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Identification of native protein structures
captured by principal interactions
Mehdi Mirzaie

Abstract

Background: Evaluation of protein structure is based on trustworthy potential function. The total potential of a
protein structure is approximated as the summation of all pair-wise interaction potentials. Knowledge-based
potentials (KBP) are one type of potential functions derived by known experimentally determined protein structures.
Although several KBP functions with different methods have been introduced, the key interactions that capture the
total potential have not studied yet.

Results: In this study, we seek the interaction types that preserve as much of the total potential as possible. We
employ a procedure based on the principal component analysis (PCA) to extract the significant and key interactions
in native protein structures. We call these interactions as principal interactions and show that the results of the
model that considers only these interactions are very close to the full interaction model that considers all
interactions in protein fold recognition. In fact, the principal interactions maintain the discriminative power of the
full interaction model. This method was evaluated on 3 KBPs with different contact definitions and thresholds of
distance and revealed that their corresponding principal interactions are very similar and have a lot in common.
Additionally, the principal interactions consisted of 20 % of the full interactions on average, and they are between
residues, which are considered important in protein folding.

Conclusions: This work shows that all interaction types are not equally important in discrimination of native structure.
The results of the reduced model based on principal interactions that were very close to the full interaction model
suggest that a new strategy is needed to capture the role of remaining interactions (non-principal interactions) to
improve the power of knowledge-based potential functions.

Keywords: Knowledge-based potential, Principal interaction, Native structure, Decoy set

Background
The protein structure is a result of non-covalent interactions
between its residues in three-dimensional space. One of the
key challenges in structural bioinformatics is to promote an
understanding of the structure of the complex network of
non-covalent interactions in proteins that significantly con-
tribute to the three-dimensional structure [1]. Because of its
complexity, the structure and the amino acid sequence of
proteins need to simplify to make analysis tractable [2]. Pro-
tein folds into a single three-dimensional conformation
among an astronomical number of possible conformations
in order of microseconds. According to Levinthal paradox
[3], a protein could not exhaustively search all possible

conformational states to achieve the native structure.
Despite the advances in experimental and computational
methods in protein structure analysis, the problem of folding
protein has not solved yet.
Amino acids are the building blocks and the basic

components of proteins. Anfinsen [4] believed that in-
formation of amino acid sequence is sufficient to deter-
mine the native fold of a protein. Several studies with
different computational and experimental approaches
suggested reduced alphabet of amino acids in protein
design, protein fold recognition [5–9]. Reduced models
of protein structure could decrease the complexity of the
protein folding problem and be useful in protein design
[5]. Therefore the determination of essential amino acids
and their interactions in native protein structures is an
important issue that needs to be addressed.
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According to Anfinsen thermodynamic hypothesis, the
native structure of a protein corresponds to minimum free
energy [4]. For a given amino acid sequence, the protein
structure prediction problem is to find a three-dimensional
structure such that the total free energy is minimized.
Therefore, the assessment of protein structure needs a trust-
worthy potential function. Knowledge-based potentials
(KBPs) [6, 7] as an approximation of the free energy are ex-
tracted from the analysis of experimentally determined pro-
tein structures. They are mainly based on the distribution of
a feature relative to a reference state [8]. There are various
KBP including contact potentials [6, 9], orientation-
dependent potentials [10–15], distance-dependent potentials
[16–20], multi-body potentials [21]. Impressive progresses
in protein design [22], simulation of protein folding [23], lig-
and binding [24, 25], aggregation [26], protein structure pre-
diction [27], and fold recognition [28] have been achieved
using knowledge-based potential functions.
In the previous work [29], we reported the import-

