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Chemotherapy-induced intestinal mucositis (CIM) is a major dose-limiting side

effect of chemotherapy, especially in regimens containing irinotecan (CPT-11).

Several studies on the pathologic mechanisms of CIM focused on both the

genomics and molecular pathways triggered by chemotherapy. However,

systematic evaluation of metabolomic analysis in irinotecan-induced

intestinal mucositis (IIM) has not been investigated. This study aimed to

comprehensively analyze metabolite changes in main tissues of IIM mouse

models. Male ICR mice were assigned to two groups: the model group (n = 11)

treated with CPT-11 (20 mg/kg daily; i.p.) and the control group (n= 11) with

solvent for 9 days. Gas chromatography-mass spectrometry (GC-MS) was used

to investigate themetabolic alterations in the serum, intestinal, colonic, hepatic,

and splenic samples of mice between two groups by multivariate statistical

analyses, including GC–MS data processing, pattern recognition analysis, and

pathway analysis. Forty-six metabolites, including hydrocarbons, amino acids,

lipids, benzenoids, hydroxy acids, and amines, had significant changes in levels

in tissues and sera of IIM mouse models. The most important pathways related

to the identified metabolites were the glycerolipid metabolism in the colon and

aminoacyl-tRNA biosynthesis; glycine, serine, and threonine metabolism; and

glyoxylate and dicarboxylate metabolism in the liver. Our study firstly provided a

comprehensive and systematic view of metabolic alterations of IIM using GC-

MS analysis. The characterizations of metabolic changes could offer profound

and theoretical insight into exploring new biomarkers for diagnosis and

treatment of IIM.
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Introduction

Chemotherapy-induced intestinal mucositis (CIM) is a

major dose-limiting adverse reaction of chemotherapy,

especially in regimens containing irinotecan (CPT-11) (Lalla

et al., 2014; Peterson et al., 2015). With prevalence of about

80% (Jones et al., 2006; Maroun et al., 2007), CIM hinders the

effective use of chemotherapy and reduces the quality of life of

patients. Studies on the pathologic mechanisms of CIM have

focused on genomics and molecular pathways, including

inflammatory reaction (Davis 2000; Angel et al., 2001; Bamba

et al., 2003), gut-flora imbalance (Alimonti et al., 2004; Alexander

et al., 2017), and ischemia (Yu et al., 2020). These alterations can

induce metabolites in target organs in CIM. Therefore,

metabolomic analysis plays a major role in the investigation

of the pathologic mechanisms of CIM.

Metabolomic analysis may reveal the metabolite perturbations

associated with diseases using high-throughput technology for

multiple metabolites in biological samples. This strategy can

provide the global parameters of metabolic profiles and elucidate

the underlying mechanisms of diseases (Rinschen et al., 2019; Geng

et al., 2020; Geng et al., 2020; Zhao et al., 2021). Metabolomics is an

effective tool for discovering biomarkers, investigating the

pathophysiology of diseases, subtyping diseases, and developing

FIGURE 1
The workflow of the study. The male ICR mice were treated with CPT-11 (20 mg/kg daily; i.p.) to establish the IIM animal model. On the 9th day
after administration, the serum, intestinal, colonic, hepatic, and splenic samples were collected. Gas chromatography–mass spectrometry (GC–MS)
was used to investigate the metabolic alterations in the main tissues of the animal model. Multivariate statistical analyses, including GC–MS data
processing, pattern recognition analysis, and pathway analysis, were performed.
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specific treatment strategies (Bracewell-Milnes et al., 2017; Rinschen

et al., 2019). Mass spectrometry-based metabolomic techniques,

including gas chromatography-mass spectrometry (GC-MS), liquid

chromatography-mass spectrometry (LC-MS), surface-enhanced

laser desorption ionization time-of-flight mass spectrometry

(SELDI-TOFMS), and matrix-assisted laser desorption/ionization

time-of-flight mass spectrometry (MALDI-TOF-MS), are sensitive

approaches for simultaneous analysis of several compounds. In

previous studies, we evaluated the metabolic alterations of major

tissues in the animal model of several drugs using GC-MS (Geng

et al., 2021; Cui et al., 2022).

Metabolomic analysis of inflammatory bowel disease (IBD)

has been studied extensively (Kostic et al., 2014; Lloyd-Price et al.,

2019; Baier et al., 2020); however, that of irinotecan-induced

intestinal mucositis (IIM) has not been studied extensively. In

this study, we investigated the metabolic alterations of serum and

tissues from the intestine, colon, liver, and spleen of mouse

models of IIM. Using GC-MS, metabolomic analyses revealed

the metabolic pathogenesis of IIM to provide new options for

diagnosis and treatment. The schematic illustration of the study

design is shown in Figure 1.

Materials and methods

Ethical approval of the study protocol

The study protocol was approved by the Ethics Committee of

Jining First People’s Hospital (No. JNMC-2021-DW-044, Jining,

China). Efforts were made to minimize animal distress and the

number of mice used. Animal care and husbandry were performed

in strict accordance with the recommendations from the Guide for

the Care and Use of Laboratory Animals (Ministry of Science and

Technology of China, Beijing, China, 2006).

Establishment of IIM mouse models

Male ICR mice (6–8 weeks old; Jinan Pengyue Laboratory

Animal Breeding, Jinan, China) were used to investigate IIM

based on our previous study (Yu et al., 2020). CPT-11 (Target

Mol) was dissolved in sodium chloride containing 5‰ dimethyl

sulfoxide (DMSO; Tianjin Yongda Chemical Reagents, Tianjin,

China) and prepared to the required concentrations. Mice in the

model group were administered CPT-11 (20 mg/kg daily; i.p.). Mice

in the control group were injected with sodium chloride containing

5‰DMSOand used as blank controls through daily intraperitoneal

injection. The bodyweight ofmice in each groupwas recorded daily.

The mice were carefully monitored to identify symptoms, such as

diarrhea and bloody stools. On the 9th day after unilateral eyeball

removal, blood was collected from all mice. Thereafter, vertebrae

were dislocated to collect intestinal, colonic, hepatic, and splenic

tissues from all animals.

DAI calculation and histology

DAI is the combined score of weight loss (compared to

initial weight), stool consistency, and bleeding. Scores are

defined as follows: weight loss: 0 (no loss), 1 (1–5%), 2

(5–10%), 3 (10–20%), and 4 (>20%); stool consistency: 0

(normal), 2 (loose stool), and 4 (diarrhea); and bleeding: 0

(no blood), 1 (hemoccult positive), 2 (hemoccult positive and

visual pellet bleeding), and 4 (gross bleeding, blood around

anus). Afterwards, formalin-fixed colonic tissues were

subjected to hematoxylin and eosin (H&E) staining. The

histological score was assessed, with 0–4 points attributed

to each of the following parameters: 1) leukocyte infiltration;

2) vascular congestion and erosion; and 3) anabrosis of

epidermal cells. The sum of each score was calculated as

histological score.

Sample preparation

The obtained intestinal, colonic, hepatic, and splenic

samples were washed with phosphate-buffered saline (PBS,

pH = 7.2) and rapidly frozen at −80°C until required for

use. To obtain the serum, blood was collected and

centrifuged (4,500 × g, 5 min). Thereafter, 100 μL serum

and 350 μL methanol (containing IS100 μg/mL) or 50 mg

tissue and 1 ml methanol (containing IS1 mg/mL) were

mixed and centrifuged (14,000 rpm, 4°C, 10 min). The

supernatants of the total mixture were transferred to

new tubes (2.0 ml) and dried to completion under a

gentle stream of nitrogen gas at 37°C in a shaking water

bath. Additionally, 80 μL o-methyl hydroxylamine

hydrochloride (15 mg/ml in pyridine) was added and

mixed gently. The solution was incubated for 90 min at

70°C, and 100 μL of BSTFA with 1% TMCS was added to the

solution, followed by 60 min of incubation at 70°C. The

solution was then vortexed, centrifuged (14,000 rpm,

2 min, 4°C), and filtered through a 0.22-μm filter

membrane before GC-MS analysis.

GC–MS analysis

The quality control (QC) sample was prepared for each

matrix by combining equal amounts of each control-model

sample. The stability of retention time (RT) was evaluated

using the RT of IS. Both the QC and experimental samples

were analyzed by GC-MS using a 7000C-series mass

spectrometer with a 7890B GC system (Agilent

Technologies, United States). Samples were separated

using an HP-5MS fused silica capillary column. Helium

was used as carrier gas with a flow rate of 1 ml/min and a

split ratio of 50:1. The temperature program for GC began at
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60°C for 4 min, increased by 8°C/min until 300°C, and held

for 5 min. The temperatures of the injection, transfer-line,

and ion-source were 280, 250, and 230°C, respectively.

Electron impact ionization (−70 EV) of 20 spectra/s was

used in the MS setting. MS detection was performed by

electrospray ionization (ESI) in full scan mode with

50–800 mass/charge (m/z) values.

Multivariate statistical analysis

MassHunter Qualitative Analysis (Agilent Technologies) was

used for GC-MS data processing. Peaks were identified by the

chromatographic deconvolution tool in MassHunter. The mass

and compound filters were adjusted to ensure that

1–300 components were identified by the software. Then,

FIGURE 2
CPT-11 administration could lead to IIM in ICR mice. Mice were injected (i.p.) with CPT-11 (20 mg/kg, daily) for 9 days before being killed. (A)
Body weight changes. (B) The DAI score. (C, D)Macroscopic images and length of the colon. (E)Histopathology score of colonic tissue. (n = 7) **p <
0.01, ***p < 0.001 vs. Control, t-test. (F). Colonic tissues stained with H&E, and the photos were observed by confocal laser-scanning microscope,
50×, 200×, 400×.
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FIGURE 3
Total ion chromatograms of QC samples. (A) serum, (B) intestine, (C) colon, (D) liver, and (E) spleen.
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metabolites were identified by matching the secondary mass

spectra of compounds with NIST14.0 mass spectrometry

library. Pattern recognition analysis (principal component

analysis, PCA; orthogonal partial least squares discriminant

analysis, OPLS-DA) of normalized data was performed using

SIMCA-P 14.0 (Umetrics, Umea, Sweden). Two-tailed Student’s

t-test was used to analyze data. The differential variables were

selected based on these conditions: 1) p < 0.05 and 2) VIP value

obtained from OPLS-DA >1. Pathway analysis was performed

using MetaboAnalyst 5.0 (http://www.metaboanalyst.ca) and the

Kyoto Encyclopedia of Genes and Genomes database. The

pathways for raw p < 0.05 and impact >0 were considered

significant. These metabolomic analytical methods were used

in our previous studies (Geng et al., 2021; Zhao et al., 2021).

Results

CPT-11 administration could cause IIM in
ICR mice

CPT-11 was used to establish mouse models of IIM. Changes

in body weight, DAI score, colorectal shortening, and H&E

staining of the intestinal mucosa were used to evaluate IIM.

CPT-11 administration reduced the body weight of mice

(Figure 2A) and increased DAI score (Figure 2B). To observe

intestinal lesions in mice with IIM, the colorectal length was

measured 9 days after CPT-11 administration. CPT-11 shortened

the colon length significantly (Figures 2C,D). Thereafter,

intestinal samples were collected and stained by H&E staining.

Colonic damage (necrosis of the intestinal mucosa, infiltration of

inflammatory cells, submucosal edema, and ulcer formation) was

detected in mice (Figures 2E,F).

GC-MS chromatograms of QC samples
in IIM

The total ion chromatograms of QC samples, including

serum (Figure 3A), intestine (Figure 3B), colon (Figure 3C),

liver (Figure 3D), and spleen (Figure 3E), were obtained by

optimizing the detection conditions of GC-MS. Most of the

peaks in the total ion chromatograms were separated at

baseline (Figure 3). This observation showed that the peak

area of the internal standard was stable, and that the retention

time was identical. All total ion chromatograms showed strong

signals and good reproducibility.

Multivariate statistics

The parameters of PCA indicated efficient modeling of IIM

that clearly separated the control and model groups (serum:

R2X = 0.924, R2Y = 0.998, Q2 = 0.705; intestine: R2X = 0.845,

R2Y = 0.938, Q2 = −0.895; colon: R2X = 0.773, R2Y = 1,

Q2 = −0.865; liver: R2X = 0.867, R2Y = 0.999, Q2 = 0.847;

spleen: R2X = 0.825, R2Y = 1, Q2 = 0.509). These parameters

approaching 1.0 indicate that the IIM model was stable and

predictably reliable. Statistical validation using OPLS-DA

revealed no overfitting (the blue regression line of the Q2-

points intersects the vertical axis on the left below zero; all

Q2-values on the left were lower than the original points on

the right) in serum and tissue samples, except intestine

(Figure 4). Moreover, cluster analyses on metabolite

expression in serum and tissue samples (colon, liver, and

spleen) of each group are shown in Figure 5. Compared with

metabolites of the control group, metabolites of the model group

were significantly different in serum, colon, and liver. These

results implied that the experiment was reproducible and the data

were reliable.

Identification of potential biomarkers

Forty-six metabolites with significant changes in level in

tissues and serum were identified by Student’s t-test (p <
0.05) and VIP score (VIP >1) screening between the control

and model groups. In the model group, 11 metabolites were

identified in serum; most of which were hydrocarbons, lipids,

benzenoids, and heteroaromatic compounds. Several metabolites

were identified in the colon, with 20 metabolites, including

hydrocarbons, amino acids, lipids, benzenoids, and amines,

showing differences in level. Fourteen metabolites, including

carbohydrates, amino acids, benzenoids, and hydroxy acids,

had different levels in the liver. The spleen contained

12 metabolites, including carbohydrates, amino acids, lipids,

and pyridines, at different levels (Table 1).

Analyses of metabolic pathways

Based on the profiles of annotated metabolites, metabolic

pathway analyses were performed to reveal the most relevant

pathways related to IIM. Four metabolic pathways, glycerolipid

metabolism in the colon and aminoacyl-tRNA biosynthesis;

glyoxylate and dicarboxylate metabolism; and glycine, serine,

and threonine metabolism in the liver were significantly different

(raw p < 0.05 and impact >0), as shown in Table 2 and Figure 6.

Discussion

This study is the first to use metabolomics analysis for

systematic evaluation of IIM. Metabolomic alterations in the

main tissues (serum, intestine, colon, liver, and spleen) of mice

were systematically profiled, revealing 11, 20, 14, and
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FIGURE 4
Charts showing the OPLS-DA score and 200 permutation tests. (A) serum, (B) intestine, (C) colon, (D) liver, and (E) spleen.
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12 metabolites in the serum, colon, liver, and spleen of mice,

respectively, between the model and control groups (Table 1).

The disturbances in the identified metabolites were mainly

involved in the following pathways: glycerolipid metabolism,

aminoacyl-tRNA biosynthesis, glyoxylate and dicarboxylate

metabolism, and glycine, serine, and threonine metabolism

(Table 2 and Figure 6).

CIM has three main pathologic mechanisms: inflammatory

reaction (Davis 2000; Angel, Szabowski, and Schorpp-Kistner 2001;

Bamba et al., 2003), gut-flora imbalance (Alimonti et al., 2004;

Alexander et al., 2017) and ischemia (Yu et al., 2020). Drug

metabolism is a special pathologic mechanism of IIM. Previous

studies focused on the liver-intestinal circulation pathway of CPT-

11 but neglected the effect of CPT-11 on metabolism in major

organs leading to IIM (Mathijssen et al., 2001; de Man et al., 2018;

Zhu et al., 2020). Our study provided the first comprehensive and

systematic view of metabolic alterations of IIM. Many of the

metabolites and their related pathways identified could be

candidate factors for IIM development, and they may be

potential biomarkers for diagnosis and treatment.

Inflammatory reaction-related metabolic
changes

11-Octadecenoic acid (vaccenic acid [VA]) is an anti-

inflammatory factor. VA is involved in the pathophysiologic

mechanism of several diseases (Wang et al., 2012; Jacome-Sosa

et al., 2016; Sulijaya et al., 2018). VA activates peroxisome

proliferator-activated receptors (PPARs) in the intestines and

mediates anti-inflammatory effects by antagonizing the actions

of a pro-inflammatory transcription factor: nuclear factor-

FIGURE 5
Heatmap of different metabolites in the (A) serum, (B) colon (C) liver, and (D) spleen in the model group compared with the control group. The
color of each part represents the importance of metabolite changes (blue = downregulated; red = upregulated). Rows represent samples. