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Abstract

Background: Models for the simulation of metabolic networks require the accurate prediction of enzyme function.
Based on a genomic sequence, enzymatic functions of gene products are today mainly predicted by sequence
database searching and operon analysis. Other methods can support these techniques: We have developed an
automatic method “BrEPS” that creates highly specific sequence patterns for the functional annotation of enzymes.

Results: The enzymes in the UniprotKB are identified and their sequences compared against each other with
BLAST. The enzymes are then clustered into a number of trees, where each tree node is associated with a set of
EC-numbers. The enzyme sequences in the tree nodes are aligned with ClustalW. The conserved columns of the
resulting multiple alignments are used to construct sequence patterns. In the last step, we verify the quality of the
patterns by computing their specificity. Patterns with low specificity are omitted and recomputed further down in
the tree. The final high-quality patterns can be used for functional annotation. We ran our protocol on a recent
Swiss-Prot release and show statistics, as well as a comparison to PRIAM, a probabilistic method that is also
specialized on the functional annotation of enzymes. We determine the amount of true positive annotations for
five common microorganisms with data from BRENDA and AMENDA serving as standard of truth. BrEPS is almost
on par with PRIAM, a fact which we discuss in the context of five manually investigated cases.

Conclusions: Our protocol computes highly specific sequence patterns that can be used to support the functional
annotation of enzymes. The main advantages of our method are that it is automatic and unsupervised, and quite
fast once the patterns are evaluated. The results show that BrEPS can be a valuable addition to the reconstruction
of metabolic networks.

Background
The functional annotation of newly sequenced genes is a
classic problem in computational biology. Even though
dozens of annotation protocols exist, many of them are
general purpose, not tailored to a special application.
One such application is the reconstruction of metabolic
or regulatory networks in systems biology. To accurately
reconstruct the metabolic network of a given organism,
it is necessary to precisely determine its enzyme reper-
toire. The enzymes in the genome have to be found and
their function (defined by EC-numbers) has to be
determined.

Sequence database searching is a standard method for
functional annotation that is also used in the recon-
struction of metabolic networks. A database of known
sequence targets is searched with the genes of the
organism in question. If there is sufficient similarity
between a query and a target, the function of the target
gene can be inferred to the query. Our group uses such
an approach (“Enzyme Detector”, manuscript in pre-
paration) to identify the enzymes of a given organism.
The results of a BLAST-dependent [1] search are com-
bined with other results to predict the presence of an
enzyme. In many cases, sequence-similarity based meth-
ods, however, do not allow an unambiguous decision.
One of the reasons is given by the fact that many
enzymes have similar sequences, even though their bio-
chemical function differs [2]. Another source of errors
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are multidomain proteins. A protein domain is usually
defined as a structural and functional unit of structure,
folding independently of the rest of the protein chain
(see e.g. [3]). Many proteins are composed of several
domains, and some domains are frequently used in dif-
ferent combinations [4]. This often complicates func-
tional annotation.
A classical approach in functional annotation consists

of the determination of sequence similarity, followed by
sequence clustering into protein families, and the repre-
sentation of these families by family-specific sequence
profiles or patterns (for an overview, see reviews [5-8]).
Some of these methods include an intermediate step
that copes with multidomain proteins. We shortly intro-
duce a number of these methods with emphasis on
those using patterns or not being covered by [5-8].
Sequence database searching is often the first step in

the annotation protocol, used to determine the similarity
or homology of the input sequences. Once the homolo-
gous sequences are merged into clusters or families,
their common properties are captured in some kind of
profile. The construction of sequence patterns is one
way to do that. Sequence patterns can be deterministic
or probabilistic [9]. Deterministic patterns work like a
filter or a fingerprint, specifying a set of possible subse-
quences that will match the pattern or not. They allow
a clear “yes” or “no” decision on the question if a given
sequence matches the profile, which can be advanta-
geous in some research contexts. Despite their lack of
flexibility, deterministic sequence patterns have been
used in many projects [5].
Some approaches for pattern or motif recognition do not

include an alignment strategy, PRATT [10] and CASTOR
[11] are two examples. They require sets of unaligned
sequences as input, which usually need to be related to
construct biologically meaningful patterns. PRATT allows
to construct patterns with user-defined properties, e.g. the
patterns may contain gaps of variable length or allow
ambiguous positions. CASTOR is a clustering protocol
using sequence patterns to recursively divide the input
sequences. Statistically relevant patterns are further refined
in each step. CASTOR is an example of an automatic and
unsupervised method that does not require manual inter-
vention, as long as the input sequences are known to be
related. Prosite [12] was initially a repository of manually
curated patterns. Today, the Prosite team also uses auto-
matic and semi-automatic techniques, and many patterns
are based on HMM profiles [12].
The methods we have introduced so far are general,

not being specialized in a certain class of protein. In
contrast, PRIAM [13] represents an approach restricted
to enzymes. PRIAM first collects all enzyme entries
from the ENZYME database [14] and retrieves the
sequences for each given enzyme from SwissProt. Then

it identifies the conserved ‘modules’ in each group of
sequences with PSI-BLAST [15]. These modules are
converted into position-specific scoring matrices
(PSSMs), which can be used for functional annotation.
We are currently not aware of another method that is
specialized on the functional annotation of enzymes.
We present an unsupervised and automatic method for

the functional annotation of enzymes, to support the
reconstruction of metabolic networks. Its name is BrEPS,
short for “Braunschweig Enzyme Pattern Search”. Given a
small number of parameters, it automatically creates
sequence patterns from groups of enzyme sequences.
Different from PRIAM, BrEPS aims at defining minimal
sequence patterns for one or more EC numbers.
In the first step the enzyme sequences in the Swiss-

Prot part of the UniprotKB are identified and sorted
into three categories. The enzyme sequences are then
compared by an all-vs.-all BLAST. The resulting E-
Values of the computed BLAST alignments are used as
distance measure in a Complete Linkage clustering of
the enzymes. The sequences in the clusters of the cre-
ated trees are aligned with ClustalW [16]. The con-
served positions in the multiple alignment are converted
into a sequence pattern corresponding to enzyme func-
tion. Finally, we estimate the fitness of these patterns by
searching the BrEPS database for True- and False posi-
tive hits. See Figure 1 for an overview.

Results
Preprocessing
We retrieve the Swiss-Prot part of the UniProtKB and
parse their description ("DE”) lines. Depending on the
presence of EC numbers, certain keywords and sequence
length we sort the Swiss-Prot entries into three groups:
Entries with an EC number are considered as enzymes,
if their length is between 100 and 7000 amino acids. No
complete enzyme in BRENDA [17] is shorter than 100
positions and only 0.1% of the Swiss-Prot sequences in
the UniProtKB are longer than 7000 positions. The
enzymes make up the first group (Figure 1a).
Fragments, regulatory domains without enzymatic activ-

ity, or activation peptides are identified by keywords like
“putative”, “hypothetical” or “fragment”. These entries are
put into the second, putative group. We assume the func-
tion of these proteins to be unknown, they need not even
be real expressed proteins. All remaining proteins, which
have neither an EC number nor one of the aforemen-
tioned keywords, are moved into the third group, Proteins
without enzymatic activity (see also Figure 1a):

1. Enzymes.
2. Putative proteins/fragments with unknown
function.
3. Proteins without enzymatic activity
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Our protocol proceeds with the enzymes in group
one. The proteins in group two and three are only used
in the verification of the final patterns (see “Pattern Ver-
ification”). To reduce the computational overhead of the

protocol, redundant entries in the source database are
excluded from subsequent steps. In group two and
three, we define two entries to be redundant if their
sequence is identical. This is different in group one,
where every entry is associated with one or more EC
numbers.
Let ec(X) be a function that returns the set of EC

numbers associated with an object X. For example,
assume this object to be an enzyme q, with ec(q) =
{‘1.2.3.4’, ‘2.2.27.-’}. Given two enzymes q, r: we call r
redundant to q if and only if
a) the sequences of q and r are identical and
b.1) ec(q) = ec(r), i.e. they are annotated with the same

set of EC numbers or
b.2) ec(r) is a subset of ec(q).
In the following step the enzymes in our database are

checked for changes of their EC numbers. For example,
a given EC number may have been deleted by the
IUBMB or replaced by a new one. Transferred EC num-
bers are updated and entries with deleted EC numbers
are removed from the database.
Then, all enzyme sequences are submitted to a BLAST

all-vs-all comparison. Low complexity sequences are
removed in this step, by applying the SEG filter [18].
The start and end indices of the remaining pairwise
BLAST alignments are stored in our database. We also
store the associated BLAST E-Value. Alignments cover-
ing less than 50 positions and those with an E-Value
higher than 1·10-3 are discarded (Figure 1b).

Clustering of the enzyme sequences
After the preprocessing, the enzymes are clustered by
Complete Linkage (CL) clustering (also known as maxi-
mum linkage clustering). CL clustering is a method for
agglomerative clustering. Given a set of pairwise dis-
tances between the clustered objects, the pair of objects
with the smallest distance will be merged into a new
cluster in each iteration of the algorithm. Then the dis-
tances of all nodes to the newly formed cluster have to
be recomputed. In CL clustering, the recomputed dis-
tance between the newly formed cluster and another
object will always be the maximum of all available dis-
tances to that object.
Agglomerative clustering usually results in a single

tree. Each enzyme in our database can be thought of
being a leaf at the bottom of that tree. The distance
measure between the leafs are the BLAST E-Values
from the all-against all comparison described above.
Since we discard similarities higher BLAST E-Values
than 1·10-3, the clustering can only proceed until this E-
Value has been reached. One can think of the complete
linkage tree being cut horizontally at an E-Value of 1·10-3.
Our clustering procedure therefore results in many trees
that are written into an SQL database. Every tree node is