ance of hydrophobic non-local interactions in scor-
ing function (based on Delaunay tessellation) in
discrimination of native structures. Here, in order to
reduce protein structure, we employ a PCA-based
way to formulate and extract principal interactions
in protein 3D structure. The PCA (Principal Compo-
nent Analysis) technique was first introduced for
only a few variables in 1901 by Karl Pearson [30]
and then it was extended by Hotelling in 1933 for a
large number of variables [31]. Today, PCA is a
technique which has been widely used to select the
most important variables from a multivariate data
and retrieve dominant pattern from noisy data. In
fact, PCA maps a complex system from multidimen-
sional space to a reduced space spanned by a few
principal components to clarify the principal features
underlying the observed data [32]. The three-
dimensional structure of a protein could be consid-
ered as such multidimensional data [33]. Studies
such as protein dynamics prediction from experi-
mental data [34], discovery of binding site [35], pre-
diction of protein intermediate states [36], protein
folding dynamics [37], analysis of molecular dynam-
ics trajectories [38], and principal components ana-
lysis of protein structure ensembles [33, 39] are a
few examples among many applications of PCA in
protein structure analysis. If the native structure of a
protein lies in the minimum potential and the total
potential approximated by a summation of pair-wise
interaction type energies, we assert that the goal of
structure reduction should be to preserve as much
of total energy as possible. PCA is a natural tool for
extracting these most important variables (pair-wise
interaction types) in total potential. The presented
method extracts significant (principal) interactions by

considering only native conformations without using
decoys. We show that the principal interactions per-
form well in the identification of native structure,
close to the same discriminatory power as the full
interaction model. Our model derives the observation
that principal interactions extracted in the three-
dimensional structure of native structures will tend to
dictate a minimum energy protein conformation
among decoy structures, suggesting that these gross
features are dominant in dictating the structure.
In this study, at first, the energy between all pair of

residues using distance dependent knowledge-based
potential function for each native structure was calcu-
lated. Since there is 210 possible amino acid-amino
acid interaction type between 20 amino acids, there-
fore for each protein structure we could have a vector
with 210 elements, containing energy between amino
acid-amino acid interaction types, where for example
i’th element is the summation of energy between all
ALA-GLY residues in the structure. We obtained a (n
sample) × (210 variables) matrix where n is the num-
ber of native protein structures in the train dataset.
Finally, the principal variables (interactions) were ex-
tracted using a PCA-based approach. To our astonish-
ment, these interactions that consisted of 20% of the
full interaction on average, were found between resi-
dues that are known as critical, important, and effect-
ive in protein folding. The model that considers only
the principal interactions was assessed by six mea-
sures including the number of correctly identified na-
tives, the Z-score of the native energy, the RMSD of
the minimum energy, the Pearson correlation coeffi-
cient between energy and Cα RMSD from the native
structure, 20% fraction enrichment and the Z-score of
the best decoy structure using two decoy sets. The
results are very similar and close to the full inter-
action model. Therefore, we are able to demonstrate
that the principal interactions maintain the discrim-
inative power of the full interaction model. Addition-
ally, the similar results were found when the principal
interaction model was evaluated on DOPE and DFIRE
potential functions.

Results
Principal interactions of protein native structures
The general definition of distance-dependent knowledge-
based potential between pairs of atoms i and j at distance d
is:

ΔEij dð Þ ¼ −RTln
f ijobs dð Þ
f ijr dð Þ ; ð1Þ

where f ijobsðdÞ and f ijr ðdÞ represent the relative frequency
of atomic pairs i and j at distance d in a database of
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native structures and the reference state, respectively [7].
The total potential of a given protein structure, S, de-
noted by ΔE(S) can be approximated as follows [7]:

ΔE Sð Þ ¼ 1
2

X
i; j
ΔEij dð Þ: ð2Þ

The potential between pairs of residues A and B can
be calculated as a summation of pairwise potentials be-
tween atoms of residue A and B:

ΔE A;Bð Þ ¼
X

i∈A; j∈B

ΔEij dð Þ; ð3Þ

where i and j are atoms of residues A and B. Therefore,
the total potential of a protein structure, S, can be ap-
proximated as follows:

