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Simple Summary: In domestic bovids, numerical autosome abnormalities have been rarely reported,
as they present abnormal animal phenotypes quickly eliminated by breeders. However, numerical
abnormalities involving sex chromosomes and structural (balanced) chromosome anomalies have
been more frequently detected because they are most often not phenotypically visible to breeders. For
this reason, these chromosome abnormalities, without a cytogenetic control, escape animal selection,
with subsequent deleterious effects on fertility, especially in female carriers.

Abstract: After discovering the Robertsonian translocation rob(1;29) in Swedish red cattle and demon-
strating its harmful effect on fertility, the cytogenetics applied to domestic animals have been widely
expanded in many laboratories in order to find relationships between chromosome abnormalities
and their phenotypic effects on animal production. Numerical abnormalities involving autosomes
have been rarely reported, as they present abnormal animal phenotypes quickly eliminated by breed-
ers. In contrast, numerical sex chromosome abnormalities and structural chromosome anomalies
have been more frequently detected in domestic bovids because they are often not phenotypically
visible to breeders. For this reason, these chromosome abnormalities, without a cytogenetic control,
escape selection, with subsequent harmful effects on fertility, especially in female carriers. Chromo-
some abnormalities can also be easily spread through the offspring, especially when using artificial
insemination. The advent of chromosome banding and FISH-mapping techniques with specific
molecular markers (or chromosome-painting probes) has led to the development of powerful tools
for cytogeneticists in their daily work. With these tools, they can identify the chromosomes involved
in abnormalities, even when the banding pattern resolution is low (as has been the case in many
published papers, especially in the past). Indeed, clinical cytogenetics remains an essential step in
the genetic improvement of livestock.

Keywords: chromosome abnormality; cattle; river buffalo; sheep; goat; fertility

1. Introduction

After discovering the Robertsonian translocation rob(1;29) in the Swedish red cattle
breed [1], and the demonstration of its harmful effect on fertility [2–4], the cytogenetics
applied to domestic animals have been widely expanded in many laboratories in order
to find relationships between chromosome abnormalities and their phenotypic effects,
primarily in terms of fertility.

However, in the years immediately following this discovery, various cytogeneticists
published reports on chromosome abnormalities, mostly involving sex chromosomes,
underlining the importance of these types of abnormalities, often responsible for sterility,
especially in females [5–11].

Numerical autosome abnormalities have been rarely reported, as they present ab-
normal animal phenotypes quickly eliminated in early embryo development or by breed-
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ers [12]. In contrast, numerical sex chromosome abnormalities and structural (balanced)
chromosome anomalies have been more frequently detected in domestic bovids because
they are most often not phenotypically visible to breeders (Table 1). For this reason, these
chromosome abnormalities, without cytogenetic control, escape selection, with subsequent
harmful effects on fertility (and production), especially in female carriers. Chromosome
abnormalities can also be easily spread by offspring, especially when using artificial insem-
ination, with adverse economic effects on animal breeding.

Table 1. Schematic representation of the chromosome abnormalities in domestic bovids.

Chromosome Abnormalities

Numerical
Structural

Autosomes Sex Chromosomes

Very rare (the animal body
conformation being abnormal;
these abnormalities are eliminated
directly by the breeders)

More tolerated by the species but
almost all related to sterility or low
fertility, especially in the females
Generally not visible in the carriers
(normal body conformation and
external genitalia)

Deviation from the normal chromosome shape or
gene order
Very important for the (a) high percentage of
carriers (i.e., cattle rob1;29); (b) normal body
conformation; (c) because they escape the normal
breeding selection
They can be balanced (translocations and
inversions) or unbalanced (deletions, insertions,
and duplications)

The advent of chromosome-banding and FISH-mapping techniques with specific
molecular markers (generally BAC clones), reviewed by [13], as well as chromosome
painting probes (Zoo-FISH) [14,15], the use of CGH arrays [16], and the availability of
standard chromosome nomenclatures [17], have led to the development of powerful tools
for cytogeneticists in their daily work. With these tools, they can identify the chromosomes
involved in abnormalities and the possible loss or gain of genetic material (especially
using CGH arrays). Indeed, clinical cytogenetics remains an essential step in the genetic
improvement of livestock.

In this review, we discuss the most crucial chromosome abnormalities (CA) found in
domestic bovids (mainly cattle, sheep, goats, and river buffalo) by grouping most of them
in tables to synthetize the data. We also suggest possible strategies for a better investigation
of CA in animal populations, using efficient and simple banding and molecular techniques
to speed up the analyses for the improved selection of reproductive animals.

2. Numerical Chromosome Abnormalities
2.1. Autosomes

Numerical autosome abnormalities have been rarely found in domestic bovids because
they are directly eliminated in early embryo development or by breeders when severe
anatomical defects occur [12]. Most trisomies reported in cattle involve multiple and
heterogeneous defects, especially including those of the muscular-skeletal, cardiovascular,
and urogenital systems. Table 2 summarizes the numerical autosomal abnormalities found
so far in cattle. Due to the poor banding techniques available in the past, as well as the
lack of the use of specific chromosome markers in the FISH-technique in most studies,
the accuracy of the chromosome identification can be doubtful. An example is trisomies
22 [18,19] and 28 [20], found in the same animal, when the case was revisited some years
after the previous studies, using the same animal slides, chromosome banding, and FISH-
mapping technique (Table 2, Figure 1).
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Table 2. Autosomal trisomies in cattle.

