proportion of true redun-
dant pairs to predicted redundant pairs) and recall (proportion
of redundant pairs predicted correctly), and this threshold was
used to generate the binary predictions for the WG/TD and
Kin data sets. Using the extreme redundancy model, the ma-
jority of the 17,764 WG/TD and Kin gene pairs were predicted
as redundant with redundancy scores well above the threshold
(fig. 5). Among the WG/TD set as a whole, 80% were predicted
as redundant (fig. 5A), with gene pairs derived from the a-
WGD event more likely to be predicted as redundant (83%;
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Fic. 5. (A) Predicted redundancy scores from the extreme redun-
dancy (RD4) model for gene pairs in the genome derived from whole
genome or tandem duplication (WGD and TD, respectively). The
results grouped specifically by duplication event/type are shown in
(B-E): (B) Gene pairs derived from the «-WGD event, (C) gene pairs
derived from the ;-WGD event, (D) gene pairs derived from the y-
WGD event, (E) gene pairs derived from tandem duplication (TD). (F)
Predicted redundancy scores of 10,000 randomly selected gene pairs
from the kinase superfamily (Kin). A majority of gene pairs in all of
these data sets were predicted as redundant using the extreme RD.
Predictions as redundant or nonredundant are based on a threshold
score selected within our machine learning pipeline to maximize F1
score, that is, the harmonic mean of precision (in this case, the pro-
portion of true redundant pairs to predicted redundant pairs) and
recall (proportion of redundant pairs predicted correctly), with gene
pairs having a score above the threshold being called redundant and
gene pairs with a score below the threshold being predicted as
nonredundant.

fig. 5B) compared with those derived from the -WGD event
(71%; fig. 5C) and the y and more ancient WGD events (73%,
fig. 5D). As duplicate pairs evolve over time, it is expected that
the degree of genetic redundancy would continue to decline.
Although this is true when comparing the a-WGD to older
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events, similar proportions of duplicate pairs from the 5 and
more ancient events were predicted as redundant based on
RD4. This may be because gene pairs derived from the more
ancient p-WGD look similar to those derived from the 5-WGD
in terms of Ks (Maere et al. 2005). However, it is surprising that
so many seemingly redundant gene pairs (based on the ex-
treme RD) that duplicated 50 Ma (a-WGD), 80 Ma (-WGD;
Edger et al. 2015) or longer would be retained. Similarly, 83% of
TDs and 87% of kinases were predicted as redundant based on
the extreme RD (fig. 5E and F, respectively).

This percentage of redundant pair predictions was higher
than previous estimates in the literature (e.g, Chen et al.
2010). It is important to note that in our WG/TD and Kin
data sets, gene pairs are likely being predicted as redundant
because they more closely resemble redundant gene pairs
with respect to features that have the highest weight in our
predictive model (e.,g, WGD event). However, the model is
built on experimental data that have much more power
when calling a gene pair as nonredundant than calling
them as redundant; demonstrating that mutants have a se-
vere abnormal phenotype is simpler than definitively stating
that a mutant has no abnormal phenotype. As previously
proposed (Bouché and Bouchez 20071; Bolle et al. 2013), the
lack of an observed severe phenotype in a single mutant may
be because phenotypes are conditional, tissue specific, and/or
subtle rather than masked by genetic redundancy. Many
large-scale phenotyping studies are not able to take these
factors into account, and it would therefore be expected
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Fic. 6. (A) AUC-ROC and (B) AU-PRC values for the holdout testing
sets for models built with each RD. RDs 1, 2, and 6 were not included
in the analysis due to small sample size. Performance of the models on
testing sets was lower compared with performance in cross-valida-
tion (fig. 2B and C and supplementary fig. S3, Supplementary Material
online), likely due to the small sizes of the testing sets. (C, D) Heat map
of the confusion matrix for (C) extreme redundancy (RD4) and (D)
inclusive redundancy (RD9) models showing the number of correctly
and incorrectly predicted redundant and nonredundant gene pairs in
the respective testing sets.

that a model built with data from such studies overestimate
genetic redundancy in the genome. This is reflected in our
result showing that misclassifications by our model on the
benchmark data set were overwhelmingly nonredundant
pairs predicted as redundant, with very few instances of the
reverse.