ΔE Sð Þ ¼ 1
2

X
A;B∈T

ΔE A;Bð Þ ð4Þ

where T is set of all 20 amino acid types. Since there are
210 possible different amino acid-amino acid interaction
types between 20 amino acids, the total number of dis-
tinct ΔE(A, B) in the above summation is equal to 210.
A non-redundant structural dataset of 6944 protein

chains was culled by PISCES [40] from Protein Data
Bank with pairwise sequence identity < 50%, resolution
< 1.6 Å, R-factor < 0.25, protein length > 40 and < 1000

residues. We also excluded the proteins with more than
50% sequence identity with targets in test sets (proteins
in the 3DRobot [41] and CASP10–13 [19]). The final list
contains 6384 protein chains. The final list of PDB and
chain IDs are provided in Additional file 1: Table S1.
Let Si be i’th protein native structure in the data set

and the 210-dimensional vector Pi, containing 210
amino acid-amino acid energies; ΔE(A, B) as explained
above. Obviously, the sum of Pi is equal to ΔE(Si); the
total energy of the protein structure Si. The total energy
matrix (denoted by TE) is a 6384 sample-by-210 vari-
ables matrix whose rows are Pi calculated from 6384 na-
tive protein structures.
At first, each of the samples in TE matrix has been

centered to have mean zero, the new matrix is called
CTE (centered total energy). Figure 1 shows the image
representation of CTE matrix for DBNI scoring function
[42]. In DBNI, the neighbors of atoms (interactions) are
determined by Delaunay tessellation and only non-local
interactions (those between atoms farther than five resi-
dues in the sequence) by a distance less than 6 Å are
considered. In fact, the figure displays the data matrix
CTE as an image that uses the range of colors as indi-
cated in the colorbar. Each element of CTE specifies the
color for one pixel of the image. The smallest value in
CTE is mapped into the black color. As shown in Fig. 1,
the values of some variables or interactions shown as
black points are very low and different from the others.
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Fig. 1 A color image representation of the CTE matrix for DBNI. The x-axis represents 210 variables and the y-axis represents1000 randomly
selected protein structures from train data set. The extracted principal interaction positions on the x-axis are shown by arrows. (From left to right:
F-F, F-L, F-I, F-V, F-W, F-Y, L-L, L-I, L-V, L-W,L-Y, L-M, L-A, I-I, I-V, I-Y, V-V, V-Y, V-A, Y-Y, and C-C, respectively)
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The extracted principal interactions (variables) as de-
scribed in Methods section are as follows: LEU-LEU,
CYS-CYS, PHE-LEU, VAL-VAL, ILE-LEU, PHE-PHE,
ILE-ILE, LEU-VAL, ILE-VAL, LEU-TYR, PHE-ILE,
PHE-VAL, TYR-TYR, LEU-TRP, ILE-TYR, LEU-ALA,
PHE-TYR, VAL-TYR, VAL-ALA, TRP-PHE, and MET-
LEU. These interactions are shown by arrows in Fig. 1.
Most of these interactions are between amino-acids that
are critical and important in protein structure and pro-
tein folding. Val, Ala, Leu, Ile, Phe, Tyr, and Trp are
hydrophobic amino acids and are important in deter-
mining the three-dimensional structure of proteins.
Tyrosine is an aromatic, partially hydrophobic amino
acid that is inclined to be buried in protein hydrophobic
cores. The aromatic side-chain can also mean that tyro-
sine is involved in stacking interactions with other aro-
matic side-chains such as phenylalanine and tyrosine.
Cysteine has sulfur-containing side group with the po-
tential to be more reactive. As a group with low polarity,
cysteine is known for its ability to connect with another
cysteine via the sulfur atoms to form a covalent disulfide
bridge, which is important in the formation and main-
tenance of the tertiary (folded) structure in many pro-
teins. In order to assess the principal interactions in the
identification of the native structure, the results of the
full interaction model were compared with the principal
interaction model. In the full interaction model, all
amino acids and their interactions, as determined in
their corresponding KBP definition, are considered. In
comparison, in the principal interaction model, only the
principal interaction types of the full interaction model
are considered.

