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Abstract

Mechanistic air pollution modeling is essential in air quality management, yet the extensive

expertise and computational resources required to run most models prevent their use in

many situations where their results would be useful. Here, we present InMAP (Intervention

Model for Air Pollution), which offers an alternative to comprehensive air quality models for

estimating the air pollution health impacts of emission reductions and other potential inter-

ventions. InMAP estimates annual-average changes in primary and secondary fine particle

(PM2.5) concentrations—the air pollution outcome generally causing the largest monetized

health damages–attributable to annual changes in precursor emissions. InMAP leverages

pre-processed physical and chemical information from the output of a state-of-the-science

chemical transport model and a variable spatial resolution computational grid to perform

simulations that are several orders of magnitude less computationally intensive than com-

prehensive model simulations. In comparisons run here, InMAP recreates comprehensive

model predictions of changes in total PM2.5 concentrations with population-weighted mean

fractional bias (MFB) of −17% and population-weighted R2 = 0.90. Although InMAP is not

specifically designed to reproduce total observed concentrations, it is able to do so within

published air quality model performance criteria for total PM2.5. Potential uses of InMAP

include studying exposure, health, and environmental justice impacts of potential shifts in

emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and tempo-

ral domain given the availability of appropriate simulation output from a comprehensive

model. The InMAP model source code and input data are freely available online under an

open-source license.

Introduction

Ambient air pollution is estimated to kill over three million people per year globally [1, 2].

Reducing air pollution and its impacts is therefore an important policy goal. However, it is

often unclear a priori which potential emission reductions would be most effective in improv-

ing air pollution and health because the chemical and physical relationships between emissions

of air pollutants and the ambient concentrations that result can be complex [3]. To assist in

decision-making, air pollution models are often used to estimate the health effects of a range

of hypothetical changes in emissions.
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Eulerian Chemical Transportation Models (CTMs; examples: CAMx, [4]; CMAQ, [5];

WRF-Chem, [6]; GATOR-GCMOM, [7]) are powerful tools that can simulate the effectiveness

of emission reductions at reducing air quality-related health impacts. Running CTM simula-

tions generally requires dedicated experts or teams, and often is computationally expensive

and time consuming. For example, a single simulation for annual exposure in the contiguous

US with a 12 km spatial resolution can take days to run on a high performance computing sys-

tem (i.e., a “super-computer”) [8].

The computational intensity and high degree of difficulty inherent in performing CTM

simulations is a bottleneck for the rate at which air quality strategies can be evaluated, for the

number of people who can perform such evaluations, and also therefore potentially the rate at

which policies for improving air quality can be investigated, evaluated, potentially enacted.

Therefore, there is a need for air quality models that are simpler to use; provide results more

quickly than CTMs, while minimizing losses in predictive accuracy; and potentially can be run

by outside experts. Here, we describe such a model.

The design of our new model reflects current understandings of the health impacts of air

pollution:

1. Of the three million global deaths per year attributed to ambient air pollution, approxi-

mately 95% are caused by fine particulate matter (PM2.5) [1, 2]. The strongest predictor for

these deaths is chronic PM2.5 exposure over periods of a year or more [9–11]. Therefore, a

prediction of chronic exposure to PM2.5 is a good indicator of overall health impacts from

air pollution.

2. PM2.5 can travel long (e.g., intercontinental) distances but can also be highly spatially vari-

able near emissions sources. Additionally, PM2.5 can be both directly emitted (“primary”)

and formed in the atmosphere (“secondary”). Models that predict PM2.5 exposure should

consider all of these aspects.

3. Air pollution-mediated health damages can be a major driver of overall environmental

externalities [12, 13]. Therefore, air pollution models that can be used by non-air-pollution-

experts can be beneficial.

Numerous air quality models already exist that have lower operational difficulty than

CTMs [14–30]. As discussed in S1 Appendix, while each model type is well-suited to certain

use-cases, none are ideal for the specific use-case we are interested in: an adaptable and upda-

table model for human health impacts of changes in air pollutant emissions that can resolve

intraurban gradients in pollution concentrations near emissions sources, can track the long-

range transport of pollution, and can be used by non-specialists.

Here we develop and apply a new approach, which we implement as the Intervention Model

for Air Pollution (InMAP). InMAP is designed to provide estimates of air pollution health

impacts resulting from marginal changes in pollutant emissions, such as those resulting from

new regulations. InMAP combines spatially-resolved annual-average physical and chemical

information derived from a state-of-the-science CTM (WRF-Chem) with simplifying assump-

tions regarding atmospheric chemistry for cases of marginal changes in emissions. InMAP is

developed here to predict changes in annual average exposure to PM2.5; as mentioned above,

that outcome is estimated to cause 95% of air quality-related mortalities. The model is also able

to predict changes in concentrations of several other pollutants. Features of InMAP include

reductions in computational cost relative to CTMs, yet with more spatially detailed results than

are available with existing reduced-complexity models, a variable-resolution grid that focuses

on human exposures by employing higher spatial resolution in urban areas and lower spatial

resolution in rural and remote locations and at high altitude; and the ability to account for

InMAP air pollution model
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spatially variable aspects of secondary PM2.5 formation while also being amenable to running

many scenarios and theoretically simple enough for use by non-experts. InMAP is designed to

be informed by the default output of a single CTM run, so CTM runs that were originally cre-

ated for other purposes can be used to create InMAP inputs. To our knowledge, the modeling

approach developed here is the first of its kind for air pollution. It was inspired by recent

advancements in reduced complexity sediment transport modeling [31, 32].

Methods

Model formulation

The fate and transport of pollution in the atmosphere can be represented by a reaction-advec-

tion-diffusion equation:

@Ci

@t
¼ r � DrCið Þ � r � ~vCið Þ þ

Xn

j¼1

Ri;j þ Ei � di ð1Þ

where Ci is the concentration of one of n model pollutant species, D is a molecular diffusion coef-

ficient (neglected here as a negligible source of chemical transport in the atmosphere compared

to advection),~v is the wind vector,
Pn

j¼1
Ri;j is the net formation rate of species i from species j,

Ei is pollutant emission, and di is pollutant removal via wet and dry deposition. InMAP estimates

pollutant concentrations by estimating a steady-state solution to Eq (1), yielding annual average

pollutant concentration results. To do so, we replace each of the terms on the right-hand side of

Eq (1) with parameterizations suitable for numerical solution as described below.

InMAP solves Eq (1) for model chemical species comprised of primary PM2.5, volatile

organic compounds (VOCs), secondary organic aerosol (SOA), sulfur dioxide (SOx), particu-

late sulfate (pSO4), oxides of nitrogen (NOx), particulate nitrate (pNO3), ammonia (NH3), and

particulate ammonium (pNH4). InMAP assumes that primary PM2.5, VOCs, SOA, and SOx,

NOx, and NH3 can be emitted directly; the other species are secondary products formed in the

atmosphere. InMAP assumes atmospheric particle diameter and density—which it only uses

to calculate dry deposition rate—to be constant at 0.3 μm and 1830 kg m−3, respectively.