Chromosome Involved Phenotype References

Large Autosome Male calf with extreme brachygnathia inferior [21]

12 Anatomical defect, lethal [22,23]

16 (TAN,1;16) Anatomical defects [24]

18 (?) Anatomical defects [25]

19 Anatomical defects (BI) [26]

20

Sterile cow [27]
Malformed calf, absence of external genitalia [28]

Malformed fetus, cranial defects [29]
Fetus with pulmonary hypoplasia and anasarca syndrome (genomic analysis) [30]

21 (?) Anatomical defects [31]

21 Newborn Hereford with a cleft palate, hydrocephalus, a cardiac interventricular
septal defect, and arthrogryposis [32]

22
Anatomical defects (no lethality) [33]

Multiple malformations, including hypoplasia of palpebral fissures, cleft palate,
kyphoscoliosis, and arthrogryposis

[32–34]

21 and 27 Fetuses [35,36]

22 1 Anatomical defects [18]
Anatomical defects [19]

24 Malformed heifer (slight prognathia, heart defects, slow growth rate) [37]

26 Sterility, growth retardation [38]

25 +;11− Anatomical defects [39]

28 1 Anatomical defects [20]

29 Malformed female calf showing dwarfism with severe facial anomalies
(genomic analysis) [40]

1 Same animal. ? means uncertain chromosome involved.

Figure 1. Interphase nucleus of a female cattle calf affected by trisomy 28. Arrows indicate the three
FITC signals of the BAC clone containing the conglutinin (CGN1) gene, the official marker of BTA28
(ISCNDB2000, 2001).
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Large chromosomes were no longer found to be involved in the autosomal trisomies
(see Table 2), probably due to the fetus’s lethal condition, which caused it to die in early
embryonic life.

A particular case has been reported in a calf of the Agerolese breed (southern Italy).
This animal, unable to stand up and which died a few weeks after birth, was found to be
affected by partial trisomy 25 and partial monosomy 11 [39] (Table 2) due to an unbalanced
meiosis of the mother cow, which had been affected by a balanced rcp(11;25) and reduced
fertility [41]. Two cases of trisomy involving BTA20 and BTA29 have been found using
only genomic analyses [30,40]. It should be interesting to compare this approach with
cytogenetic analyses, such as chromosome banding and FISH mapping using specific
chromosome markers, as recently performed in a case of tandem fusion translocation [42]. A
useful approach to detecting numerical chromosome abnormalities using a FISH-mapping
technique with two marker chromosomes has been applied to cattle embryos derived from
in vitro production (IVP) [43]. These authors observed an increased number of mixoploid
cells (diploid and polyploid) compared to in vivo embryos obtained by superovulation (72%
of IVP blastocysts versus 25% in vivo). However, the authors maintain that the survival
of most calves derived from IVP indicates that a considerable number of these embryos
can compensate for the adverse effects of the in vitro procedures [43]. The in vitro aspect is
very interesting regarding chromosomal abnormalities, especially in a breeding context.
Future breeding might involve in vitro embryo production, subsequent genotyping of the
embryo, and selection. In this respect, looking for structural abnormalities will be very
important because they will often escape “regular” genomic selection protocols.

2.2. Sex Chromosomes

Sex chromosome abnormalities are generally better tolerated by animal species, includ-
ing the bovids, because one of the X chromosomes genetically is inactivated as gene dosage
compensation [44]. However, some genes escape inactivation and cause reproductive
disorders involving the abnormal development of internal sex organs [45]. The sex chro-
mosomes of domestic bovids are easily identifiable by both standard chromosome-staining
and C-banding techniques. In fact, the X chromosomes of domestic bovids have a different
size, shape, and C-banding pattern compared with the autosomes, in particular, (a) BTA-X
is submetacentric when all autosomes are acrocentric; (b) BBU-X is the largest acrocentric
chromosome, with typically one extensive centromeric C band (and an additional, proxi-
mally located C band), compared to all acrocentric autosomes; (c) OAR-X and CHI-X are
acrocentric with visible p arms and negative C banding; (d) and BIN-X is submetacentric
(as in BTA-X).

The Y chromosome can also be easily detected by both standard chromosome staining
(cattle, sheep and goat) or C-banding techniques (river buffalo and zebu). Indeed, the Y
chromosome is small and submetacentric in cattle and small and metacentric in both sheep
and goat (where the other acrocentric autosomes are all acrocentric). The Y chromosome is
acrocentric in both river buffalo and zebu, presenting a positive, distally located C band (C-
banding patterns are centromeric in all remaining autosomes). More detailed information
about sex chromosome banding is available in [46].

2.2.1. X Trisomy

X trisomy has been rarely found in domestic bovids. The few cases found have only
occurred in cattle and river buffalo (Table 3).
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Table 3. X-trisomy in domestic bovids.

Species Phenotype Reference

Cattle

Meiotic disturbances, familiar disposition, infertility [47]
Infertility [48]
Infertility [22]
Infertility [49]

Continuous estrus [50]
Infertility [51]

Infertility, 2 cases [52]

R. Buffalo
Sterile (damages to internal sex structures) [53]
Sterile (damages to internal sex structures) [54]

Sterile (damages to internal sex structures), male traits [55]

Generally, X-trisomic females have a normal body conformation and external genitalia,
although a female river buffalo with male traits (prominent withers, tight pelvis, and large
horns) has been observed (Figure 2). Carriers are generally affected by infertility (cattle)
or sterility (river buffalo) due to damage to the internal sex structures, including ovarian
hypoplasia, smaller uterus body, and lack of estrus. As has been established, one of two
X chromosomes is randomly inactivated in these females during meiosis as gene-dosage
compensation. The same inactivation occurs in X-trisomy cases where one X chromosome is
active and the other two are inactivated. Still, abnormalities may result from the presence of
three active X chromosomes in early embryonic development, either before X inactivation
or due to X-linked genes that escape the inactivation process [56]. In humans, this syndrome
is the most common sex chromosome abnormality (1/1000 births, [56]).

Figure 2. Female river buffalo, five years old, affected by X trisomy (2n = 51, XXX). Note the
prominent withers (male trait).

2.2.2. X Monosomy

This type of chromosome abnormality is also rare in domestic bovids. Indeed, only a
few cases have been recorded so far (Table 4).
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Table 4. X-monosomy in domestic bovids.