Validation of the principal interaction model on decoy
sets
The principal interaction model was assessed in discrim-
ination of native structure, using the decoy sets 3DRobot
[41] and CASP10–13 [19]. The 3DRobot set includes
decoy structures for 200 non-homologous proteins ran-
domly selected from the PDB library. This protein set
contains 48 α-, 40 β-, and 112 α/β-single-domain pro-
teins with lengths ranging from 80 to 250 residues. Each
protein contains 300 structural decoys with RMSD ran-
ging from 0 to 12 Å. The CASP10–13 decoy set includes
a total of 13,474 structures for 175 proteins, which were
collected and trimmed from CASP10-CASP13 experi-
ments by Yu et.al [19]. In this data set, all prediction sets
contain experimental structures that are sequentially
consecutive and all non-first prediction models (the sec-
ond to fifth models of predictors) have been removed. In
addition, the selected prediction models are also con-
secutive and identical in sequence to the corresponding
experimental structure. This data set has many decoys
with RMSDs evenly distributed from very similar to very

different to the native structure. The model was assessed
using six measures including, the number of correctly
identified native structures (Top1), the Z-score of the
native structure energy, the RMSD of the minimum en-
ergy, the Pearson correlation coefficient (denoted by PC)
between RMSD from the native structure and the total
energies, 20% fraction enrichment, and the Z-score with
respect to the best decoy as explained in the Methods
section.
In order to compare the difference between the princi-

pal interaction model and the full interaction model in
size, the percentage of principal interactions denoted by
PI for all decoy structures in the data sets was also
calculated:

PI ¼ #principal interactions=#full interactionsð Þ

A comparison of two models using DBNI potential
function is summarized in Table 1. The values in paren-
thesis depict the performance of the potential function
in the full interaction model. The PI values represents
the average of the percentage of interactions between
atoms used for the calculation of energy in the principal
interaction model. On average, 25% of interactions are
used in the principal interaction model.
The principal interaction model and the full inter-

action model correctly identified 286 native structures
with a success rate of 76%. The results of the principal
interaction model in all six criteria are very similar to
the full interaction model.
The F.E. and Z-scoreb evaluate the performance of the

model in decoy discrimination between good and bad

Table 1 Assessment of DBNI scoring function on the principal
interaction model and the full interaction model on Decoy Sets

Decoy Sets CASP10–13 3DRobot Total/Average

Top1 109 (107) 177 (179) 286 (286)

Z-score 1.46 (1.32) 4.07 (4.36) 2.76 (2.84)

RMSD 4.07 (4.26) 0.19 (0.19) 2.13 (2.22)

PC 0.13 (0.12) 0.50 (0.58) 0.31 (0.35)

F.E. 1.30 (1.20) 2.95 (3.14) 2.12 (2.17)

Z-scoreb 0.25 (0.29) 1.60 (1.87) 0.92 (1.08)

PI 0.26 ± 0.05 0.25 ± 0.05 0.25 ± 0.05

#Target 175 200 375

The Top1 is the number of first-ranked native structures within the decoy sets.
The Z-score is the average of Z-score of the native energy, the RMSD
represents the average of the RMSD of the minimum score, and the PC is the
average of Pearson correlation coefficient between the energy and RMSD from
the native structure. The PI represents the average of the percentage of
interactions between atoms used for the calculation of energy in the principal
interaction model. The F.E. indicates the 20% fraction enrichment, and the Z-
scoreb calculates the Z-score with respect to the best decoy. The last row is
the number of targets in decoy sets. The values in the columns denote the
performance of potential functions in the principal interaction model and the
values in parenthesis depict the performance of the potential function in the
full interaction model
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structural decoys. The possible values of F.E. ranges
from 0 to 5 [19]. The higher value of F.E. the better
decoy discrimination. For 3DRobot, the results of F.E.
and Z-scoreb are better than CASP10–13. Because most
of the targets in 3DRobot have decoy structures with
low RMSD, however in CASP10–13 the minimum
RMSD is 5 Å for 44% of the targets. For 3DRobot decoy
set, all criteria justify the model. The averages of CC’s in
the principal interaction model and the full interaction
model are 0.50 and 0.58, respectively with the average of
Z-scores higher than 3. For both decoy sets, the results
of the principal interaction model are very similar and
close to the full interaction model using 25% of the full
interactions on average and adding further down the list
of interactions could not significantly increase the per-
formance of the potential function.