Spatial discretization. Air pollution model simulations with increased spatial resolution

can potentially provide improved exposure predictions [33] and often yield higher overall

health impact estimates [34, 35]. CTMs typically employ a regular (i.e., constant-resolution)

horizontal grid; to increase spatial resolution over important areas they may use a small num-

ber of higher-resolution “nested” grids inside a lower resolution outer grid. InMAP instead

employs a variable resolution rectangular grid where grid cell size varies throughout the

domain. To focus computational resources on understanding exposures and health impacts,

InMAP users can choose one of two grid cell size strategies. With the first option, grid cells are

smaller in urban areas and larger in rural and remote areas. Horizontal resolution also varies

with height: because horizontal variability in concentrations decreases with height above the

ground, we employ a low-resolution horizontal grid for all cells above a specific height (here,

set to approximately 1500 m). With the second option, grid cell size varies dynamically while

the simulation is running based on gradients in population density and pollutant concentra-

tion. Fig 1 shows a result of applying the first option algorithm for grid cell sizes. In our simu-

lations, we use a spatial domain that covers the contiguous US, southern Canada, and

northern Mexico, with grid cell edge lengths ranging between 1 and 48 km. The results pre-

sented here use the second grid cell size algorithm as it tends to give shorter model run times,

but both options yield very similar results. Both algorithms and sample run times are described

in detail in S2 Appendix.

InMAP air pollution model
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Temporal discretization. Instead of solving for pollutant concentrations at specific points

in time using temporally explicit input data as CTMs do, InMAP directly estimates annual

average pollutant concentrations using annual average input data and numerical integration.

We selected this approach because, as mentioned above, the vast majority of monetized dam-

ages from air pollution are attributable to human mortality from chronic (annual or longer)

exposure to PM2.5.

To reach a steady-state solution, InMAP starts with an initial estimate of the changes in

concentrations caused by an emissions scenario (the initial estimate is that there are no

changes in concentrations) and iterates the model forward in time until the concentrations

converge to a steady-state solution (i.e., until the predicted concentrations no longer change as

the model continues to run). The integration time step Δt is chosen using the Courant–Frie-

drichs–Lewy condition [36] as in Eq (2):

Dt ¼
Cmaxffiffiffi

3
p max

jUij þ j
~Ui j

Dxi
;
jVij þ j

~Vi j

Dyi
;
jWij

Dzi

" #

; i ¼ 1 . . . n

 !� 1

ð2Þ

where Cmax is the maximum allowable Courant number (set to 1.0 for InMAP), the U, V, and

W variables are annual average wind speeds in each grid cell i of n total grid cells as defined

below, j ~Ui j and j ~Ui j are annual average absolute wind speed deviations as described below,

and Δx, Δy, and Δz are the dimensions of each grid cell. With the model settings described

here Δt * 1 min and is limited by the Courant number in the 1 km grid cells near ground

level (typical annual average ground-level wind speed: 1 to 8 m s−1). At the top of the model

domain where wind speeds are relatively fast (up to 30 m s−1 annual average), InMAP uses rel-

atively large (48 km) grid cells to allow larger time steps. In contrast, in CTMs with constant-

resolution grids, Δt is often limited by conditions in the top grid cells rather than at ground-

level, so a 1 min time step typically corresponds to a horizontal resolution grid of 10 km. The

net result is a similar Δt in InMAP as in a typical CTM (* 1 min), but with smaller ground-

level grid cells in InMAP relative to in a typical CTM.

Fig 1. Spatial discretization of the model domain into variable resolution grid cells. The insets show the areas around the cities of Las Vegas,

Los Angeles, New York, and Miami in detail. Blue shading represents urban areas as defined by the US Census.

https://doi.org/10.1371/journal.pone.0176131.g001
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During each time step in each grid cell, InMAP first adds the flux of new emissions,

accounting for plume rise from elevated sources [37] (as cited in [3]). The model then calcu-

lates how changes in pollutant concentrations are affected by physical and chemical processes

including advection, turbulent mixing, atmospheric aerosol chemistry, dry deposition, and

wet deposition. Each process, with the exception of the instantaneous gas- vs. particle-phase

partitioning of organic, nitrate, and ammonia compounds, uses an algorithm that calculates

changes in concentrations based on the concentration at the beginning of the time step rather

than the concentration output by other process algorithms during the same time step. There-

fore, the concentrations resulting from these steps do not depend on the order of process inte-

gration. The instantaneous gas-particle partitioning, the result of which is theoretically

influenced by the order of integration, is performed last.

Input data. To reduce model complexity and runtime in the InMAP model itself, an

InMAP preprocessor uses the output of a more comprehensive model to extract emergent

atmospheric properties. Here, we use a previously published WRF-Chem model simulation

[8], but the preprocessor could also be adapted for use with other models and configurations.

The preprocessor makes it so that InMAP users do not need to access the CTM results directly,

only the results of the preprocessor are required to run the model. InMAP uses WRF-Chem

data in timesteps as output by WRF-Chem; for results here the input data timestep is once per

WRF-Chem simulation hour.

Many of the chemical and physical processes important to the fate and transport of air pol-

lution vary with the time of day and the season. A steady-state, annual-average model risks

being unable to represent the results of these temporally-explicit phenomena. InMAP miti-

gates this potential limitation by using temporally explicit information wherever possible

when calculating annual average input properties. For instance, the gas-phase oxidation of SO2

to SO4
2− is represented as the product of the SO2 concentration and a reaction rate constant,

but the reaction rate constant has a non-linear dependence on temperature and on the concen-

tration of hydroxyl radical (HO�), both of which are temporally variable. To represent the for-

mation of particulate SO4 (pSO4), InMAP needs an annual average rate constant. To capture

some of the effects of temporal variability, instead of calculating the rate constant using annual

average values for temperature and HO�, we instead use temporally explicit temperatures,

solar radiation intensities, and HO� concentrations to then calculate rate constants for every

hour during the year, and then take the average of these 8760 rate-constant values. Thus, the

reaction rate InMAP uses for a given grid cell is an annual-average rate, not a rate calculated

using annual-average values for input parameters.

In addition to SO2 oxidation rates, information collected or inferred from the comprehen-

sive model includes spatially explicit annual averages of wind vectors, eddy diffusivity and con-

vective transport coefficients (annual average coefficients calculated using temporally explicit

wind speed, temperature, pressure, friction velocity, boundary layer height, and heat flux

information), dry and wet deposition rates of various pollutants (annual average rates calcu-

lated using temporally explicit wind speed, land cover, stability, and precipitation informa-

tion), gas/particle phase partitioning for pollutants (described below), and parameters relevant

to the calculation of emissions plume rise (annual averages of scalar windspeed; windspeed to

the powers of −1, −1/3, and −1.4; temperature; and two parameters related to atmospheric sta-

bility). A full list of WRF-Chem variables used by the InMAP preprocessor is available in S1

Table.

Advection. The wind velocity that is responsible for advection (r � ð~vCÞ in Eq 1) varies at

time scales smaller than can be resolved by InMAP or by comprehensive CTMs. Therefore,

variables~v and C in the advective transport term of Eq (1) are commonly split up into resolved

and unresolved components using Reynolds decomposition. CTMs typically split each variable

InMAP air pollution model
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x into two parts: one representing the average quantity of the variable during a model timestep

(x) and one representing the variability of the variable during the same timestep (x0). For

InMAP to make predictions based on annual average information, it splits each variable into

three parts instead of two:~v ¼~v þ ~~v þ~v 0 and C ¼ C þ ~C þ C0, where~v and C represent

annual average quantities, ~~v and ~C represent deviations from the annual average that are tem-

porally resolved by the underlying CTM (WRF-Chem in this case), and~v 0 and C0 represent

deviations that are not temporally resolved by the underlying CTM. Substituting these decom-

posed variables into the advection term of Eq (1) and applying the rules of Reynolds averaging

yields Eq (3).

r � ~vCið Þ ¼ r � ~vCi

� �
þr � ~~v ~Ci

� �
þr � ~v 0 ~Ci

� �
þr � ~~vC0i

� �
þr � ~v 0C0i

� �
ð3Þ

InMAP discretizesr � ð~vCiÞ using the upwind advection scheme shown in Eq (4):