Figure 1 Breps Protocol: Outline. Outline of the BrEPS protocol,
which comprises of four different steps. See the main text for a
detailed description.
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associated with the BLAST E-Value of the last merge
event with another leaf or node (Figure 1c).
The BLAST score s can be asymmetric with respect to

the order of query i and target j: s(i, j) ≠ s(j, i). There-
fore sometimes two different distances are calculated
between a pair of enzymes. In this case, we keep the
higher E-Value (indicating less sequence similarity) as
clustering distance, which corresponds to a symmetrifi-
cation of the similarity matrix. This also ensures that
enzymes with the same domain composition will cluster
with a higher priority than single domain enzymes with
multidomain enzymes that contain this domain. In
spirit, this is somewhat similar to choosing the strongly
connected components in the directed graph used in
[19] as clusters.
A few enzymes are not very similar enough to any

other enzyme in our data set. They generate only a few
or no BLAST hits at all, and are therefore not assigned
to any tree. We refer to them as unclustered sequences.
Each unclustered sequence is put in an artificial tree
that has one node.

Pattern computation
The trees in the database represent groups of similar
enzyme sequences. Tree nodes with small E-Values are
likely to contain a family of evolutionary related
enzymes. We conserve a part of the evolutionary infor-
mation in the family by creating a sequence pattern. If
the pattern matches a query sequence, the biochemical
function of the query can be inferred from the family.
It is not necessary to compute a pattern for every node

in the tree because the set of associated EC numbers does
not always change when sequences are added or nodes are
merged. If every node had a pattern, this would result in
high runtimes when searching a query sequence with
unknown function. Any tree should however have at least
one pattern, even if the tree contains only a few enzymes.
Otherwise we could not be sure to detect input sequences
that are already present in the BrEPS database. We there-
fore compute a pattern for any qualified node N if:
- N is the root OR
- N has fewer EC numbers than its father node
The trees are processed top-down starting with the

root node. All sequences within a qualified node are
subjected to a multiple alignment procedure using Clus-
talW. Highly conserved positions (marked with a star or
colon) in the multiple alignment are transferred into a
sequence pattern in ProSite [12] format (Figure 1c).
There are however exceptions:
1. Because of the computational overhead, we do not

treat nodes with 1000 or more sequences. These nodes
usually contain sequences with low similarity and several
EC numbers and result in short and therefore unspecific
patterns.

2. If a pattern covers less than eight positions of a
given input sequence, we discard the pattern because of
its small significance.
Sometimes there is not a single conserved position in

the alignment, even if we have aligned several hundreds
of non-redundant enzyme sequences. It is therefore pos-
sible that a tree root is not represented by a pattern. It
is even possible that a tree has no pattern at all, espe-
cially if there is only one EC number in the tree. We
identify problematic trees by counting the percentage of
enzymes that are represented by at least one pattern in
the tree, %pce (pattern-covered enzymes). If %pce is
below a predefined constant, we iteratively add (more)
patterns to the tree: First, we identify all candidate
nodes that have no pattern. Nodes that were already
tried in earlier iterations but failed to achieve a valid
pattern are excluded. The remaining nodes are sorted
by descending E-Value, such that the worst E-Value(s)
are at the top. Then, a pattern is computed for all nodes
with identical E-Values. If at least one pattern could be
kept, we check if %pce is still below our threshold. In
that case, we continue with the next node(s), until either
%pce is above the threshold, or there are no more nodes
to try. After one tree is finished, we continue this proce-
dure until all trees are processed.
The unclustered sequences we described in the “Clus-

tering the enzymes” Section are also represented by
“patterns”. Their sequence serves as pattern, such that
an exact match of a query sequence is possible. The
information of these enzymes is therefore not comple-
tely lost.

Pattern verification
Sensitivity and specificity of the patterns are important
parameters to judge their quality. Unspecific pattern
should not be used for functional annotation, except if
there is no other source of information. We therefore
search the proteins in our database with each of the
computed patterns, including the proteins without enzy-
matic activity and the group of putative proteins.
Redundant entries are excluded from the verification.
If a pattern matches an entry without enzymatic activ-

ity, we score a false positive hit (FP). If one of the
entries in the “putative” group is matched, the hit gets a
neutral status, because we cannot safely assign a result
(NA). If our pattern is matching an enzyme, we have to
compare its EC numbers with those of the matched
sequence (Figure 1d). The result depends on the defini-
tion of these relationships. This is not trivial, because
every pattern and every enzyme can be associated with
more than one EC number. In addition, some of the EC
numbers are incomplete, e.g. “1.1.-.-”.
In our definition, an EC number connected to a pat-

