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Abstract: One way in which face recognition develops during infancy and childhood is with regard
to the visual information that contributes most to recognition judgments. Adult face recognition
depends on critical features spanning a hierarchy of complexity, including low-level, intermediate,
and high-level visual information. To date, the development of adult-like information biases for
face recognition has focused on low-level features, which are computationally well-defined but
low in complexity, and high-level features, which are high in complexity, but not defined precisely.
To complement this existing literature, we examined the development of children’s neural responses
to intermediate-level face features characterized using mutual information. Specifically, we examined
children’s and adults’ sensitivity to varying levels of category diagnosticity at the P100 and N170
components. We found that during middle childhood, sensitivity to mutual information shifts
from early components to later ones, which may indicate a critical restructuring of face recognition
mechanisms that takes place over several years. This approach provides a useful bridge between
the study of low- and high-level visual features for face recognition and suggests many intriguing
questions for further investigation.
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1. Introduction

An important way to understand how face recognition develops is to characterize the information
used by the developing visual system to categorize faces or non-faces. Faces are complex visual stimuli,
which means that there are a lot of visual features that one could use to detect or recognize a face, but
some of these features are more useful than others. Limiting observers’ access to specific information in
face images can have substantial effects on face recognition in many tasks, revealing what information
is critical to face detection or identification at different points in development. To date, there have
been many developmental studies (including both behavioral and neural responses) examining how
adults’ and children’s face recognition is affected by the presence of specific low-level features (spatial
frequency or orientation sub-bands), and the availability of higher-level visual information (configural
or holistic face appearance). Each approach has yielded useful insights regarding how mechanisms
for face recognition are tuned to diagnostic information at different stages of development. In the
current study, we argue that an important complement to these two avenues of research is to examine
how intermediate representations of facial appearance also change developmentally. Mid-level face
features occupy a useful middle ground between low- and high-level descriptors of face structure and
allow for a balance between feature complexity and our ability to objectively quantify the information
carried by features under consideration. We elaborate on these points below by briefly describing
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several main results concerning how sensitivity to low-level and high-level features for face recognition
develops during childhood, then describing our approach to studying mid-level representations of
facial structure using event-related potentials (ERPs).

With regard to low-level visual information, adults [1–4] and children [5,6] tend to perform
better across a range of face recognition tasks when intermediate spatial frequency information is
available. Depending on the task, children either exhibit adult-like sensitivity to spatial frequency
fairly early in childhood [7] or gradually develop the same profile during middle childhood [6].
The orientation content of face images also matters a great deal: In many tasks, horizontally-oriented
features support better performance in adults than vertically-oriented features [8,9], though there are
cases in which vertical orientation energy is more useful [10]. Children also exhibit a similar reliance
on horizontally-oriented features for various face recognition tasks [11], and this bias also appears to
emerge gradually over development [12,13]; see de Heering et al. [14] for results demonstrating that
infants exhibit sensitivity to horizontal orientation information]. In both cases, we see clear evidence
that specific visual features known to be computed at relatively early stages of the visual processing
vary in their utility for face recognition tasks, and adult-like sensitivity to this variation develops
during childhood.

Besides these low-level features, there is also substantial evidence that higher-level visual features
vary in their efficacy for face recognition tasks and that children develop sensitivity to this variation,
too. For example, converging evidence from multiple tasks suggests that adult and child observers tend
to use the eye region for face recognition tasks more than the mouth or nose [15–17]. This also varies
somewhat across tasks, but the larger point is that this is another example of the visual system relying
more heavily on one class of visual features than another. In this case, the specific visual information
that is being used is harder to describe precisely, but nonetheless, these studies demonstrate that
among more complex visual features, there are still some features that are better than others for face
processing. At perhaps the highest level of complexity, it is well-established that face recognition is to
some ‘holistic,’ in that it relies in some crucial way on the entire face pattern rather than parts of the
face [18]. This is frequently demonstrated using testing paradigms including the composite face effect
(or CFE, [19]), face inversion [20,21], or the part-whole effect [22,23], all of which have been shown to
have a developmental trajectory that continues to unfold during childhood to varying degrees [24–29].
Again, the developing visual system acquires adult-like sensitivity to diagnostic face information
during childhood.