Species Phenotype Reference

Cattle

Gonadal disgenesis (sterility) [57]
Gonadal disgenesis (sterility) [58]

Body smaller in size, the uterus and uterine tubes appeared
immature and inactive. [59]

Infertile heifer (XY/X0/Y-isochromosome) [60]

R. Buffalo
Gonadal disgenesis (sterility) [61]
Gonadal disgenesis (sterility) [62]
Gonadal disgenesis (sterility) [63]

Sheep
Normal phenotype and external genitalia, no nursing of offspring [64]

Gonadal dygenesis in the X0/XX karyotype [65]
Dizygotic sheep twins with internal sex damages and mammary

gland development very limited [66]

Goat Gonadal dysgenesis (XO/XX/XXX mixoploidy) [67]

Generally, females carrying X monosomy (active X, Figure 3) showed gonadal dysgen-
esis and sterility [57–59,63,68], although in sheep, the effects on the internal sex organs can
be less damaging (Table 4), [64,66]. In humans, 1 in 5000 live births is 2n = 45,X. In addition,
45,X represents one of the most common chromosome abnormalities identified in sponta-
neous abortions [56]. Very probably, the same occurs in domestic bovids, complicating the
cytogenetic analyses of aborted fetuses. Thus, it is difficult to know the real frequency of
this chromosome abnormality in domestic bovids and its fertility effects.

Figure 3. RBA-banding river buffalo metaphase from a female affected by X monosomy (2n = 49,X).
The only active X chromosome (arrow) was observed in all metaphases. This female was sterile due
to damage to her internal sex organs.

2.2.3. XXY Syndrome

Known in humans as Klinefelter’s syndrome, this abnormality has rarely been found
in males of domestic bovids (Table 5).
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Table 5. XXY-syndrome in domestic bovids.

Species Phenotype References

Cattle

Testicular hypoplasia in a mosaicism case XY/XX/XXY [69]
Testicular hypoplasia [70]
Testicular hypoplasia [22]

Intersexuality in a mosaicism case XX/XXY [71]
Bilateral testicular hypoplasia [72]

Testicular hypoplasia [11]
Testicular hypoplasia in a mosaicism case XX/XYY [73]

Masculinization effects in a mosaicism case XX/XXY [70]
Testicular hypoplasia [74]

Testicular hypoplasia (XXY + rob(1;29)) [75]
2 cases (testicular hypoplasia with degradation of seminiferous tubules in one examined case) [76]

Azospermic bull [77]
Testicular hypoplasia in a bull with mosaicism (XY/XYY) [78]

Testicular hypoplasia [79]
Testicular hypoplasia [80]

Testicular hypoplasia in 3 cases [52]
Young male excluded for reproduction being mosaic for XY/XYY Present Study

R. Buffalo Testicular hypoplasia in a case of 2n = 50,Y, rob(X;X) [81]

Sheep 2 cases in rams showing hypoplastic testis [82]
Ram with no particular phenotypic effects (XX/XYY mosaicism) [83]

Goat
Testicular hypoplasia in a case of XXY/XY mosaicism [84]

XX/XXY fertile buck [85]

Even when two or more X chromosomes are present, the presence of only one Y
chromosome is sufficient to induce testes development. This is due to the presence of the
SRY gene on the Y chromosome. Carriers are generally affected by testicular hypoplasia, as
found also in several cases of mosaicism, XY/XX/XXY, XX/XXY, or XXY/XY (Table 5). An
interesting XXY case has been reported in a river buffalo [81]. This male, showing gonadal
dysgenesis, presented an unusual karyotype: 2n = 50,Y, rob(X;X). A case of mosaicism
XY/XYY was found in a young male of the Chianina cattle breed intended for reproduction
(Figure 4, Table 5). The animal was promptly eliminated after a karyotype analysis, and it
was not possible to further investigate the case.

Figure 4. Normal Giemsa-staining metaphase plate of young male cattle for reproduction but
promptly eliminated because it was found to be affected by XY/XYY mosaicism. The X chromosome
(large arrow) and Y chromosomes (small arrows) are indicated.
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2.3. Sex Reversal Syndrome

This syndrome occurs when male and female phenotypes (or gonadic sex) differ from
the expected sex chromosome constitution, as in XX males and XY females. All cases found
with this syndrome in domestic bovids are reported in Table 6.

Table 6. Cases with sex reversal syndrome in domestic bovids.

Species Sex Chrom. Phenotype/Effects on Fertility Reference

Cattle

XY Female (2) with reproductive defects [86]

XY Female with internal sex anatomical defects and no estrus [87]

XY Female with no estrus and streak gonads [88]

XY Female with hypoplastic ovaries [89]

XY Single birth female with normal internal sex adducts but feeble estrus [27]

XY Female normal gonads and genital development with AMGY and ZFY
genes present (no SRY determination) [90]

XY Female with hypoplastic gonads (the right one resembled an ovary and
the left one an undeveloped testis) [91]

XY Females (3) with no estrus and abnormal Y (Yp-iso) [92,93]

XX Male with both testis and ovotestis development [94]

XX Male XX + rob(1;29) apparently with the normal reproductive
parameters but eliminated for rob(1;29) [95]

R. buffalo XY Females (2) sterile with abnormal internal sex adducts
(one case with SRY-positive) [55,96]

Sheep XY Sterile ewe with streak gonads, SRY+ [97]

XY Ewe with a longer ano-vulvar distance, enlarged clitoris, two testes-like
structures at the inguinal level [98]

Goat
XX Testicular biosynthesis of testosterone [99]

XX Males intersex, SRY-, Polled Intersex Syndrome (PIS) [100–102]

2.3.1. XY Sex Reversal

Bovine XY sex reversal has been observed much more frequently than its counterpart
(i.e., XX sex reversal syndrome). Several cases have been reported in this species (Table 6).
When the SRY gene sequences were published [103], a test for this syndrome in animals
revealed a lack of SRY gene sequences by both PCR and FISH-mapping analysis in such
individuals [92,93]. Only two cases of XY sex reversal syndrome have been reported in
river buffalo (Table 6). Both females were sterile with severe disruption to their internal sex
organs. However, upon investigation by both FISH-mapping and gene-sequence analysis,
one individual displayed the SRY gene at its expected location on the Y chromosome with
its normal DNA sequence [55]. Similar cases have been reported in sheep [97]. Other
authors [104] reported a case of a woman with a 46,XY karyotype and a female phenotype,
including histologically normal ovaries. This phenotype, which originated from loss of
function due to mutations on the CBX2 gene (human homolog of mouse gene M33), is the
only known report of an XY sex reversal with ovary development.