tern means that this pattern will find all enzymes with
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the same level of functional resolution. For example, a
pattern p with ec(p) = {’1.1.2.-’} should identify all oxi-
doreductases that act on compounds carrying a CH-OH
group, with a cytochrome as acceptor [17]. In this case
the 4th part of the EC-number is not specified in more
detail. If p matched an enzyme q with ec(q) = {1.1.2.2},
we would score a true positive hit (TP). This is not the
same if the two EC sets are swapped, i.e. the pattern-
associated set ec(p) = {1.2.2.1} and the sequence-asso-
ciated set ec(q) = {’1.2.2.-’}. In that case, the pattern is
associated with cytochrome-acting mannitol dehydro-
genases. Since we do not know if q has that function (it
could also be an L- or D-lactate dehydrogenase), a deci-
sion is impossible (NA). Our pattern verification method
is therefore asymmetric with respect to patterns and
sequences.
If there is more than one EC number present in either

the pattern or the enzyme sequence, we rank the rela-
tionships by the following rule: A TP gets precedence
over a FP, and a FP gets precedence over a NA case.
That means that we do not even need to evaluate a
match between p and q any further as soon as we have
found a TP. On the other hand, we can only assign NA
if there is neither a TP nor a FP case present. Our scor-
ing rules are best shown by the examples in Table 1.
The results of the pattern verification are especially

important, because the number of true positive (TP)
and false positive hits (FP) are the main parameters to
judge the quality of a pattern. Figure 2 shows the sum
of TPs and FPs at pattern lengths up to 200. As
expected, the number of FPs is decreasing with increas-
ing pattern length. After the patterns have reached a
length of 12 positions, the number of TPs is always
above the number of FPs recognized by the pattern,
which results in the high specificity of the patterns:
About 99% of them have a specificity of more than 95%,
only 0.2% of them have a specificity of less than 50%.

Two proteins with the same EC number can belong to
different sequence families that need not to be closely
related. Since our approach generates one or more pat-
terns for each sequence family, determining the number
of false negatives is not suitable as a quality measure in
this setup. We have therefore not determined the num-
ber of false negatives (FNs).

Statistics of the BrEPS database
We ran our protocol on the Swiss-Prot Release 57.6
(13th of October, 2009) of the UniProt Knowledge Base
[20]. After parsing the data, we count 165,805 non-
redundant enzymes and 228,406 non-redundant proteins
without enzymatic activity. The group with the putative
proteins and the fragments contains 33,769 non-r
entries.
The enzyme sequences are clustered into 5,414 trees,

including 794 single-Node trees from unclustered
sequences. Altogether, the trees have about 112,000
nodes, of which almost 10,000 are associated with a pat-
tern. From the 2614 different EC-numbers in Swiss-Prot
Release 57.6, 2589 (99%) are represented by at least one
pattern. Out of the remaining 25 EC numbers, 21 are
missing because they are only present in “putative”
sequences, the other four EC numbers could not be
represented in valid patterns. The smallest patterns
cover nine positions, while the largest one spans as
much as 5104 positions. The average pattern length is
224 positions.
We have quantified the number of enzymes for each

enzyme class, subclass, and sub-subclass; and the num-
ber of trees they are clustered. The ratio sequences/trees
reflects the average number of enzymes per tree and
indicates the “variability” within an EC class. A high

Table 1 Pattern verification: Example cases

No. Pattern ECs/ec(p) Target ECs/ec(q) Case

1. 1.2.3.4 1.2.3.4 TP

2. 1.2.3.4 1.2.3.5 FP

3. 1.2.3.4 1.2.3.- NA

4. 1.2.3.- 1.2.3.4 TP

5. 1.2.3.- 1.2.3.- TP

6. 1.2.3.4, 2.6.1.2 1.2.3.4, 2.6.1.- TP

7. 1.2.3.4, 2.6.1.2 1.2.3.5, 2.6.1.- FP

8. 1.2.3.4, 2.6.1.2 1.2.3.4, 1.2.3.5, 2.6.1.- TP

9. 1.-.-.- 1.2.3.4 TP

Table 1 shows nine examples explaining the assignment of the True Positive
(TP), False Positive (FP) and Undecided (NA) status to a pattern that is
matching an enzyme in the database. A detailed explanation is provided in
the main text.