Limiting ourselves to either a low-level vocabulary of visual features (spatial frequencies,
orientation passbands) or a high-level vocabulary (holistic face appearance) comes with an inherent
trade-off, however: As the complexity of our feature vocabulary increases, the precision with which
we can speak about the visual information being used decreases. The nature of this trade-off limits our
ability to develop a comprehensive picture of how face recognition develops in terms of information
use during childhood. Low-level features are easy to specify computationally, but we are confident the
visual system ultimately does more to process faces than just measure these basic features of appearance.
We still do not really know how low-level features are combined into something more complex in
service of recognition tasks. Without that, we are missing a crucial aspect of what is changing as face
recognition develops. Conversely, high-level features may be more relevant to these later stages of face
processing, but there remains no widely accepted model of what holistic or configural face processing
is in terms of specific computations. Without that, we are missing a different, crucial aspect of what is
changing as face recognition develops. We suggest that an important complement to both of these lines
of research is to examine intermediate-complexity features for face categorization [30]. Ideally, we
would like to identify an approach that allows us to increase the complexity of the feature vocabulary
under consideration while retaining a computational description of how these features differ from one
another. If possible, examining such mid-level representations for face and non-face categorization
developmentally would be an important way to bridge the gap between low-level and high-level
characterizations of the development of face recognition.
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In the current study, we examined children’s developing sensitivity to mid-level features for
face recognition by using mutual information (or MI) to quantify the utility of fragments of face and
non-face images for categorization. This approach was first introduced by Ullman, Vidal-Naquet,
& Sali [31] to identify visual features of intermediate complexity that could be used for basic-level
categorization. Briefly, mutual information is a quantity that reflects the diagnosticity of a particular
image fragment for an object category: How likely are we to find this fragment in images that depict
the target category, and how likely are we to find the same fragment in images that do not? For a face
fragment to have high mutual information, it must be the case that we are quite likely to find such
fragments in images of faces and unlikely to find it in non-face images. Face fragments with high MI
tend to be easier to categorize as faces for both adult [32,33] and child observers [34], which suggests
that mutual information is a perceptually meaningful quantity. Further, face fragments with high MI
also tend to be neither very large, nor very small, nor do they tend to capture easily labeled portions of
a face image. This suggests that MI may be a good tool for examining the nature of intermediate-level
representations of face appearance; Fragments with high MI are more complex than low-level features,
but not as complex as ‘holistic’ or ‘configural’ representations of the face.

Here, we used event-related potentials (ERPs) to examine children’s neural sensitivity to image
fragments of varying MI drawn from a face and a non-face category (cars). Specifically, we examined
the response properties of the P100 and the N170, both of which are well-established face-sensitive ERP
components [35,36] that are measurable in adult [37,38] and child populations [39]. By “face-sensitive,”
we mean that both of these components have response properties that suggest that they reflect
some aspect of face processing in particular rather than more general object recognition mechanisms.
For our purposes, it is particularly important that both of these components have been found to reflect
sensitivity to low-level and high-level aspects of facial appearance in a manner that is consistent with
the behavioral studies described above. Both children’s and adult’s N170 components are sensitive to
the orientation energy [40,41] and spatial frequency content [42] of face images, for example, though
children’s sensitivity is not adult-like until late in middle childhood or adolescence. In terms of
high-level visual information, adults’ N170 response to schematic “smiley” faces [43], the composite
face illusion [44], and other manipulations of holistic face appearance [45,46] suggests that these
components also reflect tuning to face features with higher complexity (for a review and discussion,
see Reference [47]). The N170, which is known to have a larger response to faces than other object
categories, also varies with stimulus properties like orientation, spatial frequency content, and holistic
structure, in a manner that appears to reflect the behavioral signatures of face-specific processing.
Likewise, though the P100 is known to be sensitive to low-level stimulus properties including contrast
and luminance, the P100 also exhibits an inversion effect for face stimuli, suggesting that it too reflects
the activity of mechanisms for face recognition. In both cases, because these components tend to
vary their response properties as a function of how face-like a stimulus is, we anticipate that varying
the informativeness of a face fragment will also vary the “face-ness” of an image and therefore the
responses of the P100 and N170. Further, with regard to development, children’s neural responses to
variations of holistic face appearance are slow to reach adult-like levels [48], suggesting that during
childhood, these mechanisms are perhaps not as selective for faces or as sensitive to specific visual
features that define face images as a class. Because children’s neural sensitivity to both low-level and
high-level information for face recognition develops in a manner that is measurable with ERP, we may
also ask about the neural response to intermediate-level features. Adults’ ERP responses are sensitive
to the informativeness of face fragments as operationalized via MI: Parametrically varying fragment
informativeness results in a gradient-like amplitude change in a negative-going component peaking
around 270 ms [32]. That is, mutual information appears to modulate an N270 component in adult
participants, as observed by Harel et al. in previous work [32]. More generally, mid-level features
are sufficient to drive responses in object-selective parts of the ventral visual stream [49–51]. To our
knowledge, however, little work has been done to measure how children’s neural responses may
develop to reflect sensitivity to varying levels of diagnosticity in intermediate-level face or non-face
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object fragments. We ask, therefore, whether children’s P100 or N170 components reflect sensitivity to
face MI during childhood, and also whether they also exhibit an N270 component in response to face
fragments that similarly reflects sensitivity to varying levels of fragment informativeness.