DCi

Dt
¼

Pnw;i
wj¼1 UiCwj

fwj

Dx
; if Ui � 0

Pnw;i
wj¼1 UiCifwj

Dx
; if Ui < 0

8
>>><

>>>:

ð4Þ

where ΔCi is the change in volume-specific pollutant concentration in grid cell i caused by

advection between cell i and each cell wj of nw,i adjacent cells to the West during time step Δt.
Because grid resolution varies, each cell may have more than one adjacent cell in each direc-

tion. Ui is the annual average wind velocity vector component in the East–West direction at

the interface between cells i and wi, Ci and Cwi
are concentrations in their respective grid cells

at the beginning of the time step, fwj
is the fraction of the edge of grid cell i that is touching

neighbor wj, and Δxi is the length of the grid cell in the East–West direction. Eq (4) is repeated

for neighbors to the East, to the South, to the North, above, and below cell i.
We chose the upwind advection scheme for its computational efficiency. A limitation of

this scheme is that it is numerically diffusive, but this limitation is mitigated in InMAP because

the variable resolution model grid uses smaller grid cells in high-population areas and thus

limits numerical diffusion in the areas where accurate predictions are most important.

InMAP parameterizesr � ð~~v ~CiÞ using the diffusion-like symmetrical advection scheme

shown in Eq (5):

DCi

Dt
¼

Pnw;i
wj¼1 j ~Ui j Cwj

� Ci

� �
fwj

Dx
ð5Þ

where j ~Ui j is the annual average absolute deviation of wind speed in the East–West direction,

as calculated by WRF-Chem, at the interface between cells i and wj. Eq (5) is repeated for

neighbors to the East, to the South, to the North, above, and below cell i. This scheme assumes

that deviations from annual average wind velocity are symmetrical about each axis.

Finally, InMAP parameterizesr � ð~v 0C0iÞ using the combined local-nonlocal mixing scheme

described below. We assume that the remaining two terms in Eq (3),r � ð~v 0 ~CiÞ andr � ð~~vC0iÞ,
account for a relatively small fraction of chemical transport. The results presented here—

which show InMAP can perform reasonably without these two terms—support this assump-

tion, but finding suitable parameterizations is an area for future research.

As shown above, to represent temporally-variable advection in an annual average modelling

framework, InMAP splits advective transport into three steps, one of which is directional and

two of which are symmetrical with respect to one or more axes. One result of this is that in

InMAP air pollution model
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some cases information regarding transport direction may be lost. For instance, an extreme

case were wind travels from the Northwest half of the time at 2 m s−1 and from the Southeast

the other half of the time at 2 m s−1 would be represented by InMAP as directional advection

at 0 m s−1 and symmetrical advection in all horizontal directions at
ffiffiffi
2
p

m s� 1.

For advection and mixing, InMAP assumes zero concentration-change boundary condi-

tions at the lateral and top edges of the model domain and an impermeable boundary at the

bottom edge of the domain.

Mixing. For mixing (i.e., pollutant transport that is not resolved by WRF-Chem;

r � ð~v 0C0iÞ in Eq 3) within the planetary boundary layer, we use a combined local-nonlocal

closure scheme [38]. For mixing above the boundary layer and for horizontal mixing, we

only consider turbulent mixing [39]. We modify a previously published relationship [38] as

shown in Eq (6) to allow a variable number of adjacent cells and to include horizontal and

vertical mixing.

mg;i ¼
X1;ng;i

gj

M2uiCgj
fgj

� �
ð6Þ

ma;i ¼
X1;na;i

aj

M2daj
Caj

Dzaj

Dzi
� M2diCi þ Dz� 1

i Kzz;aj

2 Caj
� Ci

� �

Dzi þ Dzaj

2

4

3

5 faj

0

@

1

A ð7Þ

mb;i ¼
X1;nb;i

bj

Dz� 1

i Kzz;bj

2 Cbj
� Ci

� �

Dzi þ Dzbj

fbj

0

@

1

A ð8Þ

mw;i ¼
X1;nw;i

wj

Dx� 1

i Kxx;wj

2 Cwj
� Ci

� �

Dxi þ Dzwj

fwj

0

@

1

A ð9Þ

me;i ¼
X1;ne;i

ej

Dx� 1

i Kxx;ej

2 Cej
� Cj

� �

Dxi þ Dxej

fej

0

@

1

A ð10Þ

ms;i ¼
X1;ns;i

sj

Dy� 1

i Kyy;nj

2 Csj
� Ci

� �

Dyi þ Dysj

fsj

0

@

1

A ð11Þ

mn;i ¼
X1;nn;i

nj

Dy� 1

i Kyy;nj

2 Cnj
� Ci

� �

Dyi þ Dynj

fnj

0

@

1

A ð12Þ

DCi ¼ mg;i þma;i þmb;i þmw;i þme;i þms;i þmn;i

� �
Dt ð13Þ

In Eqs (6–13), Ci refers to the pollutant concentration in grid cell i, gj refers to one of ng,i cells

at ground level directly below the cell of interest, and bj, aj, wj, ej, sj, and nj refer to cells

directly below, above, west, east, south, and north of the cell of interest, respectively. M2u

and M2d are upward and downward convective mixing coefficients [38]. Kzz is the turbulent

InMAP air pollution model
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mixing coefficient in the vertical direction, and Kxx and Kyy are horizontal mixing coeffi-

cients. We calculate mixing coefficients (both local and nonlocal) for each time step in the

WRF-Chem model output, using the boundary layer height specific to that time step, and

then use the average of these values to represent mixing in InMAP.

Chemistry. In InMAP, total PM2.5 is comprised of primary PM2.5, which is assumed to be

nonvolatile and nonreactive, and secondary PM2.5 which can be formed from VOCs, SOx,

NOx, or NH3. To model the secondary formation of PM2.5 (R in Eq 1), InMAP estimates for-

mation of particulate sulfate and ammonium using first-order chemical reaction kinetics. Par-

titioning between the gas and aerosol phases for nitrogen oxide, ammonia, and organic

compounds (VOCs and SOA) is done assuming instantaneous adjustment to match equilib-

rium partitioning coefficients. Because InMAP is designed to predict the impacts of marginal

changes in emissions and because the chemical relationships are nonlinear, we calculate reac-

tion rates and partitioning coefficients for marginal changes in concentrations.

There are two main pathways from sulfur dioxide (SO2) gas to sulfate (SO4
2−) particles:

gas phase oxidation by hydroxyl radical (HO�) and aqueous phase oxidation by hydrogen

peroxide (H2O2) [3]. There are no major pathways for reaction of SO4
2− back to SO2. After

calculating an annual average overall reaction rate kS for SO2 to SO4
2− using WRF-Chem

output data and formulas for the gas phase and aqueous pathways from [3], we calculate the

formation of SO4
2− particles from SO2 gas as in Eq (14):

DCS;g2p;i ¼ kS;iCS;g;iDt ð14Þ

where ΔCS,g2p,i is the transformation of sulfur from gas to particle phase during time step Δt
in cell i and CS,g,i is the gas phase concentration of sulfur at the beginning of the time step.

For NOx, NH3, and VOCs, the chemical reaction mechanisms governing partitioning

between the gas and particle phase are more complex than the reactions driving sulfate forma-

tion. They are also reversible: gas-phase compounds can convert to aerosols and then back to

gas-phase, and the direction of the reactions can vary according to the time of day and accord-

ing to the season. It is not possible to directly represent these reactions in a steady-state, annual

average model such as InMAP. For NOx, NH3, and VOCs we instead calculate an annual aver-

age partitioning coefficient fp,i in grid cell i for marginal changes in concentrations from the

WRF-Chem output data as in Eq (15):

fp;i ¼
Xn

j¼1

Dmp;i;j

Dmp;i;j þ Dmg;i;j

 !

=n ð15Þ

where Δmp,i,j is change in mass in cell i the particle phase and Δmg,i is change in mass in the

gas phase from one WRF-Chem output time step j to the next, and n is the total number of

output time steps (8760). Then, we use this coefficient to calculate gas/particle partitioning in

InMAP using Eqs (16) and (17):

Cp;i;f ¼ Cg;i;s þ Cp;i;s

� �
fp;i ð16Þ

Cg;i;f ¼ Cg;i;s þ Cp;i;s

� �
1 � fp;i

� �
ð17Þ

where Cg,i,s, Cp,i,s, Cg,i,f and Cp,i,f are gas and particle phase concentrations in cell i at the start s
and end f of the time step. The concentration at the end of one time step is used as the concen-

tration at the beginning of the next time step. For partitioning between VOCs and secondary

organic aerosol (SOA) we only consider those VOCs that are SOA precursors as defined by [40].

InMAP air pollution model
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Wet and dry deposition. We assume that dry deposition vdd,i for gases in cell i can be rep-

resented as a function of resistances in series as in Eq (18), where ra,i is aerodynamic resistance,

rb,i is quasi-laminar boundary layer resistance, and rc,i is surface resistance [3]. For particles,

this equation is slightly altered to account for settling velocity. We calculate an annual average

dry deposition velocity for each ground-level grid cell using the output from WRF-Chem and

previously published algorithms for rc,i for gases [41, 42]. To calculate rc,i for particles, and to

calculate ra,i and rb,i, we also use previously published algorithms [3]. We then calculate dry

deposition within InMAP using Eqs (18) and (19):

jvdd;ij ¼ ra;i þ rb;i þ rc;i

� �� 1
ð18Þ

DCi ¼ � Civdd;i
Dt
Dzi

ð19Þ

where Ci is pollutant concentration in a grid cell in the lowest model layer.

We calculate an annual average wet deposition rate rwd,i for each grid cell i using output

from WRF-Chem and a simple algorithm from the EMEP model [43] that estimates a rate of

wet deposition from in-cloud and below-cloud scavenging rate as a function of cloud fraction,

precipitation rate, and air density. The algorithm provides separate rate estimates for particles,

SO2, and other gases. We then calculate wet deposition within InMAP using Eq (20):

DCi ¼ � Cirwd;iDt ð20Þ

Dry deposition is assumed to only occur in ground-level grid cells. Wet deposition is calcu-

lated for every grid cell, with location-specific deposition rates.

User inputs

One goal for InMAP is ease of use. The only user-specified input required by running InMAP

in its native layout is a shapefile or set of shapefiles [44] containing locations of changes in

annual total emissions of VOCs, SOx, NOx, NH3, and primary fine particulate matter (PM2.5).

Locations can be specified as polygon, line, or point entities, and can include stack attributes

which InMAP uses to calculate plume rise for elevated sources. InMAP allocates emissions

from shapefiles to the corresponding model cells using area-weighting.

Performance evaluation

InMAP provides a computationally inexpensive alternative to a CTM for calculating impacts

of marginal emission changes. Therefore, its performance should be evaluated in terms of pre-

dicting marginal changes in concentrations rather than total ambient concentrations.

Although the strongest evaluation would be to compare InMAP predictions to measured pol-

lutant concentrations, long-term, nationwide measurements of the effects of marginal emis-

sions changes on pollutant concentrations do not exist. Instead, we compare InMAP

predictions for scenarios with changes in emissions to those from a CTM. It is common to

evaluate air pollution sensitivity models against more complex models [21, 25]. Specifically,

for our model-model evaluation we employ WRF-Chem to model 11 scenarios of emission

changes that would result from the hypothetical adoption of alternative light-duty transporta-

tion technologies. These scenarios include emissions from transportation, electric generation,

agriculture, and various industrial sources in proportions that vary among scenarios—since

these activities have different spatial distributions, the emissions scenarios are spatially hetero-

geneous—resulting in total PM2.5 concentration changes on the order of 1%. A brief

InMAP air pollution model
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description of each emissions scenario is provided in S1–S12 Figs. Additional information

regarding the emission scenarios and the associated WRF-Chem modeling can be found else-

where [34, 45]. Below, we also compare InMAP results against an existing reduced-form

model: the COBRA source-receptor matrix [26].

To explore how reliably InMAP can be expected to predict larger changes in concentra-

tions, we separately evaluate InMAP performance in predicting measured year 2005 annual

average PM2.5 concentrations [46]. As mentioned above, InMAP is designed to predict mar-

ginal changes in concentrations rather than total concentrations; comparing InMAP against

observed values represents a use of the model that is beyond what that model was designed for.

Nevertheless, we conduct and evaluate InMAP in that manner here (i.e., running it as though

it were a conventional CTM rather than a model for marginal changes in emissions) to provide

information on how widely applicable the model is, including its use in simulations of large

changes in emissions. To compare InMAP predictions to observations, we use a previously

described emissions inventory [8], with the exception that anthropogenic emissions are pro-

cessed using the AEP model [47] to allow allocation of area source emissions to the InMAP

spatial grid without the loss of spatial information.

Finally, to investigate InMAP’s ability to predict temporally variable pollutant transport in a

steady-state framework, and its ability to predict higher-resolution pollutant spatial patterns

based on lower-resolution meteorology fields, we perform an additional independent compari-

son of InMAP vs. WRF-Chem. To perform this comparison, we first use WRF-Chem to simulate

annual average transport and fate of 100 short tons per year of emissions from a single ground-

level point source of non-reactive PM2.5 in downtown Los Angeles, California. We run the

WRF-Chem simulation over a 9801×9801 km spatial domain with 9 km, 3 km, and 1 km nested

grids. Each nested grid is comprised of 33×33 horizontal grid cells and 30 vertical layers centered

over downtown Los Angeles. We split up year 2005 into 8 approximately 45 day periods and

simulate approximately the first 15 days of each period with WRF-Chem to approximate annual

average conditions. All other aspects of the WRF-Chem configuration have been previously

described [8]. We use the results from the 9 km-resolution outer WRF-Chem domain to create

two versions of InMAP: one with 9 km grid cells aligning with the native WRF-Chem grid cells

(“InMAP LA-9km”), and one with 1–27 km variable resolution grid cells (“InMAP LA-vari-

able”). The 3 km- and 1 km-resolution inner WRF-Chem domains are not used during the setup

of InMAP. We then compare InMAP LA-9km against the 9 km resolution WRF-Chem results

and we compare InMAP LA-variable against the 1 km resolution WRF-Chem results.

We use several metrics to assess model-model and model-measurement agreement, includ-

ing mean bias (MB, Eq 21), mean error (ME, Eq 22), mean fractional bias (MFB, Eq 23), mean

fractional error (MFE, Eq 24), and model ratio (MR, Eq 25), as well as linear regression slope

(S), intercept (I), and squared Pearson correlation coefficient (R2) values. In Eqs (21)–(25), i
corresponds to one of n comparisons, and X and Y are the annual average modeled or mea-

sured values we are comparing.