2.3.2. XX Sex Reversal

This syndrome is very rare in domestic animals [105]. Although very rare, XX hu-
man males show a variety of clinical manifestations from a normal male phenotype to
ambiguous genitalia in newborns. The syndrome is correlated to a translocation of the
SRY gene from the Y chromosome to the X chromosome in about 80% of XX sex reversal
cases [106,107]. An essential role in this syndrome is played by the chromosome position
of the SRY gene in the Y chromosome. When it is located close to the PAR region (as in
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humans), there are more probabilities for translocations from the Y to X chromosomes
during meiotic recombination. In domestic animals, the SRY gene is generally located far
from the PAR region [108–110], thus explaining its rare occurrence in domestic animals. No
documented XX sex reversal related to the SRY gene have been found so far in domestic
animals [111,112]. Detailed information on sex reversal syndrome in placental animal
species has been reviewed by Parma et al. [113].

2.4. XX/XY Mosaicism (Free-Martinism)

This syndrome is the most common sex chromosome abnormality found in domestic
bovids in twins of different sexes. In cattle, about 90% of twins of different sexes are
free-martin [80,114]. In dairy cattle, the percentage of free-martin twins is higher than
that in meat breeds. It varies between 0.5% and 2.0%, with the rate of twinning in dairy
breeds between 1% and 4% [115] when the male–female sex ratio is 1:1. Twin pregnancy
percentages are also influenced by seasonal effects, reaching the highest levels during
springtime and in older dairy cows (6%) [116]. Alterations of internal sex traits seem to
be more severe in females than in males, although studies following several free-martin
males also reported damage to interior male features [114]. In Italian Friesian cattle, most
females with chromosome abnormalities (13%) were free-martin [80]. The presence of
XX/XY mosaicism has been found also in bone marrow cattle cells [5].

Free-martin females generally show the typical body conformation and external gen-
italia. Still, they have pronounced gonadal dysgenesis, varying from a complete lack of
internal sex organs (closed vagina) to Mullerian-duct atrophy (Figure 5). Furthermore,
several studies reported that damage to the internal sex structures is not correlated with
the percentage of male cells in either cattle [116] or river buffalo [117]. Indeed, in both
cattle and river buffalo, aberrant internal sex organs were found even in the presence of
small percentages of male cells [117]. This is essentially due to three events: (1) placental
anastomosis occurring at 20–25 days of embryonic life; (2) sex differentiation occurring
later (at 40–45 days) in cattle; and (3) male sex differentiation occurring one week before
females [118]. For this reason, the presence of male cells, even in low percentages (and
male hormones, in particular AMH), affects the development of internal female sex char-
acteristics [118,119]. For this reason, male free-martins seem to be less prone to abnormal
sex anomalies. However, some cases of reduced fertility have been reported in free-martin
males [120–123]. The presence of material belonging to the Y chromosome has also been
identified in female subjects with reduced reproductive efficiency [124].

Many free-martin cases are from single births (the other twin dying during early
embryonic development). In river buffalo, about 90% of free-martin females were born
in single births [55]. This phenomenon is essential because these females generally show
normal body conformation and external genitalia, thus escaping breeding selection, unlike
in twin births. In the latter case, the breeder knows that the female is probably free-martin
and requires a veterinary examination by rectal palpation and cytogenetic or molecular
(PCR with specific sex markers) analyses to confirm it.

In sheep and goats, although twins are frequent (but also triplets or quadruplets
in some breeds), XX/XY mosaicism correlated to free-martinism occurs at very low fre-
quencies (5−6%) in twins of different sexes, probably because sex differentiation occurs
much earlier in sheep (20–25 days after fertilization) than in cattle [125]. Several cases
of free-martins have been reported in both sheep [114] and goats [126–128], although the
frequency of free-martinism is much lower in sheep and goats than in cattle and river
buffalo. Sheep and goats carrying XX/XY mosaicism show a pronounced presence of both
male and female traits, easily recognizable by breeders [98,129,130].
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Figure 5. (a) River buffalo female showing normal body conformation and external genitalia but
found with XX/XY mosaicism (free-martin). Note the atrophic uterine body (b).

2.5. Diploid-Triploid XX/XXY Mosaicism (Mixoploidy)

This syndrome is very rare in both humans and animals. In domestic bovids, only
four cases have been reported of cattle with 2n = 60,XX and 3n = 90,XXY mosaicism [131].
Generally, the mixoploidy depends on the type of cell in cattle and humans, triploid cells
being absent or present in lower percentages in blood lymphocytes and present in higher
percentages in fibroblasts or cells of the uterine body or limbs [131–133]. In humans, the few
46,XX/69,XXY cases fall into three phenotypic groups: males with testicular development,
ovo-testicular disorder of sex development (DSD), or under-virilized male DSD [134]. In
cattle, the four cases reported so far showed various phenotypes, including aplasia of the
vulva, a rudimentary penis, the presence of ovaries, an empty scrotum, and ovaries with
corpus luteum [131].

3. Structural Chromosome Abnormalities
3.1. Reciprocal Translocations

Reciprocal translocations (rcp) have been found only in cattle and sheep (Table 7).
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Table 7. Reciprocal translocations (rcp) found in cattle and sheep, with the chromosomes involved, phenotypic effects
(when available), and author reference.

Species Rcp/Chrom. Involved Phenotype Reference

Cattle

double rcp(2q−;20q +, 8q-;27q +) reduced fertility [135]
rcp(8;15) (q21;q24) reduced fertility [136]
rcp(1;8) (q44:q16) 2 males and 3 females, reduced fertility [137]

rcp(1;8;9) (q43;q13;q26) subfertile bull subfertile bulls (n = 3) [138,139]
rcp(8;13) (q11;q24) azoospemic bull [140]
rcp(20;24) (q17;q25) subfertile bull [141]

rcp(X;1) (42;13) normal female calf with mosaicism XX/XY [142]
rcp(12;17) (q22;q14) subfertile bull [143]

rcp(1;5) (q21;q35) azoospermic bull and its dam (reduced fertility) [144]
rcp(Y;9) (q12.3;q2.1) azoospermic bull [145]
rcp(11;21) (q28;q12) bull, no libido, rare spermatozoa [146]
rcp(9;11) (q27;q11) male addressed to reproduction [147]
rcp(2;4) (q45;q34) bull (post mortem SC-analysis) [148]
rcp(4;7) (q14;q28) bull, balanced, cyto-genomic analysis (CGH-arrays) [149]

rcp(Y;21) (p11;q11) bull testosterone negative [150]
rcp(11;25) (q24;q11) cow with reduced fertility [41]

rcp(13;26) cow with reduced fertility [151]
rcp(5;6) (q13;q34) bull, balanced, cyto-genomic analysis (CGH-arrays) [16]

rcp(13;26) (q24;q11) dam and calf, balanced [152]
rcp(12;23) two subfertile bulls [153]

Sheep

rcp(1p;19q) low fertility [154]
rcp(13;20) (q12;q22) low fertility [155]

rcp(2q;3q) low fertility [156,157]
rcp(2p−;3q +) low fertility [80,158]

rcp(4q;12q) (q13;q25) low fertility [159]
rcp(18;23) (q14;q26) low fertility [160]
rcp(13;20) (q12;q22) poor fertility [155]

Rcp are generally balanced, and for this reason, animal carriers show a normal body
conformation. Still, they have reduced fertility due to disturbances that occurred during
meiosis caused by abnormal (quadrivalent) configurations and erroneous chromosome
disjunctions, which can give rise to abnormal embryos that generally die during early
embryonic life [138,141,161–163]. Without a cytogenetic analysis, these abnormalities
escape genetic selection and spread in the offspring, especially when using AI. However, rcp
often escape cytogenetic analyses. Most animal cytogenetic labs apply routine cytogenetic
analyses with only standard chromosome staining to detect robs, in particular rob(1;29).
All cattle autosomes being acrocentric, only when abnormal autosomes are larger and/or
shorter than BTA1 and BTA29, respectively, does the lab try to better investigate the case
to identify a possible presence of rcp using chromosome-banding techniques and, more
recently, chromosome-specific molecular markers (or chromosome-painting probes) by
FISH-mapping techniques. For this reason, rcp have been reported with lower frequencies
in cattle compared to dicentric robs. A study investigating all rcp found in cattle and
correlating them to relative chromosome length concluded that the expected frequency of
rcp in cattle is about four times higher than dicentric robs [164]. This estimate is based on
two different approaches: (i) a mathematical approach; and (ii) a bioinformatics simulation
approach. Both approaches provided similar value and therefore this estimate is believed
to be reliable. However, when fertility values, such as (a) the interval between two births,
(b) the return to estrus after natural or artificial insemination, and (c) a low number of
calves during the reproductive life, appear abnormal, cytogenetic investigations must be
done using both chromosome-banding and FISH-mapping techniques [13] to determine
the presence, or lack thereof, of chromosome abnormalities like rcp. Generally, only single
rcp has been found in bovids, involving only two chromosomes (Table 7). Only rarely
has single rcp involved three chromosomes (Table 7) [80,138]. The only case of double rcp
involving four chromosomes has been reported by De Schepper et al. [135] (Table 7). Only
two rcp involved an autosome and the Y chromosome in an azoospermic bull [145] and a
bull negative for testosterone (Table 7) [148].
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Significant advantages for detecting rcp in domestic bovids (i.e., cattle and sheep) have
been derived from improved chromosome-banding and FISH-mapping techniques with
specific molecular markers (generally bovine or ovine BAC clones; Figure 6) or chromosome
paint probes. Recently, a method using a panel of subtelomeric FISH-probes on a multi-
hybridization device, as a means of highlighting the ends of each chromosome, has also
been applied to cattle chromosomes to detect structural chromosome abnormalities [153].
However, only two studies extended the analyses using the CGH array to establish possible
genetic material losses during chromosome rearrangements (Table 7) [16,149]. At least in
these two latter cases, no genetic losses occurred during the rearrangements. Considering
that the carriers of rcp are morphologically normal, it is possible to support the hypothesis
that the rcp found so far in cattle and sheep are generally balanced.

Figure 6. (a) Cattle metaphase treated for RBG banding and showing a case of rcp(9;11) (q27;q11) in a young male for
reproduction. Arrows indicate the sex chromosomes der(9) and der(11). FISH mapping with two chromosome-specific
BAC clones mapping on BTA9 and BTA11 confirmed the chromosomes involved in the rcp (b,c). Note the presence of FITC
signals of a BTA9 marker in BTA9, der(9), and der(11) (b), as well as of FITC signals of a BTA11 marker only in BTA11 and
der(9), being absent in der(11) (c) because the chromosome region was positioned after the break point.

In humans, the routine uses of genomic investigations allow the study of rcp. Indeed,
mapping discordant mate pairs from long-insert, low-pass genome sequencing now per-
mits efficient, cost-effective discovery and nucleotide-level resolution of rearrangement
breakpoints, necessary for interpreting the etiology of clinical phenotypes in patients with
rearrangements [165]. However, in domestic bovids, because breeders directly eliminate
calves showing abnormal phenotypes potentially born from carriers of rcp, it is difficult to
study these kinds of mating products.

A rare example has been found in a female calf with partial trisomy 11 and partial
monosomy 25, which was unable to stand up and died after a few weeks (Table 2) [39].
The mother of this calf was a carrier of rcp(11;25) (Table 7) [41]. These two latter cases
demonstrate that rcp cause reduced fertility by generating unbalanced embryos that die in
early embryonic life or a few days after birth.

3.2. Robertsonian Translocations (rob)

Centric-fusion translocations are the most common chromosome abnormalities found
in cattle. With the exception of rob(1;29), which is monocentric, all remaining robs found in
cattle are dicentric (two centromeres; Table 8).
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Table 8. Dicentric Robertsonian translocations reported in cattle, river buffalo, sheep, and goat.

Species Rob/Chrom. Breed/Country Reference

Cattle

1 4 Czech Republic [166]
- 7 Not reported [167]
- Blond D’Aquitaine, France [80]
- 21 Friesian [168]
- 22 Czech Republic [166]
- 23 Czech Republic [166]
- 25 Blonde d’Aquitaine, N.Z. Piebald cattle Germany [169,170]
- 26 Friesian, Japan [171]
- 27 British Friesian [172]
- 28 Czech Republic [166]
2 4 Friesian, England [173]
- 8 Friesian, England [167]
- 27 Not reported [167]
- 28 Vietnamese cattle [174]
3 4 Limousine, France [175]
- 12 Blond D’Aquitaine, France [80]
- 16 Montbéliarde, France [176]
- 27 Black spotted, Romania [95]
4 4 Czech Republic [167]
- 8 Chianina, Italy [177]
- 10 Blonde d’Aquitaine, France [178]
5 18 Simmenthal, Hungary [179]
- 21 Japanese Black, Japan [167]
- 22 Polish Red White, Poland [180]
- 23 Brown, Romania [95]
6 8 Chianina, Italy [177,181]
- 28 Czech Republic [166]
7 21 Japanese Black Cattle, Japan [182,183]
8 9 Brown Swiss, Switzerland [167]
- 23 Ukrainian Grey [167]
9 23 Blonde d’Aquitaine, France [184]
10 15 Pitangueiras, Spain [185]
11 16 Simmenthal, Hungary [186]
- 21 Brown, Romania [95]
- 22 Czech Republic [167]

12 12 Simmenthal, Germany [167]
- 15 Friesian, Argentina [167]

13 14 Friesian, Slovakia [187]
- 19 Marchigiana, Italy [188]
- 21 Friesian, Hungary [189]
- 24 Red &White, Poland. Not reported [80,187,190]

14 17 Marchigiana, Italy [191,192]
- 19 Braunvieh, Switzerland [167]
- 20 Simmenthal, Switzerland, USA. Spotted, Romania [95,193–195]
- 21 Simmental, Hungary [167]
- 24 Podolian, Italy [196]
- 28 Friesian, USA [197]

15 25 Barrosã, Portugal [198]
16 18 Barrosã, Portugal [199]
- 19 Marchigiana, Italy [167]
- 20 Simmenthal, Czeck Rep. [200,201]
- 21 RedPied, Czeck Rep. [167]

19 21 Friesian, France [202]
20 20 Simmenthal, Germany [167]
21 27 Blonde d’Aquitaine, France [203]
21 23 Maremmana, Italy [204]
- 29 Blonde d’Aquitaine, France [80]

24 27 Friesian, Egypt [167]
25 27 Alpine Grey, Italy [139]
26 29 Alpine Grey, Italy [139,181,205]
27 29 Guernsey, Canada [206]



Animals 2021, 11, 802 14 of 27

Table 8. Cont.

Species Rob/Chrom. Breed/Country Reference

R. buffalo
1p 23 Ital. Mediterranean, Italy [207]
1p 18 Ital. Mediterranean, Italy [208]
X X Murrah, India [81]

Sheep

6 24 (t1) New Zeland Romney, NZ [209,210]
9 10 (t2) New Zeland Romney, NZ [210,211]
7 25 (t3) New Zeland Romney, New Zeland [210,211]
5 8 (t4) New Zeland Romney, New Zeland [212]
8 22 (t5) New Zeland Romney, New Zeland [212]
1 20 Undefined Race, Germany [213]
8 11 Churra da Terra Quente, Portugal [214]

Goat

2 13 Undefined Race, France [215]
3 7 - [161]
5 15 Saanen, Scotland. Saanen, Brazil [216,217]
6 17 Saanen, Switzerland. Saanen, Germany [218,219]
6 15 Saanen, Italy. Saanen, France. Saanen, Brazil [220–222]
10 12 Malaguena, Spain [223]

The dicentric translocations reported so far in cattle have generally been found in sin-
gle cases. Two exceptions are rob(14;20), reported in Simmenthal cattle in both Switzerland
and the USA [193–195], and rob(26;29), reported in Alpine Grey cattle [139,181,205], where
several carriers were found, probably due to the use of AI from bull carriers.

Generally, dicentric robs disappear after some generations, being unstable due to the
presence of two active centromeres and restabilizing to the normal diploid number. In
contrast, rob(1;29) is monocentric, showing one (and large) C-banding block particularly
present in the q arm (Figure 7). Although this abnormality was discovered a long time
ago [1,2], and various studies tried to show the origin of this translocation, only recently
and with the use of cytogenetic (high-resolution chromosome banding and FISH-mapping
techniques) and genomic (CGH array) analyses, was it possible to establish the origin
and evolution of this frequent chromosome abnormality. Indeed, a chromosome segment
of about 5 Mb translocated from the proximal region of BTA29 to the proximal region
of BTA1, with inversion during the evolution of rob(1;29) [224]. A loss of constitutive
heterochromatin (C bands) and of some SAT DNA also was observed on rob(1;29) [225,226].

Figure 7. Female cattle metaphase treated for CBA banding in a heterozygous carrier of rob(1;29)
(2n = 59,XX). Note the single C-band block in the rob(1;29), especially present on the q arms (large
arrow). Small arrows indicate X chromosomes.
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Rob(1;29), first found in Swedish red cattle [1,2], has been found widely in several
breeds (more than 50) [227], mainly in meat breeds. Thus, cytogenetic investigations are
particularly focused on meat breeds rather than on dairy cattle breeds, where rob(1;29)
has rarely been found, probably because the genetic selection is more strictly applied to
dairy breeds. Another hypothesis is that the lower frequency is due to the attempt to
reduce the meat breeds’ diploid number from 2n = 60 to 2n = 58 to gain genetic advantages
derived from this new genetic linkage between the two chromosomes. The frequency of
this translocation varies among cattle breeds, reaching high values in several breeds, in
particular in the Barrosa (Portugal), where the frequency of rob(1;29) carriers has been
observed at 70%, of which 53.2% were heterozygous carriers (2n = 59) and 16.6% were
homozygous (2n = 58) carriers [228]. This abnormality reduces fertility in the carriers
due to the presence of abnormal trivalent meiotic configurations [2,229] originating in
unbalanced gametes that give rise to abnormal embryos that die in early embryonic life.
The cow returns to estrus but with some delay compared to the normal interval due to the
service’s failure after AI [205]. The reduction in reproductive value in cow rob(1;29) carriers
is around 8−9% [80], while in the male carriers it appears to be lower. Indeed, meiotic
studies by sperm-FISH in two bulls carrying rob(1;29) revealed a lower percentage (around
2%) of abnormal and unbalanced sperm [230] than those achieved in oocytes of four female
carriers of rob(1;29), which showed 21.83% diploid oocytes and 4.06% chromosomally
unbalanced sets, with significant variation among carriers. However, these studies should
be applied to a larger number of carriers (at least to males) to better establish the real
reproductive value of bulls carrying the translocation in terms of unbalanced gametes.
Sperm-FISH analyses also should be performed not only on the total sperm fraction but
primarily on the motile sperm fraction (i.e., the effective sperm which fertilize the oocytes),
as demonstrated in a river buffalo bull sperm carrying a rob(1p;18) translocation [231].
A possible effect of bulls carrying robs(16;20) and (14;20) on the development of bovine
oocytes fertilized and matured in vitro was assessed on the basis of embryo yield and
blastocyst formation [232]. The study demonstrated that, in bulls carrying the 16;20 and
14;20 translocations, in vitro preimplantation embryo development was reduced (compared
to fertilization by a bull with a normal karyotype), probably due to genetically unbalanced
spermatozoa [232].

A chromosome-specific marker for rob(1;29) has been found, making it possible to
directly detect the presence of this translocation on sperm [233]. This marker, and sperm-
FISH with specific chromosome markers, could be particularly useful in males bred for
reproduction when no karyotype analyses are applied.

In river buffalo, in addition to the five biarmed pairs originating from centric-fusion
translocations during the karyotype evolution [234], three more robs have been found
so far as chromosome abnormalities in this species (Table 8). Two of them originated
from a complex chromosome mechanism: fission of BBU1 and subsequent centric-fusion
translocation between BBU1p and BBU23 in a cow with reduced fertility [207], and later
with BBU18 in a very famous Italian bull (named Magnifico) of the Mediterranean Italian
breed [208]. Since rob(1p;18) was also found in the bull’s offspring [208], the bull was
excluded from reproduction by the Italian buffalo breeder association. Analyses in both
total and motile sperm fractions of carrier bulls, by triple-color FISH analysis with a pool
of specific BAC probes, revealed that normal sperm were 27% and 69% in the total sperm
fraction and motile sperm fraction, respectively [231].

The third case of centric-fusion translocation, rob(X;X), found in river buffalo (Table 8)
was reported in a case of an XXY bull with testicular hypoplasia (Table 5) [81].

These studies suggested the necessity of applying cytogenetic investigations in this
important species, particularly for all males bred for reproduction and all females with repro-
ductive disturbances, in order to increase the fertility and economic value of river buffalo.

The normal karyotype of sheep (Ovis aries, 2n = 54) has three biarmed pairs (OAR1,
OAR2, and OAR3), which originated from centric-fusion translocations on chromosomes
homologous to cattle (and goat, ancestral bovid) 1–3, 2–8, and 5–11, respectively [17]. In
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addition to these normal biarmed pairs, six centric-fusion translocations, as chromosome
abnormalities, were found in sheep, of which five were named t1, t2, t3, t4, and t5, and in-
volving goat-cattle homologous chromosomes 6–24, 9–10, 7–25, 5–8, and 8–22, respectively
(Table 8) [209–212]. More recently, rob(8;11) was found in the Churra da Terra Quente
sheep breed (Portugal) [214]. Except for the t4 translocation, which disappeared, and the
most recent rob(8;11), found in a single case, the remaining four robs (t1, t2, t3, and t5)
remained in New Zealand sheep flocks. Homozygous carriers (2n = 48 and 2n = 46) were
later found in these same sheep flocks [235]. At least for t1, t2, and t3, no particular effects
on reproduction seemed to be present in the carriers [236].

Several Robertsonian translocations have also been reported in goats (Table 8). Very
probably, some robs, like rob(5;15), rob(6;17), and rob(6;15), reported in Saanen goats, are
identical [220,221]. As has generally occurred in other bovids, the translocations were
reported in single cases, except for those found in the offspring of males carrying the
translocation [217]. The authors performed cytogenetic and genealogical analyses on 205
goats, which were descendants of a sire imported from Switzerland. They reported 29.7%
and 4.9% heterozygous and homozygous carriers of rob (5;15), respectively.

3.3. Simple Translocation

This chromosome abnormality consists of a chromosome segment region translocated
from one chromosome to another. It has been rarely reported. A case of a Y;17 translocation
was found in a cattle bull, phenotypically normal (normal reproductive organs and testic-
ular function), but with slight pathospermia (oligozoospermia and asthenozoospermia),
However, the portions of the Y chromosome with TDF and AZF were not lost [237]. A case
of X-autosome translocation was reported involving almost all of chromosome 23 translo-
cating to the p- arms of the X chromosome of a cow [238]. The same translocation was
later found in a bull, which showed malformed spermatozoa [162]. Five cases of 1;8 simple
translocation (two males and three females), including a carrier of rob(1;29), were reported
by [137].

A case of 2q−;5p+ translocation mosaicism has been reported in a bull, identified by
chromosome painting using probes generated by conventional microdissection [239]. Its
fertility could not be estimated since the owner culled it before reproduction.

3.4. Pericentric Inversion

Few cases of pericentric inversions have been reported in cattle. Popescu [240] found
a pericentric inversion involving BTA14 in a female bovine showing reduced fertility.
Switonsky [241] found a pericentric inversion involving one of the two X chromosomes in
a female with reduced fertility. Iannuzzi et al. [242] found a pericentric inversion in the
Y chromosome of 12 male offspring (Podolian breed), of which one had a female-shaped
head with reduced horn size, signs of udders, a significantly reduced scrotum, and an
atrophic penis. Once slaughtered, an atrophic penis, absence of testis, sign of prostate,
and absence of internal female organs were observed. All the remaining carriers of the
chromosome abnormality showed normal phenotypes.

De Lorenzi et al. [243] found a possible case of pericentric inversion in the autosomes of
a young male cattle. Still, after a detailed FISH-mapping analysis, the authors demonstrated
that a centromere repositioning had occurred in BTA17. Subsequent CGH and SNP arrays
indicated no loss or gain had occurred in the centromeric region of BTA17 or other BTA17
regions [243].

3.5. Tandem Fusion (TAN)

The TANs found so far are centromere–telomere (with two active centromeres as
revealed by C-banding techniques) and were rarely found in domestic bovids. Hansen [244]
found a case of TAN in the red Holstein breed, while two cases of TAN were found in a male
and female of Romanian cattle [95], demonstrating the maternal origin of this abnormality
by genealogical investigations. The female carrier of TAN showed a lower non-returned
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rate and had only two offspring, of which one had a normal karyotype and the other
carried the same TAN. The evolution of male carriers was fascinating because the first two
analyses revealed a large percentage of mitosis with TAN. Subsequent investigations in
four examinations revealed a decreasing number of mitosis with TAN until a total lack
of TAN occurred. Indeed, six descendants of this bull showed normal karyotypes [95]. A
particular case of TAN (1;16) has been found in a Brown Swiss bull affected by anatomical
defects with the simultaneous presence of both TAN(1;16) and trisomy 16 [24]. A case
of TAN (4;21) was found in a new-born Holstein-Friesian heifer, which was also XX/XY
mosaic (free-martin) [245].

A recent TAN case has been found in a female calf affected by hypospadias, growth
retardation, and ventricular septal defects [42]. The TAN involved BTA18 and BTA27 with
an accompanying loss of genomic sequences, as demonstrated by chromosome banding,
FISH mapping, and genome sequencing [42].

3.6. Cytogenetically Detectable Deletions and Duplications

Genetic deletions and duplications have been reported in several studies using ge-
nomic approaches and have rarely been reported as chromosome abnormalities. This is
probably due to the harmful effects of large genomic losses (deletions) or gains (duplica-
tions). These conditions can cause the death of embryos in early embryonic life, especially
chromosome deletions. Among the few reported cases of chromosome deletions, only
two involved an autosome: the first one in an infertile cow [246] and another one, more
recently, in a female calf with several anatomic defects (head asymmetry, relocation of
the frontal sinus and eye orbits, hypoplastic thymus without neck part, ductus Botalli,
unfinished obliteration in umbilical arteries, and a bilateral series of tooth germs in the
temporal region) [247]. In this case, mosaic cells were observed, of which 92% were normal
(2n = 60, XX) and 8% abnormal (2n = 60, XX+ mar) due to the presence of a small marker
chromosome showing only the centromere and a proximal part due to the deletion of the
remaining material [247].

The remaining cases of deletions involve the X chromosome (generally the inactive and
late-replicating X). Indeed, chromosome abnormalities are often found on sex chromosomes
because they are more tolerated by the species (for gene inactivation in one of the two
Xs) and easily discovered for both shape and C-banding, which are different from the
autosomes. A Swiss Holstein bovine, affected by hypotrichosis and oligodontia, was found
affected by Xq deletion [248]. A large Xq-arm deletion has been found in a cow carrying
rob(1;29) [249]. An interesting case of Xp deletion (2n = 60, XX) has been found in a young
cow of the Marchigiana breed (central Italy) with normal body conformation and external
genitalia [250]. Detailed cytogenetic investigation by both C- and R-banding and FISH-
mapping techniques showed that almost all the p arms of the late-replicating (inactive) X
chromosome were absent. A CGH-array analysis showed that the deletion involved the Xp
arm from the telomere to around 39.5 Mb, referring to the BosTau6 cattle genome assembly.
This abnormality deletes about 40 Mb of the X-chromosome sequences, but none of them
are programmed to escape from inactivation despite the large number of genes deleted,
explaining the normal phenotype of the female. However, this carrier gave rise to a female
carrying the same deletion, which later would not remain pregnant after several services
and was then eliminated from the farm. The second female carrier gave birth to two calves,
both females, of which one was normal and another one carried the same deletion. Later,
after several failed services the mother carrier was eliminated from the farm [251]. Both
female carries had essentially similar reproductive problems.

Only two cases of chromosome duplications correlating to abnormal phenotypes have
been reported in cattle. A possible duplication of a survival motor neuron gene (SMN)
has been demonstrated in a calf affected by arthrogryposis (a disease characterized by
congenital contractures in the limbs having different origins) using extended-chromosome
fiber-FISH [252]. Another chromosome duplication of about 99 Kb has been found in
BTA18 using a CGH array on an XY female cattle (SRY positive) affected by a disorder of
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sex development (DSD), although the authors could not demonstrate its relationship with
the phenotype [253].

4. Conclusions

As shown in this review, there is a strict relationship between chromosome abnor-
malities and fertility problems in domestic bovids. In particular, numerical abnormalities
have been found very rarely because of their phenotypical visibility, resulting in elimi-
nation by breeders. On the other hand, numerical sex chromosome abnormalities often
escape selection, as the body conformation and external genitalia are generally normal, but
are responsible for sterility in most of cases, including free-martinism, or lower fertility.
Structural chromosome abnormalities are usually related to lower fertility compared to
normal-karyotyped animals. However, centric-fusion translocations are often present in
high percentages in meat breeds, particularly rob(1;29). For this reason, many breeder
associations required karyotype analyses for males bred for reproduction, especially for
AI, only in meat breeds. This choice is only partially correct because animals belonging
to dairy breeds are generally not examined. This could cause reproductive problems in
animals, as has occurred in the Italian Friesian breed, where 16.2% of the investigated
animals (males and females showing reproductive problems) were found to be carriers of
sex chromosome abnormalities, especially of XX/XY mosaicism (see [80]). Finally, only
with a good collaboration between breeders, veterinary doctors, and cytogeneticists, as well
as between different labs that use genomic and/or cytogenetic approaches, is it possible to
correctly investigate the presence of chromosome abnormalities and their effects on fertility
in domestic animals in order to better select reproductive animals to improve both their
genetic and economic value.
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Abbreviations

BTA Bos taurus chromosome, 2n = 60
BBU Bubalus bubalis chromosome, 2n = 50
OAR Ovis aries chromosome, 2n = 54
CHI Capra hircus chromosome, 2n = 60
BIN Bos indicus chromosome, 2n = 60
FISH fluorescence in situ hybridization
Fiber-FISH extended chromatin fiber-FISH
CGH-array comparative genomic hybridization array
DSD disorder sex development
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