Figure 2 Verification: True and False Positives at varying
pattern lengths. Figure 2 shows the sum of True Positive
annotations (TP) and False Positive annotations (FP) at pattern
lengths between 9 and 200. At small pattern lengths around ten,
the sum of FPs is often close to the number of TPs. This is rapidly
changing with increasing pattern length, most patterns of more
than 50 positions are specific.
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number of sequences in a few trees mean obviously low
variability, while the opposite is true if the number of
sequences and trees is almost equal. Table 2 shows the
ten enzyme sub-subclasses with the highest and the low-
est variability in this Swiss-Prot version, respectively. We
have investigated the sequence lengths in the enzyme
class with the highest variability, EC “3.1.21.4”. There
are 94 such sequences in our database, the shortest one
being 157 positions and the longest one being 998 posi-
tions long. The average length is 309.6 positions, with a
high standard deviation of 108.3 positions. This shows
the high variability.

Implementation and runtime, memory requirements
BrEPS was implemented in Python, with MySQL as the
database management system. The computation of the
BLAST (NCBI, 2.2.19+) and ClustalW (1.82) alignments,
as well as the verification step were parallelized to some
degree. With a current Swiss-Prot version as input data,
the complete BrEPS database needs about 10 GB of

storage and takes less than one week to compute (with
about 12 parallel processes on a 2007 compute cluster
with AMD Opteron CPUs). The peak amount of main
memory is needed in the clustering step, between four
and eight GB.

Discussion
The aim of the project was to develop a method to
extract function-specific sequence-patterns from enzyme
sequences that can be updated frequently in a fully
automatic manner. The method combines the use
of SwissProt-annotated sequences, the calculation of
sequence-relatedness by BLAST, the construction of
clusters by complete-linkage clustering and multiple
alignment by ClustalW.
We are aware that some of the components we used

could be modified. However, the use of an alternative to
BLAST would not have changed the result significantly,
as we are not looking for remote relationships. BLAST
is more than suitable for the levels of similarity we are
dealing with. The use of the clustering approach,
though, has a strong impact on the result. We have cho-
sen complete-linkage clustering, because it is very strict
and provides clean clusters. This is a required property
in our setup, because we do not use a dedicated domain
detection protocol in BrEPS. The use of single-linkage
clustering, or to less extent, UPGMA or average-linkage
clustering, would lead to clusters that could contain two
unrelated sequences A and B if they are connected by a
multidomain sequence A-B. The strictness of the Com-
plete Linkage clustering leads to clusters that remain
quite „clean” in terms of domain composition as long as
clusters are defined by low E-Values. Its only drawback
may be that - because of its strictness - CL may com-
pute more clusters than necessary and some sequences
can remain unclustered. The former just leads to a few
more patterns, and we take care of the latter by treating
these sequences as described in the Results Section. The
strictly defined clusters should be a good environment
for an established and widely used progressive multiple
alignment method like ClustalW. Of course, there may
be suboptimal cases where a computed pattern is
shorter than it could be. In theory, it is even possible
that a multiple alignment contains a conserved position
that is not biologically true, i.e. the aligned characters
are not homologous. This would lead to a pattern that
is not working as desired, maybe even missing its input
sequences. We do however take care of these risks by
filtering out short patterns, and by the verification step.
We also check that all patterns recognize their input
sequences. Since most of our patterns are specific, Clus-
talW is a good choice - and much faster than simulta-
neous approaches. As for the source database we are
using, the SwissProt part of the UniprotKB [20] is the

Table 2 Enzyme classes with extreme clustering
properties

EC No. Trees Sequences Seqs/Trees

3.1.21.4 73 94 1,29

3.1.6.1 5 11 2,20

1.2.7.7 6 15 2,50

3.2.1.37 6 15 2,50

5.4.99.5 7 18 2,57

1.1.99.- 5 13 2,60

2.1.1.113 8 21 2,63

3.2.1.73 5 14 2,80

3.2.1.55 9 26 2,89

1.6.99.- 5 15 3,00

2.4.1.198 8 24 3,00

3.4.16.4 6 18 3,00

4.2.1.75 5 15 3,00

4.2.2.10 4 12 3,00

EC No. Trees Sequences Seqs/Trees

2.8.1.8 1 389 389,00

2.1.2.3 1 392 392,00

1.1.1.267 1 393 393,00

4.1.1.37 1 426 426,00

6.1.1.10 1 436 436,00

2.2.1.7 1 440 440,00

2.6.1.9 1 446 446,00

2.5.1.7 1 458 458,00

2.1.2.11 1 468 468,00

4.2.1.19 1 472 472,00

4.2.1.9 1 496 496,00

Table 2 displays 20 enzyme classes with extreme clustering properties.
Sequences within the upper ten enzyme classes have low sequence similarity
and therefore cluster in multiple trees, whereas the sequences in the lower
ten enzyme classes are so similar that they cluster in only one tree.
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only high-quality annotated large-scale sequence data-
base worldwide, so there was no choice here.
To evaluate the quality of BrEPS, a comparison of pat-

tern-predicted enzyme functions with proven functions
is essential. In the following sections, we describe and
discuss our experiments, which involve a comparison
with another automatic method for the functional anno-
tation of enzymes.

The standards of truth
Evaluation procedures require a standard of truth (SOT)
to rate the prediction quality of the methods under eva-
luation. In metabolomics, a perfect standard of truth is
an experimentally validated set of EC numbers repre-
senting the biochemical “toolbox” of a given organism.
Even for Escherichia coli, such a SOT does not exist.
The PRIAM [13] authors used the Swiss-Prot annota-

tion as SOT to evaluate their approach. Because we
already used this annotation in creating the BrEPS pat-
terns, we chose another, independent source of data to
serve as SOT, one that did not involve sequence com-
parison in its making. The annotations in BRENDA [17]
are manually extracted from experimental, published
work; the AMENDA predictions are extracted from
PubMed abstracts by text mining procedures [17]. We
believe the BRENDA annotation to be correct in terms
of specificity, i.e. every EC number that is predicted to
occur in a given microorganism is really present. Unfor-
tunately, there are rather few experimental proven
enzyme functions known for many microorganisms,
often only about 200-300 EC numbers are available.
AMENDA usually contains about twice as many EC
numbers for a given organism (the BRENDA annota-
tions being a subset), but some of the additional predic-
tions may be wrong. For these reasons, BRENDA serves
as our “strict” standard of truth, while AMENDA serves
as our “loose” SOT. Both SOTs are however incomplete,
we are therefore unable to assert the number of false
positives with confidence and prefer to call this experi-
ment a “comparison of BrEPS and PRIAM” instead of
an “evaluation”.

BrEPS A and B
Similar to the concept of a strict and a loose SOT
described above, we define two sets of BrEPS patterns
as well. The smaller BrEPS set with higher quality is
called “BrEPS A” and is a subset of the more loosely
defined “BrEPS B”. The sets are constrained by different
specificity thresholds and by the EC content of each
pattern:
BrEPS A: This set contains patterns with a specificity

of 1.0 (100%), i.e. patterns that produced no false posi-
tive hits in their verification. If a member of BrEPS A
has more than one EC number, all EC numbers must be

in the same sub-subclass (e.g., 1.1.1.*). Single, unresolved
EC numbers ("1.1.1.-”) are not allowed.
BrEPS B: In addition to the BrEPS A patterns, this set

contains also patterns that carry EC numbers from mul-
tiple sub-subclasses. These patterns may be less specific,
requiring only a specificity of 0.75 or more.
BrEPS A contains 7051 patterns, BrEPS B contains

9727 patterns. Only 125 of the additional 2676 patterns
in BrEPS B have a lower specificity than 1.0, the other
ones have more than one EC sub-subclass.

Comparison to other sequence-based enzyme function
predictions
A comprehensive evaluation of several methods is some-
what out of scope in this work. We compare BrEPS to
PRIAM. BrEPS and PRIAM are automatic and unsuper-
vised methods specialized on enzymes. The ProSite pat-
terns, on the other hand, were not generated in an
automatic and unsupervised way. PRATT and CASTOR
are unsupervised methods for pattern extraction, they
do however rely on sets of related sequences. These
methods lack the similarity search/clustering part of
BrEPS and PRIAM and are therefore unable to process
the enzymes in the UniProt automatically.
We computed the strict and loose SOTs of five impor-

tant microorganisms: Corynebacterium glutamicum,
Escherichia coli, Pseudomonas aeruginosa PAO1, Sulfolo-
bus solfataricus, and Thermus thermophilus, see Table 3.
For each organism, we compare all its protein sequences
to the BrEPS patterns and the PRIAM profiles. The
PRIAM profiles we use are from the “gene-oriented
release” of PRIAM (June 2009). They are better suited
to annotate individual genes, instead of complete gen-
omes. The search is made with RPSBLAST [21], the
results are filtered by E-Value thresholds provided in
the PRIAM file “profile_infos.txt”. This file contains sev-
eral columns of data per PRIAM-profile. We used the
E-Values in the 4th column in our comparison, because
they provide the “best compromise between sensitivity
and specificity” [22].

Table 3 Microorganisms used in comparing BrEPS to
PRIAM

Species NCBI Accession SOT size

Strict Loose

Corynebacterium glutamicum NC_003450 97 273

Escherichia coli NC_000913 1034 2476

Pseudomonas aeruginosa PAO1 NC_002516 368 742

Sulfolobus solfataricus NC_002754 119 208

Thermus thermophilus NC_005838 142 284

Table 3 shows the five microorganisms (with their NCBI Accession IDs) that
were used to compare BrEPS and PRIAM. The size of the “Strict” and “Loose”
standards of truth (SOT) we used is displayed on the right.
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If either a BrEPS pattern or PRIAM profile matches a
gene of the five micro-organisms, we compare the EC
number(s) of the profile/pattern to the EC numbers in
the SOT. If one of the EC numbers in the SOT is
matched by one of the methods, we count a true posi-
tive hit (TP). Every EC number can only be identified
once, additional hits to the same EC number are
ignored. We also define a second case: If an EC number
from BrEPS or PRIAM differs from an EC number in
the SOT only at the fourth position, we count it as
“sub-subfamily hit”. Each sub-subfamily is only be
counted once. Aside from an interesting insight, this
also allows us to deal with unresolved EC numbers in
BrEPS patterns, e.g. “1.1.1.-”, where a decision would be
difficult otherwise. The results of the comparison are
shown in Table 4. They show that our approach is
essentially on par with PRIAM. Even though most of
the BrEPS A sensitivity values are considerably lower
and many of the BrEPS B values are slightly lower than
the PRIAM results, there are interesting exceptions: The
E. coli values of BrEPS are mostly higher than those of
PRIAM, and the BrEPS B results for S. solfataricus are
also higher in conjunction with the loose SOT. The pic-
ture gets more interesting when sub-subclass hits are
also allowed (Table 4 rightmost column): The strictly
defined BrEPS A patterns gain less additional hits in
contrast to PRIAM, the difference in sensitivity between
BrEPS A and PRIAM is even more pronounced in this
setting. This does however not hold for BrEPS B, its
performance is similar to PRIAM, sometimes reaching

even higher sensitivities. That can be explained with the
properties of the BrEPS B patterns. Since they can be
associated with multiple EC sub-subclasses, more sub-
subclass hits are likely.
Another interesting question is why BrEPS and

PRIAM sometimes fail to predict the presence of an
enzyme. We did a manual investigation to answer this
question: From the five test microorganisms, we ran-
domly picked five EC numbers that PRIAM found, but
not BrEPS, and investigated the reason. In analogy, we
also investigated five EC numbers where BrEPS scored a
True Positive hit, but not PRIAM.
Our manual investigation of five cases that BrEPS

revealed some of the reasons why PRIAM is slightly
more sensitive than BrEPS. The main reason is that
PRIAM may access more sequence data than BrEPS,
because we do not allow “probable” or “putative”
enzymes in creating the BrEPS patterns. Even though
the annotation of most “putative” Swiss-Prot sequences
will probably be correct, we do prefer to use only
sequences with maximal credibility. This results in
highly specific patterns that produce high-quality anno-
tations - if the patterns do indeed match the query. The
high specificity of our patterns reached at the expense
of flexibility is the principal trade-off of our approach:
On one hand, a single point mutation on a gene, at a
position covered by “the right” pattern, is enough to
make it impossible to find it. On the other hand, a few
changes may also effect the loss of its catalytic activity
[2], so specificity is a must in the reconstruction of
metabolic networks. We are able to compensate the lack
of flexibility to some degree, by computing an average
of two patterns per tree. A comprehensive compilation
of the BrEPS misses is also attached as additional file 1.
The five cases where PRIAM missed an enzyme also

lead to an interesting insight, even though we were not
able to analyze the PRIAM profiles (PSSMs) in detail,
because of the file format. In all five cases the reason
was the same: The suggested E-Value thresholds were
too strict. For example, EC number 4.2.1.36 was missing
in T. thermophilus. EC number 4.2.1.36 is represented
by one PRIAM profile, “PRI000625”. The suggested E-
Value threshold of this profile is 7·10-148, which
RPSblast missed by less than two orders of magnitude;
scoring an E-Value of 2·10-146. The difference between
the suggested threshold and the RPSblast score was less
severe in the other four cases we investigated. For
instance, PRIAM missed EC number 2.6.1.17 in C. glu-
tamicum. The required threshold of profile PRI001252
was 1·10-211, while RPSblast scored only 5·10-81.

Finally, we investigated whether both methods find the
same or different EC numbers. We have therefore ana-
lyzed the unique and common contributions of true
positive EC numbers that both methods provided, see

Table 4 Sensitivity of BrEPS and PRIAM

„Strict” SOT

% True Positives % TP incl. Sub-Subclass Hits

BrEPS A BrEPS B PRIAM BrEPS A BrEPS B PRIAM

45,4 52,6 55,7 76,3 90,7 92,8

61,7 69,8 64,5 67,3 79,3 67,9

45,9 53,0 54,1 64,1 74,5 73,6

36,1 41,2 42,0 58,0 68,9 68,1

43,7 50,0 52,8 66,9 79,6 80,3

„Loose” SOT

% True Positives % TP incl. Sub-Subclass Hits

BrEPS A BrEPS B PRIAM BrEPS A BrEPS B PRIAM

34,8 42,1 44,3 48,0 59,3 63,0

30,5 38,6 29,1 32,0 41,1 29,6

34,4 41,2 41,6 42,2 52,0 51,3

26,4 33,2 30,8 40,9 51,4 48,6

32,4 38,4 40,1 45,4 53,9 56,3

Table 4 shows the results of comparing BrEPS and PRIAM with two different
standards of truth (SOT). Since the complete enzyme content of the five
displayed microorganisms is not known, we only evaluate the sensitivity of
both methods, i.e. the percentage of true positives (TP). BrEPS A is a strictly
defined set of BrEPS patterns and a subset of BrEPS B, which is more loosely
defined. The results are discussed in the main text.
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Table 5. In summary, PRIAM has a slight advantage in
sensitivity. However, the results in Table 5 show that
roughly 10% of the EC numbers that BrEPS found were
uniquely found by BrEPS. It therefore makes sense to
use BrEPS in addition to other annotation approaches,
as our group does.

Conclusions
We have designed and implemented an automatic pro-
tocol “BrEPS” to aid in searching a given genome for
enzymes, or verifying the presence of predicted enzymes.
BrEPS basically computes sequence patterns of enzymes
from Swiss-Prot that have been clustered at different
levels of sequence similarity. In a final, iterative verifica-
tion step, we ensure that the patterns are specific and
cover at least a certain percentage of Swiss-Prot
enzymes.
The verification results in Figure 2 showed that the

quality of the BrEPS patterns is always high if they span
at least about 20 sequence positions. The occasional FP
outliers (e.g., around a pattern length of 50 positions in
Figure 2) could also indicate mis-annotated enzymes
instead of being real FPs.
A comparison with PRIAM, another method for the

functional annotation of enzymes, showed that BrEPS is
on average less sensitive than PRIAM. One of the main
reasons is that we discard the “putative” input sequences
that PRIAM is using. Nevertheless, the annotation of the
E. coli genome showed an example where BrEPS was
able to outperform PRIAM. Depending on the organism
and the pattern set we used, between 5% and 25% of the
joint set of EC numbers found by both methods were
unique to BrEPS. We therefore conclude that BrEPS

may be beneficial in combination with other approaches
for functional annotation. Its main advantages are that
the protocol runs automatic and unsupervised. High
pattern specificity as usual is connected to a smaller
sensitivity; in addition, our method relies to some
degree on alignment quality, which cannot always be
guaranteed.
Even though we use the really conservative Complete

Linkage clustering, a future improvement of BrEPS
could be to implement a domain detection protocol.

Availability and Requirements
BrEPS will finally be integrated into other projects of
our group and the patterns will be integrated into the
BRENDA website. We have set up a preliminary website
("Broli”, short for “BrEPS Online”) at http://breps.tu-bs.
de. It allows the user to submit either an EC number or
a protein sequence. If the input is an EC number, Broli
will retrieve all patterns associated with that EC number.
If the input is a protein sequence, Broli will search this
sequence with all BrEPS patterns and display the match-
ing patterns in a condensed way. The complete informa-
tion available for interesting patterns can be shown by
toggling the corresponding check boxes and clicking
“submit” again. The user can also choose to display all
patterns of a given tree by clicking on one of the links
in the “Tree” column.
The source code is available on Request (by Email to

DS) for non-commercial, academic use only. In addition
the calculated enzyme-specific patterns will be imple-
mented in and made available in the next update of the
BRENDA enzyme information system.

Additional material

Additional file 1: Manual analysis of five EC numbers that BrEPS
could not detect. The attached .pdf file shows a table that illustrates our
manual analysis of five EC numbers from five microorganisms that were
found by PRIAM with confidence, but not by BrEPS. It also contains some
notes on our analysis process.
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Table 5 Contribution of true positive EC numbers by
BrEPS and PRIAM

Species BrEPS A PRIAM Both BrEPS B PRIAM Both

C. glutamicum 5,3 24,6 70,2 8,5 13,6 78,0

E. coli 5,0 9,7 85,3 8,6 1,2 90,1

P. aeruginosa 9,5 23,6 66,8 12,3 14,5 73,1

S. solfataricus 7,4 20,4 72,2 12,3 15,8 71,9

T. thermophilus 6,3 25,0 68,8 9,6 14,5 75,9

% EC numbers contributed in „Loose” SOT

Species BrEPS A PRIAM Both BrEPS B PRIAM Both

C. glutamicum 5,5 25,8 68,8 12,9 17,3 69,8

E. coli 14,5 10,5 75,1 25,9 1,7 72,3

P. aeruginosa 10,4 26,1 63,5 15,8 16,6 67,6

S. solfataricus 9,9 22,5 67,6 22,0 15,9 62,2

T. thermophilus 9,5 27,8 62,7 13,6 17,4 68,9

Table 5 shows the percentage of unique and common EC numbers that BrEPS
and PRIAM contributed to the joint set of all true positive hits. BrEPS
contributed between 5% and 15% unique hits, while PRIAM contributed in
general between 10% and 25% unique hits; except for the E. coli rows in the
rightmost column of Table 2, where PRIAM reached less than 2%.
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