Although the binary classification of gene pairs as redun-
dant or nonredundant was possible with the available data
and straightforward to interpret, it is an over-simplification of
the complex nature of genetic redundancy. The threshold-
based definition of genetic redundancy may be convenient,
but the landscape of genetic redundancy is far more nu-
anced—there are gene pairs with various degrees of genetic
redundancy, not simply redundant or not. Nonetheless, these
data still allowed us to gain valuable insights into the mech-
anistic underpinnings of genetic redundancy by revealing im-
portant features as discussed in the earlier sections. In
addition, we anticipate the models can be iteratively im-
proved with the future availability of more phenotype data,
particularly quantitative data.

Validation of Predictions

To validate predictions, we used a “holdout” testing set (10%,
16 and 30 pairs for RD4 and RD9, respectively, randomly
selected and proportionally divided between redundant
and nonredundant pairs, fig. 2A) of the benchmark data.
This testing set was not included in the model building pro-
cess and serves to illustrate how well the model will perform
on new data. Applying the extreme and inclusive redundancy
models on the testing sets for those definitions, we obtained
AUC-ROC scores of 0.73 and 0.68, respectively (fig. 6A) and
AU-PRC scores of 0.62 and 0.82, respectively (fig. 6B).
Although there was a decrease in performance compared
with cross-validation results (fig. 2B and C), 80% (4/5) and
68% (13/19) of redundant pairs were predicted correctly
based on the extreme and inclusive redundancy models, re-
spectively, and 36% (4/11) of nonredundant pairs were pre-
dicted correctly by each of these models (fig. 6C and D). Thus,
the holdout testing set generally supported the utility of the
extreme and inclusive redundancy models, but the current
threshold score was more conservative toward calling gene
pairs as nonredundant. The small sample size of the testing
sets likely contributed to the decreased performance of the
models compared with their performance in cross-validation,
as bias in such a small sample could impact the results.
However, due to the relatively small size of the benchmark
data set as a whole, withholding more than 10% of gene pairs
from the training step may have introduced bias to the
trained models and therefore would not have been an effi-
cient use of the available data.

Further validation was performed by identifying single and
DM:s in the literature that have specifically been studied as
mutant trios and have very well documented and character-
ized phenotypes. We selected ten of these gene pairs: five that
meet our criteria for redundancy under the inclusive defini-
tion and five we would classify as nonredundant (supplemen-
tary table S7, Supplementary Material online). Half of the pairs
were present in our inclusive redundancy benchmark training
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data set, whereas the other half were present in the WG/TD
and/or kinase test data sets. We examined the predictions of
these known gene pairs from the literature in the cross-
validation and testing sets, and found that the inclusive re-
dundancy model correctly predicted four of five redundant
pairs but mis-predicted all five of the nonredundant pairs as
redundant. The predictions of the same gene pairs were also
examined for the extreme redundancy model; however, three
of the gene pairs defined as redundant using the inclusive
definition could not be defined as redundant using the ex-
treme RD because the DMs were not lethal. Thus, this testing
set for the extreme redundancy model included only two
redundant gene pairs. The extreme redundancy model cor-
rectly predicted one out of the two redundant pairs and four
out of the five nonredundant pairs. This was consistent with
our expectations and prior results showing that the inclusive
redundancy model tends to err on the side of predicting false
positives whereas the extreme redundancy model is much
more conservative and prone to generating false negative
predictions (supplementary table S8, Supplementary
Material online).