MB ¼
1

n

Xn

i¼1

Yi � Xið Þ ð21Þ

ME ¼
1

n

Xn

i¼1

Yi � Xij j ð22Þ

MFB ¼
1

n

Xn

i¼1

2 Yi � Xið Þ

Yi þ Xið Þ
ð23Þ
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MFE ¼
1

n

Xn

i¼1

2 Yi � Xij j

Yi þ Xið Þ
ð24Þ

MR ¼
1

n

Xn

i¼1

Yi

Xi
ð25Þ

Results

The resulting InMAP computer model is comprised of * 2000 lines of code written in the Go

language [48] with an additional * 2900 lines of code for preprocessing WRF-Chem output

data into InMAP input data. Each InMAP model run takes approximately two hours to com-

plete on a desktop computer with an Intel Ivybridge processor; S2 Appendix lists example sim-

ulation run times for different model settings. The preprocessor takes approximately eight

hours to run on a similar desktop computer, but users will not need to run the preprocessor or

obtain output from a CTM unless they are interested in a spatial or temporal domain different

than the continental U.S. and year 2005. As recommended for scientific reproducibility [49],

the model is freely available at http://inmap.spatialmodel.com (doi:10.5281/zenodo.60671)

and is licensed under the GNU General Public License (GPL). Results here are based on

InMAP version 1.2.0. Preprocessed input data and the data required to reproduce the results

shown here are also freely available (doi:10.5281/zenodo.166811).

Model to model comparison: Full US

Fig 2 shows WRF-Chem, InMAP, and COBRA model results for an example emissions sce-

nario where changes in vehicle tailpipe emissions are the largest emissions source. We show

Fig 2. Changes in concentrations resulting from one emissions scenario as calculated by (a)

WRF-Chem, (b) InMAP with a 12 km resolution grid, (c) InMAP with a 1 to 48 km variable resolution

grid (i.e., a typical setup for InMAP), and (d) COBRA. For ease of viewing, there is a discontinuity at the

99th percentile of concentration values. S1–S12 Figs provide similar information for the rest of the scenarios.

https://doi.org/10.1371/journal.pone.0176131.g002
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two InMAP configurations: the 12 km constant-resolution grid that mirrors the grid used for

WRF-Chem simulations (“InMAP 12 km”) and a variable-resolution grid for which the small-

est cells are 1 km2 (“InMAP 1 km”). Overall, spatial patterns in concentration changes are sim-

ilar in InMAP, COBRA, and WRF-Chem. In the specific example shown in Fig 2, differences

in estimated concentrations are apparent in Southern California and the Gulf Coast. S1–S12

Figs show additional spatial detail comparing InMAP and WRF-Chem for this (S1 Fig) and

other emissions scenarios. COBRA provides one prediction per county as can be discerned in

Fig 2d where counties are large (e.g., in Southern California around Los Angeles). S1–S12 Figs

contain information similar to Fig 2 for the remaining emissions scenarios investigated here,

as well as corresponding performance statistics.

Fig 3 compares InMAP, WRF-Chem, and COBRA ground-level predictions for 12 emis-

sions scenarios. Two sets of comparisons are shown: area-weighted (useful for understanding

atmospheric processes such as mixing and removal) and population-weighted (useful for

human exposures and health impacts).

InMAP 12 km reproduces the WRF-Chem predictions for changes in area-weighted con-

centrations with R2 = 0.92 and MFB = −46%) and in population-weighted concentrations with

R2 = 0.90 and MFB = -17% (Fig 3a). InMAP 1 km performance (Fig 3b) is similar to that of

InMAP 12 km. InMAP performance is not remarkably different from the existing COBRA

model (Fig 3c). However, InMAP has capabilities not found in COBRA, such as predicting

how pollutant concentrations vary within a county or a city and accounting for spatially vari-

able aspects of secondary PM2.5 formation.

Fig 4 compares InMAP and WRF-Chem for PM2.5 subgroups: primary PM2.5, particulate

nitrate (pNO3), particulate ammonium (pNH4), particulate sulfate (pSO4), and secondary

organic aerosol (SOA). InMAP primary PM2.5 predictions (Fig 4a and 4b) agree with

WRF-Chem with R2 values of 0.98 or greater (population-weighted MFE� 26%; area-

weighted MFE� 68%).

InMAP agreement with WRF-Chem results for pNO3 and pNH4 is the poorest of the spe-

cies considered here (R2 = 0.42–0.78). pNO3 and pNH4 formation rates have large seasonal

and diurnal variations, and so are more challenging to represent in a steady-state, annual aver-

age model such as InMAP.

Fig 3. Comparison of total (primary plus secondary) area-weighted (black dots) and population-weighted (blue

triangles) annual average predicted PM2.5 concentration change for WRF-Chem (x axis) and either InMAP or COBRA

(y axis) for 11 emissions scenarios. To assist in comparison between area- and population-weighted predictions,

concentrations shown here are normalized so that the largest value in each comparison equals one. The gray lines represent

1 : 1, 2 : 1, and 1 : 2 ratios between the models, and the black and blue lines represent least-squares regressions.

Performance statistics for each comparison are listed below the plots. Abbreviations: MFB = mean fractional bias;

MFE = mean fractional error; MR = model ratio; R2 = squared Pearson correlation coefficient; S = slope of regression line.

https://doi.org/10.1371/journal.pone.0176131.g003

InMAP air pollution model

PLOS ONE | https://doi.org/10.1371/journal.pone.0176131 April 19, 2017 12 / 26

https://doi.org/10.1371/journal.pone.0176131.g003
https://doi.org/10.1371/journal.pone.0176131


For pSO4, InMAP predictions are well-corrolated with WRF-Chem (R2� 0.99) but tend to

underpredict concentration changes (population-weighted MFB = -57%). pSO4 formation fol-

lows comparatively simple and slow-acting chemical mechanisms as described above.

For secondary organic aerosol (SOA), InMAP predictions agree relatively well with

WRF-Chem for population-weighted concentration changes (MFB = −53%, R2 = 0.91).

InMAP underpredicts area-weighted changes in concentrations relative to WRF-Chem

(MFB� −110%).

Model to model comparison: Regional

Fig 5 shows InMAP performance by US region. (Region boundaries are in S13 Fig) Model per-

formance is in general similar among regions. One exception is for particulate nitrate concen-

trations, where InMAP reproduces WRF-Chem predictions better in the Midwest

(population-weighted S = 0.67) than elsewhere (population-weighted S = 0.13–0.33). This may

be explained by the presence of of negative WRF-Chem predictions of pNO3 concentration

changes in non-Midwest regions. These negative concentration changes are caused by interac-

tions between PM2.5 subspecies that InMAP does not account for. As discussed below, these

interactions are most important when changes in NOx emissions are low, so their effect on

total PM2.5 predictive performance is minor.

We additionally include grid-cell-specific comparisons between WRF-Chem and InMAP

for the 12 emissions scenarios investigated here, as well as corresponding performance statis-

tics, in S1–S12 Figs. Fractional performance statistics (e.g., MFB and MFE) can be highly influ-

enced by concentrations in the lowest-concentration cells and absolute performance statistics

(e.g., MB and ME) depend in part on the magnitude of emissions in each emissions scenario.

Fig 4. Comparison of area-weighted (black dots) and population-weighted (blue triangles) annual average predictions of changes in

concentrations of PM2.5 subspecies between WRF-Chem (x axis) and InMAP (y axis) for 11 emissions scenarios. To assist in comparison

between area- and population-weighted predictions, concentrations shown here are normalized so that the largest value in each comparison equals

one. The gray lines represent InMAP: WRF-Chem ratios of 1 : 1, 2 : 1, and 1 : 2. The black and blue lines represent least-squares regressions.