Discussion
Principal interaction model on DFIRE and DOPE
The principal interaction model was also tested on DFIRE
[43], and DOPE [17] potential functions. In DBNI, atomic
interactions are determined by Delaunay tessellation and
only non-local interactions (those between atoms farther
than five residues in the sequence) by a distance less than
6 Å are considered. DOPE and DFIRE are derived from a
non-interacting ideal gas reference state, except that in
DOPE the size effect of proteins is taken into account. In
DFIRE and DOPE, two atoms by a distance less than 15Å

are in contact. The image representation of the CTE
matrix for DFIRE and DOPE are shown in the Additional
file 1: Figure S1 and S2. The extracted principal interac-
tions (variables) for these potential functions are shown in
Fig. 2 by red, black, and blue edges, respectively, and are
listed in Additional file 1: Table S2. Although the afore-
mentioned potential functions have differences in the def-
inition of contact, the threshold of distance, and ignorance
of local interactions, most of their principal interactions,
as shown in Fig. 2, are the same. Note that these interac-
tions are between residues considered as important in
protein folding. For each interaction type, the number and
the contribution value were calculated. The number of in-
teractions was extracted from train data set and the con-
tribution value was calculated by applying the procedure
described in the Methods section on CTE matrix whose
columns are pairwise potentials calculated from 6384 na-
tive structures in the train set. In summary, at first the co-
variance matrix of the CTE matrix was calculated using
Eq. 5 and then it diagonalized according to Eq. 6. As de-
scribed in the Methods section, the set of m eigenvectors
of the covariance matrix (V1,V2, …,Vm) with 80% of total
variations was selected (Eqs. 7 and 8). The contribution of
the pairwise interaction k, in a given principal direction Vj

denoted by Ckj was calculated in Eq. 9. Let Ck1, Ck2, …,
Ckm is the contributions of the pairwise interaction k on
V1,V2, …, Vm, respectively. The total contribution of the
pairwise interaction k was calculated using Eq. 10. Figure 3

Fig. 2 The principal interactions in DBNI, DOPE, and DFIRE are represented by red, blue and green edges, respectively
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shows the relation between the number of interaction and
the contribution value for DBNI potential function and
the right-hand side inset plot corresponds to only the
principal interactions. As shown in the figure, the princi-
pal interactions indicated by red points mainly have a
large number of interactions, however the number of in-
teractions for CYS-CYS (inferred as principal interaction
and indicated by arrow in the figure) is relatively low and
on the other hand, the non-principal interactions such as
ARG-LEU, GLU-ARG, and ASP-ARG (data points in the
green rectangle, the bellow left-hand side) have a large
number of interactions. The similar results obtained for
DOPE and DFIRE and presented in Additional file 1:
Figure S6 and S7.
The results for these well-designed potential functions,

DFIRE, and DOPE are summarized in Table 2. The re-
sults of the principal interaction model for all these po-
tential functions are also very close to the full
interaction model and justify the principal interaction
model well.
The success rate of three KBP functions in terms of

the number of first-ranked native structures is shown
in Fig. 4. The X-axis represents the index of sorted
interactions based on their contribution values; the
details are shown in Additional file 1: Table S2. The
horizontal dashed line indicates the success rates ob-
tained by the principal interaction model, which

intersect the diagrams in bold points. The progress of
the overall performances represents a sharp initial in-
crease up to the bold points, followed by a straighten-
ing out or a slim decrease and increase. Therefore,
the performance of these scoring functions is cap-
tured and achieved by the principal interactions.