To determine why mis-predictions may have occurred in
these specific cases, we revisited features previously identified
as likely contributors to mis-prediction in general in the
benchmark data set (e, fig. 4A and B). For the inclusive
redundancy (RD9) model, one such feature was reciprocal
best match. Although this feature was more strongly associ-
ated with nonredundant gene pairs in the benchmark data
set (supplementary fig. S8A, Supplementary Material online),
the one redundant pair predicted by the RD9 model as non-
redundant (RD9/nonredundant) comprised paralogs that
were not reciprocal best matches, making this a likely reason
for mis-prediction. Derivation of paralogs from the a-WGD
event was another such feature (supplementary fig. S8B,
Supplementary Material online); three nonredundant pairs
predicted as redundant (nonredundant/RD9) were derived
from the a-WGD event, indicating that this feature was a
likely contributor to their mis-prediction. Another important
feature was related to the number of biotic stress conditions
under which genes were downregulated (referred to as biotic
downregulation breadth). For this feature, the distribution of
feature values among the actual/predicted classes demon-
strated that all five nonredundant/RD9 pairs had values
more similar to the correctly predicted RD9 pairs than to
the correctly predicted nonredundant pairs (supplementary
fig. S8C, Supplementary Material online). For the extreme
redundancy (RD4) model, the one redundant pair that was
predicted as nonredundant (RD4/nonredundant) had values
for features related to CpG methylation (supplementary fig,
S8D, Supplementary Material online), gene family size (sup-
plementary fig. S8E, Supplementary Material online), and
CHH methylation (supplementary fig. S8F, Supplementary
Material online) that were more similar to those of nonredun-
dant pairs. Additionally, all four of the nonredundant pairs
predicted as redundant (nonredundant/RD4) had CHH
methylation in embryo tissue values that were more similar
to those of RD4 gene pairs (supplementary fig. S8F,
Supplementary Material online).

3408

In total, we identified several types of features that were
likely contributors to mispredictions, including duplication
event (a-WGD or not), downregulation under biotic stress
conditions, and gene methylation patterns. Importantly, we
were thus able to identify one or more features that likely
contributed to each instance of mis-prediction of both the
extreme redundancy and the inclusive redundancy models
on the gene pairs used for validation, an important step in
improving future iterations of the model. For example,
depending on the definition being used and the importance
of the accuracy of predictions (precision) compared with the
importance of identifying all redundant gene pairs in a data
set (recall), certain features could be excluded from the
model.

Conclusions

In this study, we optimized and utilized a machine learning
approach to predict genetic redundancy among paralogs in
Arabidopsis using multiple definitions of redundancy. We
identified two biologically relevant and well-performing def-
initions of redundancy and the optimal 200 features for each
definition that allowed us to best model redundancy. Several
features related to evolutionary properties, including lethality
score, whether genes in a pair were reciprocal best matches,
and the type of duplication event from which a gene pair was
derived, were consistently ranked as important in generating
predictions across RDs. Interestingly, evolutionary rates, such
as Ka and Ks, were statistically different between redundant
and nonredundant gene pairs but not highly ranked in the
models, indicating that multiple factors contribute to redun-
dancy, as revealed by machine learning models integrating
multiple features. Analysis of these evolutionary-related fea-
tures demonstrated that redundant gene pairs tend to be
more recent duplicates than nonredundant pairs. Although
it may be tempting to explain redundancy as gene pairs hav-
ing not had enough time to diverge in function, many redun-
dant pairs are derived from a WGD event estimated to have
occurred approximately 50 Ma, offering plenty of time for
pseudogenization. This suggests that there may be some se-
lective pressure to maintain redundancy. In general, we found
feature importance to be highly variable by RD, underscoring
the need for testing multiple definitions depending on the
biological question being addressed. For example, if one is
interested in predicting which genes are lethal or have severe
phenotypes a stricter definition is required than when a
broader view of redundancy is being used, whereby less ex-
treme phenotype contrasts between single and DMs would
be appropriate.

Although the models provide useful information about
gene features related to genetic redundancy, the models are
far from perfect and there remains room for improvement in
terms of prediction accuracy. Performance on testing gene
pairs withheld from model building was generally not as good
as model performance in cross-validation, which may be due
to the unavoidably small size of the testing sets. In addition,
our more conservative trained model predicted 84% of 17,764
paralogs throughout the genome to be redundant, which is a
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much higher estimate than has been shown previously (Chen
et al. 2010). This is likely a result of the underlying data used
for model building our models are expected to be biased
toward categorization of gene pairs as redundant for the fol-
lowing reasons. We classified redundancy using phenotype
data from the literature, including experiments that were
not specifically designed to identify redundancy; there are
expected to be substantial differences between experiments
in how phenotypes were scored. For example, conditional or
particularly subtle phenotypes may not have been examined.
This likely results in misclassification of single mutants as not
having an abnormal phenotype. Because genetic redundancy
was defined as a DM having a more severe phenotype than
the corresponding single mutants, this bias will therefore lead
to overestimation of genetic redundancy.

Furthermore, classification of gene pairs as redundant or
nonredundant, as we were able to do using the broad phe-
notype categories currently available on a large scale, overly
simplifies a complex phenomenon. Redundancy as it exists in
nature is not an all-or-nothing binary state, but rather a con-
tinuum with a wide range of biologically relevant states. In our
modeling exercise, redundancy scores derived from the
model allow an approximation of this continuum, which
can be further tested. One approach for testing the degree
of genetic redundancy is by obtaining lifetime fitness data for
single and DM sets. Because lifetime fitness in a mutant
reflects the totality of phenotypic effects due to the intro-
duced mutation over the entire life cycle of the individual,
subtle, and conditional phenotypes are likely better captured.
Importantly, our current model predicts redundancy as de-
fined by differences in some phenotypes under some specific
conditions. It remains unclear the extent to which such a
model is relevant to predicting redundancy when it is defined
based on single and DM fitness, the phenotypic outcome that
has the most bearing on the evolutionary fate of a gene pair.
Thus, in future studies the generation of lifetime fitness data
would allow for a machine learning regression model that
more accurately predicts degrees of genetic redundancy be-
tween genes in a pair rather than simply classifying genes as
redundant or not. Such a model could be applied to gene
pairs within a large gene family to compare predicted redun-
dancy scores and reveal patterns related to redundancy main-
tenance and loss through evolutionary time. Analysis of
features important for building the model would be expected
to yield additional useful insights about mechanisms related
to the evolutionary fate of gene duplicates and the long-term
retention of genetic redundancy.

Despite these limitations, the prediction models can dis-
tinguish redundant and nonredundant genes as defined here
with reasonable accuracies. In addition, we view this work as
an initial step in an ongoing effort to accurately model genetic
redundancy that provides a framework for future modeling,
in which better phenotype data can be included. Taken to-
gether, our results demonstrate the utility of machine learn-
ing in combining features to generate accurate predictions of
genetic redundancy and identify several evolutionary features
that are important in predicting genetic redundancy across
several definitions.

Materials and Methods

Definitions of Redundant and Nonredundant Gene
Pairs

Arabidopsis mutant phenotype data were collected from
Lloyd and Meinke (2012) and Bolle et al. (2013). Our bench-
mark data set comprised mutant trios for which a DM phe-
notype and both corresponding single mutant phenotypes
were reported, with a total of 300 mutant trios. A numeric
phenotypic severity value was assigned to each single and DM
(fig. 1A), with 0 representing no abnormal phenotype; 1A, a
conditional phenotype of any kind; 1B, a cell or biochemical
phenotype; 1C, a morphological phenotype; and 2, a lethal
phenotype. Redundancy was classified using nine RDs of vary-
ing stringency (fig. 1B). The least stringent definition was in-
clusive redundancy (RD9), in which any gene pair for which
the DM phenotype severity score was higher than that of
both the single mutants was defined as redundant. With
this definition, the data set contained 190 redundant gene
pairs. Gene pairs were classified as nonredundant if at least
one single mutant had a phenotype severity score greater
than or equal to the DM score; the data set contained 110
nonredundant gene pairs.

Feature Value Generation

For predictive modeling, data from six general categories were
collected for each gene: functional annotations such as GO
terms; evolutionary properties such as synonymous substitu-
tion rate; protein sequence properties such as posttransla-
tional modifications; gene expression patterns; epigenetic
modifications such as histone methylation; and network
properties such as gene interactions based on functional
gene network data (supplementary table S1, Supplementary
Material online). These data were processed to generate fea-
ture values for each gene pair (supplementary data,
Supplementary Material online), and the method used for
processing depended on the data type: binary (e.g, whether
or not a gene had a given protein domain), categorical (e.g, all
the names of protein domains present in a given gene prod-
uct) or continuous (e.g, gene expression level).

Features such as protein domain and functional annota-
tions were treated as binary and/or categorical input data for
feature generation. For processing as binary input data, each
gene was assigned a value of 0 (does not have the annotation/
property) or 1 (has the annotation/property); gene pair fea-
ture values were then generated by taking the number of
genes in the pair (0, 1, or 2) having that annotation/property.
For example, if Gene1 was annotated as having DNA-binding
activity but Gene2 was not, the feature value for DNA-bind-
ing activity for that gene pair would be 1. Additional features
were generated by taking the square, log,, and reciprocal
value of features processed in this way. For processing as
categorical input data, all annotations of a specific type
(e.g, GOslim terms) were listed for each gene. These were
then used to represent similarity between genes in a pair. For
example, if Gene1 had functional annotations of “DNA-bind-
ing activity” and “signal transduction” and Gene2 had func-
tional annotations of “signal transduction” and “protein
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binding” the number of overlapping annotations would be 1,
the total number of unique annotations between the gene
pair would be 3, and the percent overlap would be 33. For
continuous data, gene pair feature values were generated by
calculating the difference, average, maximum, minimum, and
total of the values for the gene pair. For example, if Gene1 had
an isoelectric point of 10 and Gene2 had an isoelectric point
of 9, the difference would be 1, the average 9.5, the maximum
10, the minimum 9, and the total value would be 19.
Additional features were generated by taking the square,
logqo, and reciprocal of features processed as categorical
and continuous data, and by assigning each value to one of
four quartile bins generated from the untransformed feature
data. Additionally, PCA was conducted using all transformed
and untransformed feature data, and the top five compo-
nents included as features.

Functional Annotation and Evolutionary Property
Features

Functional annotations included GO biological process, mo-
lecular function and cellular component annotations
(Ashburner et al. 2000; Gene Ontology Consortium 2017),
metabolic pathway annotations from AraCyc v.15 (Mueller
et al. 2003), and predicted protein domain annotations from
Pfam (Finn et al. 2016). These annotations were processed as
binary and categorical data as described above. There were
2,627 features related to functional annotations after trans-
formations were applied (supplementary table S1,
Supplementary Material online).

Broadly, evolutionary properties included duplication
mechanism and timing, and relationship to other genes in
the genome. There were 171 features related to evolutionary
properties after transformations were applied (supplemen-
tary table S1, Supplementary Material online).

To get the evolutionary rate for each gene in a pair, protein
sequences (collected from NCBI; Pruitt et al. 2007) of each
A. thaliana gene pair were searched against protein sequences
from Theobroma cacao, Populus trichocarpa, Glycine max, and
Solanum lycopersicum, using the Basic Local Alignment Search
Tool for protein sequences (BlastP; Altschul et al. 1990).
Protein sequences of the gene pair and the best hits in these
four species were first aligned using MUSCLE (Edgar 2004), and
then were compared with their coding nucleotide sequences
to generate the corresponding coding sequence (CDS) align-
ment. CDS alignments were used to build gene trees using
RAXML/8.0.6 (Stamatakis 2014) with parameters: -fa -x 12345 -
p 12345 -# 1000 -m PROTGAMMAJTT. Ka, Ks, and the Ka/Ks
ratio on branches leading to each gene of a gene pair were
calculated using the free-ratio model of the codeml program
in PAML v. 4.9d (Yang 2007). Gene family size and lethality
scores were obtained from Lloyd et al. (2015). Where lethality
scores were not available, a score of 0 was assigned to known
nonlethal genes and 1 was assigned to known lethal genes.
Nucleotide and amino acid sequence similarity were calcu-
lated using EMBOSS Needle (McWilliam et al. 2013). Ka, Ks,
Ka/Ks, gene family size, functional likelihood, lethality scores,
and sequence similarity were processed as continuous data.
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Gene pairs were determined to have been derived from
one of four types of gene duplication events using MCScanX-
transposed (Wang et al. 2013): 1) segmental duplicates—
paralogs located in corresponding intraspecies collinear
blocks; 2) TDs—paralogs next to each other; 3) proximal
duplicates—paralogs close to each other, but separated by
<10 nonhomologous genes; 4) transposed duplicates—one
of the paralogs located in inter-species collinear blocks, the
other not. Segmental duplicates were additionally noted as
being derived or not derived from the o- or f-WGD events.
Protein sequences of A. thaliana were searched against pro-
tein sequences of A. thaliana (intra-species), Arabidopsis lyr-
ata, Brassica rapa, Carica papaya, P. trichocarpa, and Vitis
vinifera (interspecies) using BlastP, with a cutoff E-value of 1
x 10~ '°. Five different sets of parameters were evaluated
for MCScanX-transposed: 1) -k 50 -s 5 -m 25, 2) -k 50 -s 2 -
m 25, 3) -k 25 -s 2 -m 25, 4) -k 25 -s2 -m 50, and 5) -k 25 -s 5 -
m 25; where -k indicates the cutoff score of collinear blocks, -s
specifies the number of matched genes required for the call-
ing of a collinear block, and -m means the maximum number
of genes allowed for the gap between two genes. The dupli-
cation mechanisms inferred using these five different sets of
parameters were consistent with one another for the majority
of gene pairs; 78 pairs had discrepant results, representing
0.4% of the total data set. In these cases, the mechanism
that occurred most frequently in the results for that gene
pair was assigned; if there was no majority, the mechanism
was listed as N/A. Each gene pair was assigned a binary value
indicating whether or not the genes were reciprocal best
matches (i.e, they were one another’s best hit based on nu-
cleotide Blast searches) and whether or not they were derived
from each type of duplication mechanism (e.g, a gene pair
derived from the a-WGD event would have a value of 1 for
the WGD feature and for the a-WGD feature, and a value of 0
for all other duplication mechanisms).

Retention rate was based on the presence or absence of a
paralog in 15 species: A. lyrata, Capsella rubella, B. rapa,
T. cacao, P. trichocarpa, Medicago truncatula, V. vinifera,
S. lycopersicum, Aquilegia coerulea, Oryza sativa, Amborella
trichopoda,  Picea  abies,  Selaginella  moellendorffii,
Physcomitrella patens, and Marchantia polymorpha. The re-
tention rate for each gene was calculated as the number of
genomes in which a paralog was present divided by the total
number of genomes analyzed (16: A. thaliana plus the 15
additional species). Genome data were collected from
Phytozome (Goodstein et al. 2012) for P. patens 318 v3.3,
M. polymorpha 320 v3.1, S. moellendorffii 91 v1.0,
A. trichopoda 291 v1.0, O. sativa 323 v7.0, B. rapa 277 v13,
C. rubella 183 v1.0, A. thaliana 167 TAIR10, A. lyrata v2.1,
M. truncatula 285 Mt4.0 v1, V. vinifera 145 Genoscope 12x,
A. coerulea v3.1, P. trichocarpa 210 v3.0, and T. cacao 233 v1.1;
from NCBI for S. lycopersicum v2.5; and from PlantGenlE
(Sundell et al. 2015) for P. abies v1.0.

Gene Expression and Epigenetic Modification Features
Processed microarray gene expression data sets were
obtained from Moore et al. (2019) and contained gene ex-
pression levels under biotic (Wilson et al. 2012) and abiotic
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stress (Kilian et al. 2007; Wilson et al. 2012), under hormone
treatment (Goda et al. 2008), at different developmental
stages (Schmid et al. 2005), and at different times of day
(Mockler et al. 2007). In addition to these gene expression
levels, we also considered expression breadth, which repre-
sents the number of tissues and conditions under which each
gene is expressed. Gene expression levels and ribosome oc-
cupancy from RNA-seq and Ribo-Seq experiments in root
tissue were obtained from Hsu et al. (2016) and processed
along with the microarray gene expression data as continuous
data. There were 450 features related to gene expression after
transformations were applied (supplementary table S,
Supplementary Material online).

Epigenetic modifications included DNA methylation, chro-
matin accessibility, and histone modifications. Percent CHH,
CHG, and CpG methylation, gene body methylation, and
histone modification data were obtained from Lloyd et al.
(2015). Percent methylation values were treated as continu-
ous data, and gene body methylation and histone modifica-
tion data as binary data. Chromatin accessibility data were
from Sullivan et al. (2014) and were treated as binary features,
with each gene receiving a value of 1 if it contained a DNase
peak site and a value of 0 if it did not. There were 565 features
related to epigenetic modifications after transformations
were applied (supplementary table S1, Supplementary
Material online).

Protein Sequence and Network Property Features
Protein sequence properties included amino acid length, iso-
electric point, and posttranslational modifications. Amino
acid lengths were obtained from Lloyd et al. (2015).
Isoelectric points and myristoylation data were from The
Arabidopsis Information Resource (Berardini et al. 2015).
Amino acid length and isoelectric point were processed as
continuous data. Acetylation, deamination, formylation, hy-
droxylation, oxidation, and propionylation data were
obtained from The Plant Proteome Database (Sun et al.
2009). Posttranslational modifications were processed as bi-
nary data: whether or not the protein product was predicted
or known to have the madification. In total, 93 features were
related to protein sequence properties after transformations
were applied (supplementary table S1, Supplementary
Material online).

Network properties were related to known or potential
interactions of genes or protein products. Gene interactions
based on functional gene network data (AraNet, Lee et al.
2010) and protein—protein interactions (AtPIN, Brandao et al.
2009) were processed as categorical data. Gene coexpression-
related features were calculated from the microarray data sets
referenced above using multiple clustering algorithms,
namely k-means, c-means and hierarchical clustering at
k=15, 10, 25, 50, 100, 200, 300, 400, 500, 1,000, and 2,000 as
described in Moore et al. (2019). These data were processed as
categorical data, with each combination of clustering algo-
rithm, data set and k-value included as a feature; a gene pair
received a value of 1 if both genes were in the same cluster
and a value of 0 if they were not. There were 205 features
related to network properties after transformations were

applied (supplementary table S1, Supplementary Material
online).

Identification of Features Distinguishing Redundant
and Nonredundant Pairs

To identify features that could distinguish between gene pairs
from the redundant and nonredundant classes, we applied
statistical tests to determine if feature values were signifi-
cantly different between the classes. Binary gene pair features
(e.g, duplication type, presence in a gene coexpression clus-
ter) were analyzed using two-sided Fisher’s exact tests with
multiple testing correction using the Benjamini—Hochberg
method (Benjamini and Hochberg 1995). To determine
whether feature value transformations improved the ability
to distinguish between classes, the reciprocal, square, and
log,o of continuous features were included as separate fea-
tures. Continuous values were also binned into four quartiles
of equal size and bin values were included as features.
Transformed and untransformed continuous feature values
between redundant and nonredundant gene pairs were an-
alyzed using a Wilcoxon rank sum test (Wilcoxon 1945) with
multiple test correction performed using the Benjamini—
Hochberg method. Features were considered to be able to
distinguish between redundant and nonredundant gene pairs
if g < 0.05 after multiple testing correction (supplementary
table S1, Supplementary Material online). Continuous feature
effect sizes are the standardized z statistic (calculated from
the P values given by the Wilcoxon rank sum test) divided by
the square root of the sample size. Binary feature effect sizes
correspond to the odds ratio calculated from the enrichment
table for each feature.

Redundancy Prediction Model Building and
Optimization with Machine Learning

Models for predicting genetic redundancy between gene pairs
were built with Random Forest, Gradient Boosting, and SVM
algorithms implemented in the scikit-learn machine learning
package (Pedregosa et al. 2011) in Python; scripts used for
model building are available at https://github.com/ShiuLab/
Manuscript_Code/tree/master/2021_Arabidopsis_redun-
dancy_maodeling. Before establishing any model, 10% of the
benchmark data set was held out as the test data set, which
was used to evaluate the performance of the final models. The
remaining 90% of the data set was used to establish the
models. To balance the numbers of redundant and non-
redundant gene pairs when building the model, nonredun-
dant gene pairs were randomly down-sampled to the same
number as that of redundant gene pairs, and this down-
sampling was repeated 100 times to prevent any potential
sample bias in the models, resulting in 100 balanced data sets.
For Random Forest and Gradient Boosting, a grid search was
performed with 10-fold cross-validation for parameter opti-
mization: redundant and nonredundant gene pairs in a bal-
anced data set were randomly and proportionally divided
into ten folds, nine of which were used to train the model
(training set, 90%) and one was used to evaluate the model
performance (validation set, 10%). This scheme was repeated

3411


https://github.com/ShiuLab/Manuscript_Code/tree/master/2021_Arabidopsis_redundancy_modeling
https://github.com/ShiuLab/Manuscript_Code/tree/master/2021_Arabidopsis_redundancy_modeling
https://github.com/ShiuLab/Manuscript_Code/tree/master/2021_Arabidopsis_redundancy_modeling

Cusack et al. - doi:10.1093/molbev/msab111

MBE

ten times to ensure that each of the ten folds were used as the
validation set once, thus ten models were built and the av-
erage performance for ten validation sets was reported; this
10-fold cross-validation scheme was conducted for the first
ten balanced data, and hyperparameters with the highest
average cross-validation performance were selected to build
the final models using the 100 balanced data sets.
Hyperparameters optimized were learning rate for Gradient
Boostingg maximum depth and maximum features for
Gradient Boosting and Random Forest; number of trees (“N
estimators”) for Random Forest; and C parameter for SVM.
Hyperparameter values used for models discussed in this
study are shown in supplementary table S9, Supplementary
Material online. Performance in cross-validation was also used
to set a threshold score for the trained model in calling gene
pairs as redundant or nonredundant. Thresholds are selected
within our machine learning pipeline to maximize F1 score,
that is, the harmonic mean of precision (in this case, the
proportion of true redundant pairs to predicted redundant
pairs) and recall (proportion of redundant pairs predicted
correctly), for a total of 100 models. The 10-fold cross-
validation was also used when building those 100 models.

Parameters tested for optimal model performance were the
machine learning algorithm, the number of features included
in the model, the feature selection algorithm, and the type of
data transformations used. We first compared the perfor-
mance of Gradient Boosting, Random Forest, and SVM using
different numbers of features from one to 4116 (the full feature
set). SVM was on average the best-performing algorithm when
using the inclusive redundancy model (RD9, supplementary
figure S2A and B, Supplementary Material online; ANOVA, P-
value < 2 x 107" and Tukey's Honestly Significant Difference
test, g values < 0.008). Further optimization consisted of iden-
tifying the number of features to be included in the final model
(narrowed down in the previous step to 50, 100, 200, or 500),
the algorithm with which those features should be selected
(Random Forest or Elastic Net [EN]), and whether data trans-
formation improved model performance (log,o, square, recip-
rocal of each value, and binning as described above).
Specifically, we tested the effect on model performance of using
only features with no transformations applied (“NT”), allowing
multiple transformations of the same original feature to be
included (“MT"), or the best transformation for each feature
(as determined by feature importance scores from the trained
models; “BT”"). Twenty-four models varying these parameters
were tested (supplementary fig. S2C and D, Supplementary
Material online). The optimal combination was 200 features
selected with Random Forest and only the best transformation
of a feature allowed; these parameters were used in further
model building. A comparison of the optimal feature combi-
nation with the 200 features selected with EN when the best
transformation of a feature was allowed is in supplementary
table $10, Supplementary Material online.

Models trained on the extreme redundancy and inclusive
redundancy data sets were used to determine features that
were important in predicting gene pairs as redundant or non-
redundant. When SVM is performed with a linear kernel and
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normalized feature values, the model-learned weights associated
with each feature can be used to determine feature importance.
The greater the absolute magnitude of the feature weight, the
more important that feature in the model’s predictions. We
used the absolute value of the feature weights output by the
model to determine feature importance. The performance of
the model on new data was evaluated using the testing data set
(10% held out from model building as described above).

Some models were trained using one definition of re-
dundancy and applied to a data set of a different definition,
for example, applying the trained extreme redundancy
model to the inclusive redundancy data set. In this case,
the training set consisted of the extreme redundancy gene
pairs and a randomly selected half of the nonredundant
gene pairs; the test set to which the model was applied
consisted of the other half of the nonredundant gene pairs
and the redundant gene pairs in the inclusive redundancy
data set that were nonoverlapping with the gene pairs in
the extreme redundancy data set. This process was the
same for all models where the training and testing sets
used different definitions of redundancy.

The trained extreme redundancy and inclusive redun-
dancy models were used to predict redundancy among all
tandem and WGD pairs in Arabidopsis (supplementary
data, Supplementary Material online) and among a ran-
dom sample of Arabidopsis kinase gene pairs. Using kinase
family classifications from Lehti-Shiu and Shiu (2012), all
possible within-family combinations of gene pairs were
generated. Ten thousand of these pairs were then ran-
domly selected for predictions (supplemental data,
Supplementary Material online).

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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