Our primary hypotheses were that (1) Children may be less sensitive to varying levels of MI than
adults, reflecting the ongoing refinement of feature vocabularies for categorization. (2) The onset of
adult-like levels of MI sensitivity for faces and objects may differ, reflecting different developmental time
courses for the acquisition of robust mechanisms for face and non-face categorization. We investigated
these hypotheses by measuring ERP responses in school-age children (6–10 years) and adults while
they completed a 2AFC categorization task using face and car fragments of varying levels of MI.
In particular, we examined how the amplitudes of the P100 and N170 were affected by MI as a function
of category and participant age.

2. Methods

2.1. Participants

We recruited a total of 48 participants for this experiment. Specifically, we recruited 16 participants
(12 female, 4 male) between the ages of 5–7 years old (M = 6;3, S.D. = 0.77 years), 16 participants
(10 female, 6 male) between the ages of 8–10 years old (M = 8;7 years, S.D. = 0.80 years) and
16 adult participants (12 females, 4 males) between the ages of 18–23 years old (M = 19;3 years,
S.D. = 1.3 years). All participants self-reported normal or corrected-to-normal vision and no history of
visual or neurological disorders. Further, all participants were assessed to be right-handed according
to the Edinburgh Handedness Inventory [52].

Adult participants were recruited from the NDSU Psychology Undergraduate Study Pool and
received course credit for their participation. Child participants were recruited from the greater
Fargo-Moorhead area and received a small monetary amount and a book of their choosing for
their participation. We obtained written informed consent from all adult participants and from
the parent/guardian of each child participant. Children over the age of 7 years old also provided
independent written assent to participate. All procedures for recruitment and testing were approved
by the NDSU IRB, in accordance with the principles outlined in the Declaration of Helsinki.

2.2. Stimuli

Our stimulus set was comprised of grayscale images depicting portions (“fragments”) of faces
(96 images) or cars (96 images). Within each object category, these fragments varied in terms of the
mutual information that they provided about object category based on their appearance. This term
refers to a quantity that describes how diagnostic a particular fragment is of the target object category.
For example, a fragment with high mutual information (or MI) would be very likely to appear in the
target category (e.g., faces) but unlikely to appear in a non-target category (e.g., cars). Details regarding
how MI is calculated for individual face fragments given a large set of images from multiple categories
can be found in Ullman, Vidal-Naquet & Sali [31] and Harel et al. [32], but we provide a brief overview
of how MI is defined for an individual fragment given a set of images in which the target category
either does or does not appear in each image. In both References [31] and [32], the mutual information
equation is applied to quantify the information that an individual fragment provides about a particular
object class:

I(C, F) = H(C) −H(C
∣∣∣F) (1)

Here, I(C,F) is our measure of mutual information, and H refers to entropy:

H(x) = −
x∑

i=1

p(xi) log(p(xi)) (2)
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Entropy, as defined above, quantifies the extent to which class uncertainty is reduced by the
observation of a particular fragment. In the case of a candidate grayscale and a set of images, we
estimate the relevant quantities by attempting to detect the fragment in images that do or do not
contain an instance of the object class. Specifically, we use cross-correlation to determine whether or
not each image in a training set contains instances of the fragment: if the cross-correlation exceeds
a threshold value in a particular image, then we consider that a successful detection. Applying this
procedure across all of the images in the training set makes it possible for us to calculate the frequency
with which a fragment occurred in images containing the target category and images that lack the
target category. These frequencies are then used to compute mutual information as defined above.

For the purposes of the present study, the key feature of our stimulus set is that this property varies
across images in a quantifiable way. Some of our fragments are highly diagnostic of their category
(face or car), while others are less so. We divided face and car fragments into three non-overlapping
categories based on MI values to obtain 32 “low,” medium,” and “high” images in each category
(Figure 1). Image fragments within these categories varied in size and position with regard to the
larger image from which they were taken. We note that this partitioning of the stimulus set represents a
subset of the stimuli used in Reference [32], which were binned into five MI levels according to ranked
MI values. We included image fragments from their lowest MI category, their highest MI category, and
an intermediate category. As such, we attempted to present participants with fragments that varied
substantially in terms of their informativeness.
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2.3. Procedure

We asked participants to complete a 2AFC face/car categorization task using the image fragments
described above while we recorded continuous EEG from scalp electrodes. We measured EEG from all
participants using 64-channel Hydrocel Geodesic Sensor Nets by EGI, which were connected to an
EGI 400 NetAmps amplifier. Prior to the testing session, we measured the head circumference of each
participant to determine an appropriately sized sensor net and marked the target position of the vertex
electrode on the scalp with a red grease pencil. The sensor net was then soaked in a solution of KCl for
approximately 5 min, after which the net was applied to the participant’s scalp. Next, we re-seated
and/or applied additional KCl solution to individual electrodes to establish stable impedances below
25 kΩ. During EEG recording, continuous EEG was referenced to the vertex electrode with a sampling
rate of 250 Hz and filtered online with a 0.1 Hz high-pass filter.

Participants completed the categorization task seated in front of a 1024 × 768 LCD monitor
that was installed in an electrically-shielded and sound-attenuated room. Participants were seated
approximately 40 cm from the display, and at this distance individual stimuli subtended between 4–10
degrees of visual angle depending on the size of individual fragments. During the task, participants
were presented with individual fragments from each target category in a pseudorandomized order.
Each image was presented for 500 ms against a white background, after which participants had
unlimited time to label the image as either a “face” or a “car” using their right or left thumbs to push
the corresponding buttons on a custom button box. Half of our participants in each age group held the
button box in a “flipped” orientation so that the assignment of category label to hand was balanced
across participants. Following their response, we included an intertrial interval that varied between
500 ms–1000 ms from trial to trial subject to random draws from a uniform distribution bounded by
these values. Each stimulus was presented one time during the testing session for a total of 192 trials
in the entire task. Participants tended to complete the testing session in about 15 min. All stimulus
presentation and response collection routines were carried out using custom routines written using
EPrime v. 2.0 (PST, Pittsburgh, PA, USA). All EEG recording and event marking routines were carried
out using NetStation v. 5.0 (EGI, Eugene, OR, USA).

3. Results

3.1. Behavioral Results

For each participant, we calculated the proportion of correct responses to face and car fragments
at each MI level (see Figure 2 below). The behavioral data files from two participants (one 5–7 year
old and one 8–10 year old) were corrupted and were thus excluded from this analysis. We analyzed
these data using a 2 × 3 × 3 mixed-design ANOVA with category (face vs. car) and MI level (low,
medium, and high) as within-subject factors and age group (5–7 year-olds, 8–10 year-olds, and adults)
as a between-subjects factor. This analysis revealed a main effect of MI level (F(2,88) = 42.08, p < 0.001,
partial η2 = 0.49) and a main effect of age group (F(2,44) = 6.53, p = 0.003, partial η2 = 0.23). The main
effect of MI level was the result of significant differences between performance with high MI fragments
relative to both low (t = 8.74, p < 0.001) and medium MI fragments (t = 10.52, p < 0.001). The main
effect of group was the result of significant differences between adults’ performance and both 5–7
year-olds (t = 3.2, p = 0.008) and 8–10 year-olds (t = 2.99, p = 0.014). No other main effects or interactions
reached significance.
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3.2. EEG Results

We examined both the P100 ERP component and the N170 component subject to variation in
the image category (face vs. car), MI level (low, medium, or high) and age group (5–7 year-olds,
8–10 year-olds, adults). In each case, we characterized components in terms of their mean amplitude
during time windows determined independently for each participant group. We chose not to pursue
an analysis of peak latency for either component for two main reasons: (1) Due to the difficulty in
defining meaningful peak latency values for our child participants. While adult participants tended to
have well-defined unimodal P100 and N170 components, several participants in both child age groups
exhibited multimodal or broad P100 and N170 morphologies. In these cases, peak latency is extremely
difficult to meaningfully define, because the data contain multiple maxima/minima within the time
window chosen for component analysis. (2) Prior work by Harel et al. [32] using intermediate-level
fragments to examine ERPs also only reported results regarding component amplitude. As such,
we chose to focus on the mean amplitude because it is an easy-to-measure and robust means of
characterizing ERP components [53]. While this limits the scope of our analysis somewhat, we think it
also allows us to focus our discussion on a key set of results. Because several of the child participants
exhibited multimodal responses, we focus our analysis on mean amplitude measures that do not
rely on identifying a single peak. We continue by describing our processing pipeline, followed by a
description of our results for each component.

3.3. EEG Pre-Processing

All EEG pre-processing steps were carried out using the NetStation v5.0’s NetStation Tools
interface. For each participant, we began by applying a 30 Hz low-pass filter to the continuous EEG
data recorded at each electrode. We continued by segmenting each participant’s data by condition using
stimulus onset triggers inserted into the continuous EEG data by EPrime. We bounded these segments
with a pre-stimulus onset period of 100 ms and a post-stimulus period of 1000 ms, yielding segments
that were 1100 ms in total length. Following segmentation, we applied a baseline correction to each
segment by subtracting the average value measured during the 100 ms pre-stimulus period at each
sensor from the remaining 1000 ms of the segmented trial. Following this baseline correction routine,
we applied NetStation’s artifact detection algorithms to identify and remove trials contaminated by eye
blinks and saccades. Automatic artifact detection was also confirmed by independent examination of
each subject’s data by two members of the research team. Finally, we applied NetStation’s bad channel
replacement algorithm, which replaces channels that exceed a fixed proportion of bad trials with data
interpolated from nearby sensors using spherical interpolation. We subsequently calculated an average
ERP for each participant by averaging segments together within the subject category at each sensor.
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3.4. ERP Component Analysis

We identified our target ERP components by examining the grand average ERP calculated across
all participants in each age group. Within each group, we calculated the average ERP across all
conditions and examined both the topography and timecourse of deflections corresponding to the P100
and N170 to determine sensors of interest and time windows for each component. In all groups, we
chose to characterize both the P100 and N170 using sensors 29, 30, and 32 in the left hemisphere and
sensors 43, 44, and 47 in the right hemisphere (these correspond to electrodes T5 and T6 in the standard
10–20 system, along with two adjacent electrodes in each hemisphere). With regard to time windows
for analyzing our target components, we chose to examine the P100 using the following time windows
for each age group: 5–7 year-olds: 96–272 ms; 8–10 year-olds: 96–272 ms; Adults: 96–156 ms. We chose
to examine the N170 using the following time windows: 5–7 year-olds: 172–256 ms; 8–10 year-olds:
168–244 ms; Adults: 156–204 ms. We note that the choice of defining different component time windows
for each age group was motivated by the observation that children’s ERP components are frequently
slower in latency than adults and also often broader [39]. Faced with this variability as a function of
age, defining a standard time interval for each component is unlikely to capture the full morphology of
a given component across different participants. Thus, we have opted to use age-group specific time
intervals to ensure that we adequately describe each component across conditions. In Figure 3a,b, we
display grand average ERPs for each condition measured over left and right hemisphere electrodes.
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data are scaled differently along the y-axis to make it easier to see the different condition waveforms.
(b) The grand average ERPs (Car fragments) across participants measured over left hemisphere and
right hemisphere electrodes. y.o.: year-old.

Within each of these time windows, we characterized each component using the mean amplitude
measured within that interval, averaged across the three sensor groupings in the left and right
hemisphere independently. We examined the effects of image category, mutual information, and
age group by analyzing the values we obtained for each descriptor via a 2 × 2 × 3 × 3 mixed-design
ANOVA with hemisphere, target category and MI level as within-subject factors and age group as a
between-subjects variable. Our key prediction was that sensitivity to face MI level (but not car MI level)
would increase with age, leading to a 3-way interaction between target category, MI level, and age
group. In Figure 4, we display the average amplitudes measured for both components as a function of
these factors.
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Figure 4. The average mean amplitude across participants for the P100 (left) and N170 components
(right) in response to both faces (top row) and non-faces (bottom row). In each case, we have extracted
the mean amplitude for each participant’s target component across condition and plotted the aggregate
data as a function of the target category and MI level. Error bars indicate 95% confidence intervals.

3.5. P100 Amplitude

Our analysis of the P100 mean amplitude (see Table 1 for the full ANOVA table) revealed a
significant main effect of MI level (p = 0.017) and a marginal effect of age group (p = 0.079). The former
was the result of larger P100 amplitudes to high MI fragments compared to low MI fragments (t = 2.89,
Cohen’s d = 0.41, p = 0.013), while the latter was the result of a trend for larger amplitudes for younger
participants, which is consistent with known differences between child and adult EEG signal-to-noise.
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Table 1. The full ANOVA table for the analysis of within-subject effects on the mean P100 amplitude.

Within-Subjects Effects

Sum of
Squares df Mean Square F p

Category 1.529 1 1.529 0.516 0.476
Category × Age Group 3.440 2 1.720 0.580 0.564

Residual 136.331 46 2.964
MI level 29.562 a 2 a 14.781 a 4.244 a 0.017 a

MI level × Age Group 3.506 a 4 a 0.877 a 0.252 a 0.908 a

Residual 320.421 92 3.483
Hemisphere 116.881 1 116.881 2.335 0.133

Hemisphere × Age Group 6.672 2 3.336 0.067 0.936
Residual 2302.144 46 50.047

Category ×MI level 23.957 2 11.978 3.655 0.030
Category ×MI level × Age Group 37.705 4 9.426 2.876 0.027

Residual 301.536 92 3.278
Category × Hemisphere 3.112 1 3.112 2.097 0.154

Category × Hemisphere × Age Group 5.540 2 2.770 1.866 0.166
Residual 68.268 46 1.484

MI level × Hemisphere 20.783 2 10.392 5.672 0.005
MI level × Hemisphere × Age Group 14.502 4 3.626 1.979 0.104

Residual 168.548 92 1.832
Category ×MI level × Hemisphere 1.899 2 0.949 0.322 0.726

Category ×MI level × Hemisphere × Age
Group 23.223 4 5.806 1.968 0.106

Residual 271.355 92 2.950

Type III Sum of Squares; a Mauchly’s test of sphericity indicates that the assumption of sphericity is violated
(p < 0.05).

These main effects were qualified by a number of significant interactions, including two-way
interactions between MI level and category (p = 0.030) and MI level and hemisphere (p = 0.005).
The former interaction was qualified by a three-way interaction between object category, MI level, and
age group (p = 0.027). In the interests of streamlining our discussion with regard to the outcomes that
are critically important to our developmental hypotheses, we will focus here on further understanding
this three-way interaction.

To examine how varying MI levels differentially impacted P100 amplitudes as a function of age
group and target category, we carried out tests of simple main effects for MI within each combination
of age group and category, collapsing across the hemisphere. These tests revealed that while face MI
level led to significantly different mean amplitudes for the P100 in our youngest age group, (F(2,30)
= 5.87, p = 0.007), neither older children (F(2,30) = 1.89, p = 0.17) nor adults (F(2,32) = 0.69, p = 0.57)
exhibited such an effect. Furthermore, the MI level of car fragments did not lead to significantly
different amplitudes in any of the three age groups. Thus, we suggest that the interaction we observed
between category, MI level, and age category was largely driven by the sensitivity of the P100 to face
MI level in young participants.

3.6. N170 Amplitude

Our analysis of the N170 amplitude (see Table 2 for full ANOVA results) revealed a significant
main effect of the target category (F(1,46) = 13.46, p < 0.001), but no other significant main effects.
We also observed a significant 3-way interaction between target category, hemisphere, and age group
(F(2,46) = 3.54, p = 0.037) and a marginally significant 3-way interaction between category, MI level, and
age group (F(4,92) = 2.36, p = 0.059). Though this latter effect did not reach the standard threshold for
significance in an NHST framework, but because it is directly relevant to our predictions we continue
by further exploring this interaction using simple main effects analysis.
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Table 2. The full ANOVA table for the analysis of within-subject effects on the mean N170 amplitude.

Within-Subjects Effects

Sum of
Squares df Mean Square F p

Category 73.860 1 73.860 13.464 <0.001
Category × Age Group 33.300 2 16.650 3.035 0.058

Residual 252.352 46 5.486
MI level 8.095 a 2 a 4.048 a 0.803 a 0.451 a

MI level × Age Group 11.274 a 4 a 2.819 a 0.559 a 0.693 a

Residual 463.544 92 5.039
Hemisphere 5.603 1 5.603 0.111 0.740

Hemisphere × Age Group 185.081 2 92.541 1.835 0.171
Residual 2319.340 46 50.420

Category ×MI level 12.970 2 6.485 1.663 0.195
Category ×MI level × Age Group 36.809 4 9.202 2.359 0.059

Residual 358.851 92 3.901
Category × Hemisphere 0.009 1 0.009 0.005 0.944

Category × Hemisphere × Age Group 13.080 2 6.540 3.539 0.037
Residual 85.019 46 1.848

MI level × Hemisphere 8.952 2 4.476 1.382 0.256
MI level × Hemisphere × Age Group 14.313 4 3.578 1.105 0.359

Residual 297.972 92 3.239
Category ×MI level × Hemisphere 3.836 a 2 a 1.918 a 0.870 a 0.422 a

Category ×MI level × Hemisphere × Age
Group 8.691 a 4 a 2.173 a 0.986 a 0.419 a

Residual 202.762 92 2.204

Type III Sum of Squares; a Mauchly’s test of sphericity indicates that the assumption of sphericity is violated
(p < 0.05).

As we did with the P100 data, we further examined how varying MI levels differentially impacted
N170 amplitudes as a function of age group and target category via tests of simple main effects for
MI within each combination of age group and category, collapsing across the hemisphere. These
tests revealed that face MI level led to significantly different mean amplitudes for the N170 in adult
participants, (F(2,32) = 4.2, p = 0.020), but neither younger children (F(2,30) = 1.86, p = 0.17) nor older
children (F(2,30) = 0.72, p = 0.50) exhibited such an effect. Additionally, as before, the MI level of car
fragments did not lead to significantly different amplitudes in any of the three age groups. In this
case, we, therefore, suggest that the marginally significant interaction we observed between category,
MI level, and age category may reflect face-specific sensitivity to MI at the adult N170 that is not
observable at younger ages.