Conclusions
In this study, we showed that amino acids and their interac-
tions are not equally important in protein structure. The
method is relatively straightforward and easy to apply to
other potential functions. The results of the reduced model
based on principal interactions inferred using three
knowledge-based potential functions reveal that non-
principal interactions do not increase significantly the per-
formance of the knowledge-based potential functions.
Hence, a new strategy is needed to capture the role of polar
and charged amino acids for improving knowledge-based
potential functions. Additionally, the simplicity of the pro-
tein structure could help to disclose the hidden secret of
protein folding. By reducing the 20 amino acids to the sim-
plified alphabet, the degree of freedom of protein structure
could be greatly reduced, and the main mechanism and the
underlying rules could be decoded. An appropriate simplifi-
cation should regenerate the structural features of proteins.
It is generally assumed that native protein structure takes its
conformation at minimum energy. The pairwise potential is

Fig. 3 The number of pairwise interactions versus their contribution values for DBNI. The right-hand side inset plot presents the relation between
the principal interactions and their associated contribution value
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a widely used measure to capture the strength of pairwise
interactions. In the context of energy landscape theory, the
energy of the simplified native structure should be also at
the minimum on the landscape of the simplified version.
The application of the principal interaction model in de
novo design and threading approaches would be a future
direction.

Methods
Principal interactions extraction
PCA is generally used to select a subset of variables from
a large set while retaining most of the information. This

is achieved by transforming the original variables to a
new set of variables, the principal components (PCs),
which are ordered so that the first few retain most of the
variation present in all of the original variables and have
the highest correlations with the principal components
[44]. Let the data matrix to be analyzed by PCA com-
prises n samples described by p variables and repre-
sented by the n × p matrix E, whose j-th column is the
vector xj of samples on the j-th variable. In the mean
centered data, which we write as U, the column means
of E have been subtracted from their corresponding col-
umns and so the column means of U are equal to zero.

Fig. 4 The success rate versus the index of sorted interactions according to their contribution

Table 2 Assessment of DFIRE and DOPE scoring functions on the principal interaction model and the full interaction model on Decoy
Sets

Decoy
Set

DFIRE DOPE

CASP10–13 3DRobot Total/Average CASP10–13 3DRobot Total/Average

Top1 54 (56) 13 (12) 67 (68) 75 (74) 63 (71) 138 (145)

Z-score 1.18 (1.18) 1.33 (1.20) 1.92 (1.19) 1.39 (1.37) 1.64 (1.90) 1.51 (1.63)

RMSD 6.95 (6.01) 2.02 (1.44) 4.48 (3.72) 5.55 (5.31) 1.28 (0.82) 3.41 (3.06)

PC 0.56 (0.51) 0.80 (0.81) 0.68 (0.66) 0.54 (0.44) 0.81 (0.82) 0.67 (0.63)

F.E. 1.59 (1.56) 3.73 (3.74) 2.66 (2.65) 1.63 (1.58) 3.86 (3.87) 2.74 (2.72)

Z-scoreb 0.54 (0.47) 1.45 (1.65) 1.00 (1.06) 0.53 (0.46) 1.54 (1.77) 1.03 (1.11)

PI 0.18 ± 0.05 0.19 ± 0.05 0.18 ± 0.05 0.19 ± 0.05 0.21 ± 0.05 0.20 ± 0.05

#Target 175 200 375 175 200 375
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The covariance matrix of the mean centered data, U,
could easily be calculated as follows [44]:

Σ ¼ UTU
n−1

; ð5Þ

It is a symmetric matrix and so it can be diagonalized:

Σ ¼ VLVT ; ð6Þ
where V is a matrix of eigenvectors (each column is an
eigenvector) and L is a diagonal matrix with eigenvalues
λi in the decreasing order on the diagonal. Each eigen-
value is proportional to the portion of the variance that
is associated with each eigenvector. The eigenvectors are
called principal axes or principal directions of the data.
Let the principal directions of the covariance matrix Σ
be V1, V2, …, Vp (these vectors are the columns of V)
and λ1, λ2, …, λp be the eigenvalues of the covariance
matrix. Here, we choose the set of m (m ≤ p) eigenvec-
tors of Σ which have the m largest eigenvalues with 80%
of total variations.
In order to assess the effect of each ΔE(A, B) on the

total potential of the mean force, ΔE(S), we used the fol-
lowing procedure on the 500 × 210 matrix CTE:

1) Let V1, V2, …, V210 and λ1, λ2, …, λ210 be the
eigenvectors (principal directions) and the
eigenvalues (variances) of the covariance matrix of
CTE. The covariance matrix is calculated using
formula (3). For a given Vj, the proportion of total
variance that it accounts for is:

t j ¼ λ jP210
i¼1λi

� 100; ð7Þ

The first m Vs (V1, V2, …, Vm) were chosen such that
the sum of the proportion of total variance be at least
80%. That means:

Xm

j¼1

t j≥80%; ð8Þ

Variables (interactions) that are correlated with V1, V2,
…, Vm possess high contribution and we consider them
as the most important variables (interactions). The con-
tributions of the variable k in accounting for the variabil-
ity in a given principal direction, Vj, are calculated (in
percentage) as:

Ckj ¼ V j kð Þ2
P210

k¼1V j kð Þ2 %; ð9Þ

where Vj(k) is k-th element of Vj

2) Let Ck1, Ck2, …, Ckm be the contributions of
variable k on V1, V2, …, Vm, respectively. The total
contribution of variable k on explaining the
variations retained by V1, V2, …, Vm is calculated
as:

Xm

i¼1
Cik � λið Þ: ð10Þ

The 210 variables are sorted by the values of the vari-
able’s total contribution. The total contribution of a vari-
able is compared to the average contribution of that
variable to a uniform distribution of contributions as
follows:

3) Assuming uniform contributions for the considered
210 variables, the contribution of a variable on a
given direction would be 1

210%. In this case, the
average contribution of a variable for V1, V2, …, Vm

is: τ ¼ Pm
i¼1ð 1

2:1 � λiÞ
4) For the given V1, V2, …, Vm, a variable with a

contribution larger than this cut-off, τ, could be
considered important and significant in contributing
to the components. We call these interactions (vari-
ables) as the principal interactions (variables).

Performance criteria
The performance criteria for model assessment and their
definitions are as follows:

1) Top1: Native structure is correctly identified if its
structure has the lowest value of energy. The
number of correctly identified native structures in a
decoy set is denoted by Top1.

2) Z-score of the native structure energy in a decoy
set is as follows:

Z−score ¼ scoredecoys
� �

−scorenative
σdecoys

where scorenativescorenative is the score (energy) calcu-
lated for a native structure, <scoredecoys > and σdecoys are
the average and standard deviation of score distributions
of decoys proteins, respectively.

3) RMSD of the minimum energy: The root mean
square deviation of the Cα-Cα pairs between the
native structure and the structure with the mini-
mum energy.

4) PC: The Pearson correlation coefficient between Cα
RMSD from the native structure and the total
energies.
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5) Z-scoreb: The energy gap between the best decoy
structure (the model with lowest RMSD from the
native structure) and the remaining structures is
calculated as follows:

Z−scoreb ¼
scoredecoys
� �

−scorebest decoy
σdecoys

where scorebest decoyscorenative is the score (energy) cal-
culated for the best decoy structure, 〈scoredecoys〉 and σde-
coys are the average and standard deviation of score
distributions of decoys proteins (the native and the best
decoy are excluded), respectively.

6) F.E (20% Fraction Enrichment): which measures the
fraction of the most accurate 20% decoys (the top
20% lowest RMSD structures) among the 20% best
scoring decoys (by excluding the native structure)
compared to that for the entire decoy set [19].
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