Performance statistics for each comparison are listed below the plots. Abbreviations: MFB = mean fractional bias; MFE = mean fractional error;

MR = model ratio; R2 = squared Pearson correlation coefficient; S = slope of regression line.

https://doi.org/10.1371/journal.pone.0176131.g004
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We therefore focus greatest attention on population-weighted measures. Population-weighted

R2 values range between 0.00 and 0.99 among scenarios and pollutant types. The lowest R2 val-

ues reflect an atypical comparison and are not a strong indication of typical model perfor-

mance, for the following reason. The lowest R2 valuse are observed for pNO3 and pNH4

predictions in scenarios dominated by coal power plant emissions, where nonlinear effects

related to increased SO2 concentrations, which are not represented in InMAP, outweigh pNO3

and pNH4 formation from NOx and NH3 emissions. However, these nonlinear effects are most

important when changes in pNO3 and pNH4 concentrations are low, so in these cases poor

Fig 5. Region-specific comparisons of area-weighted (black dots) and population-weighted (blue triangles) annual average predictions

of total PM2.5 and its subspecies between WRF-Chem (x axis) and InMAP (y axis) for 11 emissions scenarios. To assist in comparison

between area- and population-weighted predictions, concentrations shown here are normalized so that the largest value in each comparison equals

one. The gray lines represent InMAP: WRF-Chem ratios of 1 : 1, 2 : 1, and 1 : 2. The black and blue lines represent least-squares regressions.

Performance statistics for each comparison are listed below the plots. Abbreviations: MFB = mean fractional bias; MFE = mean fractional error;

MR = model ratio; R2 = squared Pearson correlation coefficient; S = slope of regression line.

https://doi.org/10.1371/journal.pone.0176131.g005
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performance in predicting pNO3 and pNH4 concentrations does not necessarily adversely

impact InMAP performance in predicting total PM2.5 concentrations.

Model to measurement comparison

InMAP is designed to model the changes in pollutant concentrations caused by marginal

changes in emissions, but there are no long-term, nationwide measurements of the impacts of

changes in emissions on changes in concentrations against which to evaluate InMAP directly.

Therefore, we use the model-to-model comparisons described above as our main evaluation of

InMAP performance. However, we also evaluate here InMAP performance in predicting over-

all pollutant concentrations for the year 2005. One purpose of this comparison is as a bounding

estimate of how accurate InMAP would be in predicting the impacts of large changes in emis-

sions. Figs 6–9 show the results of this comparison in terms of overall relationships between

Fig 6. Comparison of WRF-Chem and InMAP performance in predicting annual average observed

total PM2.5 concentrations. The background colors in the maps represent predicted concentrations, and the

colors of the circles on the maps represent the difference between modeled and measured values at

measurement locations. For the comparison shown here, on average WRF-Chem overpredicts and InMAP

underpredicts as compared to observations. Abbrevations: MFB = mean fractional bias; MFE = mean

fractional error; MB = mean bias; ME = mean error; MR = model ratio; S = slope of regression line; R2 =

squared Pearson correlation coefficient.

https://doi.org/10.1371/journal.pone.0176131.g006

Fig 7. Comparison of WRF-Chem and InMAP performance in predicting annual average observed

particulate SO4 concentrations. The background colors in the maps represent predicted concentrations,

and the colors of the circles on the maps represent the difference between modeled and measured values at

measurement locations. Abbrevations: MFB = mean fractional bias; MFE = mean fractional error; MB = mean

bias; ME = mean error; MR = model ratio; S = slope of regression line; R2 = squared Pearson correlation

coefficient.

https://doi.org/10.1371/journal.pone.0176131.g007
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modeled and measured values and the spatial patterns in those relationships for PM2.5 and its

subspecies. Corresponding information for gas-phase pollutants is in S14–S16 Figs. Results in

Figs 6–9 for WRF-Chem refer to previously published WRF-Chem model results [8] that we

use to create InMAP inputs. In general, InMAP tends to underpredict observed total PM2.5

concentrations (MFB = −38%; WRF-Chem MFB = 14%). However, even though InMAP is

designed to predict marginal changes in concentrations rather than total concentrations, it

still meets published air quality model PM2.5 performance criteria of MFB� ±60% and

MFE� 75% [50] for predictions of all tested species except pSO4.

Figs 6–9 show that much of the InMAP underpredictions of total PM2.5 concentrations rel-

ative to observations are caused by underpredictions in pSO4. This inaccuracy in predicting

observed pSO4 concentrations is not unexpected because the chemical reactions that produce

pSO4 are nonlinear and InMAP is designed to predict marginal pSO4 production rather total

Fig 8. Comparison of WRF-Chem and InMAP performance in predicting annual average observed

particulate NH4 concentrations. The background colors in the maps represent modeled concentrations,

and the colors of the circles on the maps represent the difference between modeled and measured values at

measurement locations. Abbrevations: MFB = mean fractional bias; MFE = mean fractional error; MB = mean

bias; ME = mean error; MR = model ratio; S = slope of regression line; R2 = squared Pearson correlation

coefficient.

https://doi.org/10.1371/journal.pone.0176131.g008

Fig 9. Comparison of WRF-Chem and InMAP performance in predicting annual average observed

particulate NO3 concentrations. The background colors in the maps represent modeled concentrations,

and the colors of the circles on the maps represent the difference between modeled and measured values at

measurement locations. Abbrevations: MFB = mean fractional bias; MFE = mean fractional error; MB = mean

bias; ME = mean error; MR = model ratio; S = slope of regression line; R2 = squared Pearson correlation

coefficient.

https://doi.org/10.1371/journal.pone.0176131.g009
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pSO4 production. Future research could potentially re-parameterize InMAP to be a conven-

tional (rather than marginal-change) model; that step is beyond the scope of the present article.

There exist other criteria for determining model suitability [51] which could be explored in

future research.

Single source model to model comparison

Fig 10 compares WRF-Chem and InMAP concentration predictions for a single ground-level

point source of primary PM2.5 emissions. Comparisons are included for a 9 km-resolution

WRF-Chem domain (Fig 10a) against a matching 9 km-resolution InMAP domain (“InMAP

LA-9km”; Fig 10b), and for a nested 1 km-resolution WRF-Chem domain (Fig 10d) against a

1–27 km variable-resolution InMAP domain (“InMAP LA-variable”; Fig 10e) that was created

based on the 9 km WRF-Chem results. The main difference between the two models for the 9

km domain is that WRF-Chem predicts higher concentrations in the grid cell where the emis-

sions are located than InMAP does. One reason for this is InMAP’s use of a numerically diffu-

sive advection scheme. The same effect can be seen in the 1 km resolution results, although

these results also show that the advection solver used by WRF-Chem also creates numerical

artifacts in the form of a much higher rate of transport in the exact Northward, Southward,

and Westward directions from the emissions source than would generally be expected. InMAP

LA-variable reproduces the spatial pattern predicted by the 1 km WRF-Chem results with

Fig 10. Comparison of WRF-Chem and InMAP performance in predicting the impacts of 100 tons per year of primary

nonreactive PM2.5 emissions in Los Angeles at 9 km (panels a and b), 1 km (panel d), and 1–27 km variable (panel f) grid

resolutions. InMAP predictions in panel e are based on meteorology from the 9 km-resolution WRF-Chem simulation

(panel a) rather than the 1 km-resolution simulation (panel d). Panels c and f show the differences between the panels to

their left. Area- and population-weighted statistics are shown on the right. Abbrevations: MFB = mean fractional bias;

MFE = mean fractional error; MB = mean bias; ME = mean error; MR = model ratio; S = slope of regression line; R2 =

squared Pearson correlation coefficient.

https://doi.org/10.1371/journal.pone.0176131.g010
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MFB and MFE� 100% and R2 = 0.69 − 0.79. When interpreting these results, it is important

to consider that the InMAP predictions are based on lower (9 km) resolution meteorological

information from WRF-Chem and should not be expected to match the WRF-Chem predic-

tions exactly.

Discussion

We have presented here a new air quality model for determining the human health impacts of

marginal changes in pollutant emissions. InMAP is a reduced complexity model with the goal

of reducing computational intensity and required user effort while minimizing losses in pre-

dictive performance. In comparisons run here, InMAP recreates WRF-Chem predictions of

changes in total PM2.5 concentrations with population-weighted MFE and MFB < 18% and R2

� 0.9. Among individual PM2.5 species, the best predictive performance is for primary PM2.5

(MFE: 26%; MFB: -26%) and the worst predictive performance is for particulate nitrate (MFE:

143%; MFB: 65%). InMAP is reduced in complexity compared to comprehensive chemical

transport models but more accessible to non-specialists and more spatially detailed than other

reduced-complexity national-scale air quality models. One of these existing models is the

COBRA model, which we show performs similarly to the InMAP model presented here in

terms of reproducing WRF-Chem changes in population-weighted average concentrations.

InMAP, however, has features and capabilities that make it better suited than COBRA or other

existing models for certain use cases (e.g., for simulations where it is desirable to estimate

within-city, or even within-county, differences in PM2.5 concentrations, while also estimating

long range transport of PM2.5 in the same simulation).

Fig 11 shows a small area of the maps in Fig 2, centered on one example urban area (Las

Vegas, Nevada). COBRA represents all of the county that contains Las Vegas as having the

same PM2.5 concentration, so most of the map is only one color. WRF-Chem, as configured

here, is able to resolve differences in pollutant levels at a 12 km scale for the contiguous US (If

the size of the total spatial domain were decreased to only include the area surrounding Las

Vegas, WRF-Chem could resolve differences at a * 1–4 km scale.) InMAP is unique among

existing models in that it can model changes in pollutant concentrations across the entire con-

tiguous US with 1 km spatial resolution in all high-population areas, all in a single model run.

The ability to resolve differences in pollution concentrations within urban areas is impor-

tant for certain types of analyses, such as those that seek to determine how pollution exposure

differs among demographic groups (environmental justice) or neighborhoods.

Fig 11. A detail view of Fig 2 centered on the city of Las Vegas. Changes in concentrations resulting from

one of the emissions scenarios as calculated by (a) WRF-Chem, (b) InMAP with a 12 km resolution grid, (c)

InMAP with a 1 to 48 km variable resolution grid, and (d) COBRA, which has county-level outputs. InMAP 1 km

(panel c) provides the highest spatial resolution, which is important for calculating health impacts in areas with

high spatial gradients in pollutant concentration and in population.

https://doi.org/10.1371/journal.pone.0176131.g011
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InMAP is much less computationally intensive than are CTMs. For example, InMAP 1 km

produces the results for each of the scenarios shown here in * 2 hr on a current desktop com-

puter, requiring a factor of * 15 000 less computational power than was required to produce

the WRF-Chem results shown here. S2 Appendix lists example simulation run times for differ-

ent model settings. This computational speed-up makes possible uncertainty, sensitivity, and

scenario analyses that could not be attempted with WRF-Chem or other comprehensive chem-

ical transport models.

Limitations of InMAP include the following. Model performance is better for population-

weighted primary PM2.5, pSO4, and SOA concentrations (R2� 0.9) than for changes in pNO3

and pNH4 concentrations (R2 * 0.4–0.8). The setup and testing of InMAP has mainly consid-

ered SOA formed from anthropogenic sources; further testing is needed to determine InMAP

performance in predicting impacts of biogenic VOC emissions. Additional testing could be

useful to further evaluate the accuracy of InMAP’s high-resolution urban area predictions

against other high-resolution model simulations or measurements. At present, InMAP does

not predict concentrations of ground-level ozone (O3), which is considered the distant-second

largest source of human health burden from air pollution after PM2.5 [1, 2]. Additionally,

InMAP performance is better for population-weighted metrics (e.g., for health studies, expo-

sure, or environmental justice) than for area-weighted metrics (e.g., for understanding “aver-

age atmospheric” processes).

A future version of InMAP, including more comprehensive mechanisms for gas- and aero-

sol-phase chemistry and iterating through diurnal cycles representative of each season of the

year instead of using annual average information, could potentially ameliorate many of these

limitations, and would have the added benefit of allowing the prediction of concentrations of a

larger number of pollutants. This approach would by necessity be more computationally inten-

sive than the current version and require more user input information, so increased predictive

power may come at the expense of ease, speed, and flexibility. A future version of InMAP

could use distributed-memory parallelization or cloud computing to minimize the impact to

users of any increased computational intensity. Future development is also planned to allow

the preprocessor to accept output from models other than WRF-Chem, such as GEOS-Chem

and CAMx.

InMAP is designed to be readily adapted to different spatial and temporal domains. This

can be done by obtaining output from a CTM for the desired domain and processing it with

the InMAP preprocessor. (An evaluation of model accuracy in the new domain would also be

recommended.) By producing an air quality model that is computationally inexpensive to

operate, relatively easily adaptable to new geographical regions, able to be operated with a

moderate level of specialist knowledge, we hope to make air quality modeling more wide-

spread, easier, and more accessible to scientists, policymakers, and concerned citizens

worldwide.

Supporting information

S1 Fig. Annual average increases in pollutant concentrations caused by an emission sce-

nario with on-road emissions from gasoline powered vehicles as the largest emissions

source, as predicted by WRF-Chem (first row) and InMAP with a 12 km resolution grid

(second row), as well as the difference between the two models (third row). Colors in the

first two rows correspond to the legend on the left and colors in the third row correspond to

the legend on the right. For ease of viewing, there is a discontinuity at the 99th percentile of

concentration values in each color scale. Abbrevations: MFB = mean fractional bias;

MFE = mean fractional error; MB = mean bias; ME = mean error; S = slope of regression line;

InMAP air pollution model
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R2 = squared Pearson correlation coefficient.

(TIF)

S2 Fig. Annual average increases in pollutant concentrations caused by an emission sce-

nario with on-road emissions from hybrid gasoline-electric powered vehicles as the largest

emissions source, as predicted by WRF-Chem (first row) and InMAP with a 12 km resolu-

tion grid (second row), as well as the difference between the two models (third row). Colors

in the first two rows correspond to the legend on the left and colors in the third row corre-

spond to the legend on the right. For ease of viewing, there is a discontinuity at the 99th per-

centile of concentration values in each color scale. Abbrevations: MFB = mean fractional bias;

MFE = mean fractional error; MB = mean bias; ME = mean error; S = slope of regression line;

R2 = squared Pearson correlation coefficient.

(TIF)

S3 Fig. Annual average increases in pollutant concentrations caused by an emission sce-

nario with on-road emissions from diesel powered vehicles as the largest emissions source,

as predicted by WRF-Chem (first row) and InMAP with a 12 km resolution grid (second

row), as well as the difference between the two models (third row). Colors in the first two

rows correspond to the legend on the left and colors in the third row correspond to the legend

on the right. For ease of viewing, there is a discontinuity at the 99th percentile of concentration

values in each color scale. Abbrevations: MFB = mean fractional bias; MFE = mean fractional

error; MB = mean bias; ME = mean error; S = slope of regression line; R2 = squared Pearson

correlation coefficient.

(TIF)

S4 Fig. Annual average increases in pollutant concentrations caused by an emission sce-

nario with on-road emissions from Compressed Natural Gas (CNG) powered vehicles as

the largest emissions source, as predicted by WRF-Chem (first row) and InMAP with a 12

km resolution grid (second row), as well as the difference between the two models (third

row). Colors in the first two rows correspond to the legend on the left and colors in the third

row correspond to the legend on the right. For ease of viewing, there is a discontinuity at the

99th percentile of concentration values in each color scale. Abbrevations: MFB = mean frac-

tional bias; MFE = mean fractional error; MB = mean bias; ME = mean error; S = slope of

regression line; R2 = squared Pearson correlation coefficient.

(TIF)

S5 Fig. Annual average increases in pollutant concentrations caused by an emission sce-

nario with industrial emissions, agricultural emissions, and on-road emissions from etha-

nol powered vehicles as the largest emissions sources, as predicted by WRF-Chem (first

row) and InMAP with a 12 km resolution grid (second row), as well as the difference

between the two models (third row). Colors in the first two rows correspond to the legend on

the left and colors in the third row correspond to the legend on the right. For ease of viewing,

there is a discontinuity at the 99th percentile of concentration values in each color scale.

Abbrevations: MFB = mean fractional bias; MFE = mean fractional error; MB = mean bias;

ME = mean error; S = slope of regression line; R2 = squared Pearson correlation coefficient.

(TIF)

S6 Fig. Annual average increases in pollutant concentrations caused by an emission sce-

nario with industrial emissions, agricultural emissions, and on-road emissions from

ethanol powered vehicles as the largest emissions sources, as predicted by WRF-

Chem (first row) and InMAP with a 12 km resolution grid (second row), as well as the

InMAP air pollution model
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difference between the two models (third row). Colors in the first two rows correspond to

the legend on the left and colors in the third row correspond to the legend on the right. For

ease of viewing, there is a discontinuity at the 99th percentile of concentration values in

each color scale. Abbrevations: MFB = mean fractional bias; MFE = mean fractional error;

MB = mean bias; ME = mean error; S = slope of regression line; R2 = squared Pearson corre-

lation coefficient.

(TIF)

S7 Fig. Annual average increases in pollutant concentrations caused by an emission sce-

nario with emissions from coal- and natural gas-powered electric generation and from

coal mining as the largest emissions sources, as predicted by WRF-Chem (first row) and

InMAP with a 12 km resolution grid (second row), as well as the difference between the

two models (third row). Colors in the first two rows correspond to the legend on the left and

colors in the third row correspond to the legend on the right. For ease of viewing, there is a dis-

continuity at the 99th percentile of concentration values in each color scale. Abbrevations:

MFB = mean fractional bias; MFE = mean fractional error; MB = mean bias; ME = mean

error; S = slope of regression line; R2 = squared Pearson correlation coefficient.

(TIF)

S8 Fig. Annual average pollutant concentrations caused by an emission scenario with emis-

sions from coal-powered electric generation and from coal mining as the largest emissions

sources, as predicted by WRF-Chem (first row) and InMAP with a 12 km resolution grid

(second row), as well as the difference between the two models (third row). Colors in the

first two rows correspond to the legend on the left and colors in the third row correspond to

the legend on the right. For ease of viewing, there is a discontinuity at the 99th percentile

of concentration values in each color scale. Abbrevations: MFB = mean fractional bias;

MFE = mean fractional error; MB = mean bias; ME = mean error; S = slope of regression line;

R2 = squared Pearson correlation coefficient.

(TIF)

S9 Fig. Annual average pollutant concentrations caused by an emission scenario with emis-

sions from natural-gas powered electric generation and natural gas extraction and process-

ing as the largest emissions sources, as predicted by WRF-Chem (first row) and InMAP

with a 12 km resolution grid (second row), as well as the difference between the two models

(third row). Colors in the first two rows correspond to the legend on the left and colors in the

third row correspond to the legend on the right. For ease of viewing, there is a discontinuity at

the 99th percentile of concentration values in each color scale. Abbrevations: MFB = mean

fractional bias; MFE = mean fractional error; MB = mean bias; ME = mean error; S = slope of

regression line; R2 = squared Pearson correlation coefficient.

(TIF)

S10 Fig. Annual average pollutant concentrations caused by an emission scenario with

emissions from agricultural sources and from biomass-powered electric generation as the

largest emissions sources, as predicted by WRF-Chem (first row) and InMAP with a 12 km

resolution grid (second row), as well as the difference between the two models (third row).

Colors in the first two rows correspond to the legend on the left and colors in the third row

correspond to the legend on the right. For ease of viewing, there is a discontinuity at the 99th

percentile of concentration values in each color scale. Abbrevations: MFB = mean fractional

bias; MFE = mean fractional error; MB = mean bias; ME = mean error; S = slope of regression

line; R2 = squared Pearson correlation coefficient.

(TIF)

InMAP air pollution model
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S11 Fig. Annual average pollutant concentrations caused by an emission scenario with on-

road emissions from vehicle brake and tire wear as the only emissions source, as predicted

by WRF-Chem (first row) and InMAP with a 12 km resolution grid (second row), as well

as the difference between the two models (third row). Colors in the first two rows corre-

spond to the legend on the left and colors in the third row correspond to the legend on the

right. For ease of viewing, there is a discontinuity at the 99th percentile of concentration values

in each color scale. Abbrevations: MFB = mean fractional bias; MFE = mean fractional error;

MB = mean bias; ME = mean error; S = slope of regression line; R2 = squared Pearson correla-

tion coefficient.

(TIF)

S12 Fig. Annual average pollutant concentrations caused by an emission scenario with

emissions from mineral extraction and electricity production as the largest emissions

sources, as predicted by WRF-Chem (first row) and InMAP with a 12 km resolution grid

(second row), as well as the difference between the two models (third row). Colors in the

first two rows correspond to the legend on the left and colors in the third row correspond to

the legend on the right. For ease of viewing, there is a discontinuity at the 99th percentile of

concentration values in each color scale. Abbrevations: MFB = mean fractional bias;

MFE = mean fractional error; MB = mean bias; ME = mean error; S = slope of regression line;

R2 = squared Pearson correlation coefficient.

(TIF)

S13 Fig. Boundaries of US regions used in this article.

(TIF)

S14 Fig. Comparison of WRF-Chem and InMAP performance in predicting annual aver-

age observed SOx concentrations. The background colors in the maps represent predicted

concentrations, and the colors of the circles on the maps represent the difference between

modeled and measured values at measurement locations. Abbrevations: MFB = mean frac-

tional bias; MFE = mean fractional error; MB = mean bias; ME = mean error; MR = model

ratio; S = slope of regression line; R2 = squared Pearson correlation coefficient.

(TIF)

S15 Fig. Comparison of WRF-Chem and InMAP performance in predicting annual aver-

age observed NH3 concentrations. The background colors in the maps represent modeled

concentrations, and the colors of the circles on the maps represent the difference between

modeled and measured values at measurement locations. Abbrevations: MFB = mean frac-

tional bias; MFE = mean fractional error; MB = mean bias; ME = mean error; MR = model

ratio; S = slope of regression line; R2 = squared Pearson correlation coefficient.

(TIF)

S16 Fig. Comparison of WRF-Chem and InMAP performance in predicting annual aver-

age observed NOx concentrations. The background colors in the maps represent modeled

concentrations, and the colors of the circles on the maps represent the difference between

modeled and measured values at measurement locations. Abbrevations: MFB = mean frac-

tional bias; MFE = mean fractional error; MB = mean bias; ME = mean error; MR = model

ratio; S = slope of regression line; R2 = squared Pearson correlation coefficient.

(TIF)

S1 Appendix. A review of existing reduced-complexity air quality models.

(PDF)
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S2 Appendix. A description of the spatial discretization algorithm and the computational

time required to run the model with different spatial grid settings.

(PDF)

S1 Table. The names of WRF-Chem variables used by the InMAP preprocessor and their

descriptions.

(PDF)
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