4. Discussion

There are several interesting features of our results that support our initial hypothesis that there
are ongoing changes in how mid-level visual features are used for face recognition during middle
childhood. Our key hypothesis regarding children’s sensitivity to MI relative to adults in face- and
non-face images was that there may be category-specific developments that affect the ERP response
to varying MI levels. To be more precise, we hypothesized while adults would show gradient-like
sensitivity to face fragment informativeness (MI level) at the amplitudes of the P100 and N170
components, children may not yet have developed the same sensitivity to fragment informativeness,
and thus show a reduced effect of MI level. Besides this overarching developmental hypothesis, we
also expected to largely replicate the main results of Harel et al. [32], in which ERPs were also recorded
in response to face and non-face fragments that varied in MI.

Our results from adult participants largely replicated the effects reported by Harel et al. [32].
In both studies, varying levels of MI had little to no impact on the amplitude of the P100. The lack of
measurable effects of MI on the P100 is an important indicator that low-level differences between the
various groups of fragments are unlikely to be the underlying cause of effects observed later in the
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waveform. The effects observed at later components (the N170 in the current study and a component
that Harel et al. refer to as the N270) are, therefore, more likely to reflect higher-level, face-selective
processes. In both cases, increasing levels of MI led to higher amplitudes (more negative) ERP responses
at downstream components, which is consistent with multiple prior studies demonstrating that less
face-like images tend to elicit lower amplitude N170 responses [39,45]. Additionally, while our focus
in this study was on the P100 and N170 components, we do in fact observe a negative deflection
that appears to correspond well to the N270 component that Harel et. al. reported. Moreover, this
component also appears to exhibit a gradient-like response to varying MI levels that is consistent with
their results: Increasing fragment informativeness leads to larger amplitudes. Unlike their results,
however, we did not observe effects of fragment informativeness on non-face fragments (cars) either at
our target components or the N270 component. Our data from adult participants thus confirms that
the visual system is sensitive to MI in face fragments and not solely due to uncontrolled low-level
variation in properties like brightness, contrast, or size. This is further supported by the behavioral
data obtained from adults, which also suggests that varying the MI level in partial face fragments
affects the extent to which such partial images are categorized as faces.

Considering our data from children in this context leads to several interesting observations.
One particularly conspicuous feature of our results is the apparent absence of an N270 component in
both younger and older children. While our adults exhibit a clear positive and negative deflection
following the N170, neither group of children has any such pattern. Harel et al. proposed that their
N270 component may reflect some specific response to the presentation of image fragments, and if this
is the case, our results suggest that children’s response to such fragments must change dramatically
between middle childhood and adulthood. Even if the N270 is not really a fragment-specific response,
ERP components following the N170 have been linked to categorization processes (e.g., race and
age [54–56] and the processing of face familiarity [57] or identity [58]). Another interpretation of our
results then is that these categorization processes may be substantially disrupted when relatively
impoverished stimuli like these are used. In either case, the clear sensitivity to MI in adults’ downstream
response to face fragments is in stark contrast to the absence of such a response in children. Further
exploration of why these downstream components are missing in our child participants is warranted
and may lead to interesting results regarding how different levels of categorization are affected by
varying the visual information available in face stimuli.

Another intriguing difference between child and adult ERPs in our study is the nature of the
interaction between stimulus category, MI level, and age group. Briefly, while adults’ sensitivity to face
MI levels is reflected in their N170 amplitudes, young children’s sensitivity to face MI appears to be
reflected in their P100 amplitudes. Older children appear to be in a sort of transition phase, exhibiting
no obvious sensitivity to MI at either component. This pattern of results indicates that there may be a
substantial shift in how faces are processed during childhood such that information about ‘face-ness’ is
manifest at different stages of visual processing. A similar pattern of results was reported by Peters
et al. [42] who observed that the face inversion effect (FIE) was evident at different components as
a function of development in a task where they varied the spatial frequency content of face images
presented to adult, adolescent, and child participants. While young children exhibited an FIE at the
P100 (similar to the sensitivity to MI we observed at the P100), adults exhibited an FIE at the N170
(similar to our results), while adolescents exhibited effects at both components. Their conclusion was
that the effects observed at the P100 in young children may have reflected a more superficial, less
face-specific response to upright and inverted faces. Another possibility, articulated by Taylor et al. [48],
is that the P100 reflects basic categorization of a face stimulus as an upright face, while the N170 reflects
more complex processes related to holistic or configural processing. In this context, our results could
be interpreted to mean that young children do not automatically process low-MI face fragments as
faces (leading to an effect of MI at the P100) and also may not process any face fragment holistically or
configurally. By contrast, adults may easily categorize all face fragments as being face-like, but vary in
their application of face-specific processing to low vs. high-MI fragments. In either case, we suggest
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that middle childhood may be characterized by an important developmental shift in which neural
processes are tuned to the diagnosticity of both low-level and mid-level face features. Our behavioral
results from both groups of children provide an important context for this interpretation, however.
In particular, we note that both groups of children had lower accuracies across all face MI levels than
adults, which suggests that, in general, these partial fragments of images are less likely to be perceived
as faces. This could reflect the changes in neural tuning that we have discussed above, but could
also indicate that there are broader visual processes related to face categorization that are also not yet
mature or not sensitive to the features that tend to be contained in face fragments. At present, we
would suggest that the main contribution of the current study is that we see complementary behavioral
and neural evidence that partial face fragments with varying levels of MI elicit different responses from
observers across middle childhood. Whether or not we should consider the change in ERP responses
as the primary developmental change in face categorization or not is not clear from our data. Overall,
we would instead emphasize that children’s continuing refinement of face representations to support
face categorization is reflected in both their behavioral responses and different portions of their ERP
responses throughout the middle childhood years.

More broadly, our results are also consistent with a number of previous results demonstrating that
in terms of information use, the development of face recognition is relatively slow. While some aspects
of face recognition may be mature fairly early in childhood (e.g., the composite face effect, e.g., [29]), in
multiple studies measuring how children use diagnostic vs. non-diagnostic information for various
tasks, children’s information use is not adult-like until after age 10 or beyond. For example, both
behavioral [11–13] and neural results [40] describing sensitivity to horizontal orientation energy in face
images suggest that while children may show some early tendencies towards an adult-like horizontal
bias, there is an ongoing refinement of this bias throughout middle childhood. Likewise, children’s
use of low spatial frequencies vs. high spatial frequencies in multiple behavioral tasks [6] and ERP
studies [42] also changes gradually during this developmental period. We suggest that these results,
along with our own, point towards a developing visual system that continues to modify its vocabulary
of visual features for face recognition between the ages of 5–10 years and possibly beyond. In contrast
with theories of the development of face recognition that emphasize ways in which children’s face
recognition is adult-like in some ways [59], our results are consistent with the view that there is an
ongoing refinement of the mechanisms used to recognize and detect faces. Critically, this refinement
occurs at multiple levels of complexity, affecting how visual features at many stages of processing are
used to detect and recognize face images.

Our results suggest several avenues for further investigation. In particular, it would be interesting
to examine the P100-N170 shift in sensitivity to MI levels using tools that support better localization of
the underlying neural signals. Multiple neural loci (including the occipital face area [60], the fusiform
face area [61], and the superior temporal sulcus [62]) exhibit varying sensitivities to different aspects of
face appearance [63]. For example, the occipital face area appears to be sensitive to the presence of
face parts, but not their spatial configuration [64], while later stages of face processing are sensitive to
the arrangement of face parts into a typical pattern. The developmental shift that we have observed
here with regard to MI sensitivity may thus also be related to developmental trajectories specific to
those regions, which is difficult to observe given the poor spatial resolution of EEG and ERP. The use
of either fNIRS or fMRI to examine MI sensitivity within specific face-sensitive areas would thus be
an important complement to the present work. Besides characterizing how MI sensitivity may be
linked to specific neural loci, it would also be useful to characterize how MI sensitivity is linked to
observers’ sensitivity to other diagnostic visual features for face recognition. At the level of individual
participants, for example, do changes in sensitivity to spatial frequency or orientation precede changes
in sensitivity to mid-level or high-level features? Alternatively, is there a gradient of development
in the opposite direction, or no such consistent relationship at all? Either way, examining possible
dependencies between features of different levels of complexity would be an important way to establish
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how children ultimately acquire an adult-like representation of facial appearance that allows them to
efficiently and accurately detect and recognize faces.

5. Conclusions

Our results revealed that the developing visual system’s sensitivity to the mutual information
available in fragments of face images changes during childhood. Gradient-like sensitivity to face
fragment informativeness shifts from early to later components between early childhood and adulthood,
potentially reflecting an important cortical reorganization of face-processing mechanisms. Considering
how faces are recognized using mid-level features is an important complement to prior work examining
sensitivity to visual features that are either more or less complex. Our results contribute to an
emerging characterization of the development of face recognition that includes the gradual refinement
of the vocabulary of recognition, which is reflected in changing neural responses to diagnostic
visual information.
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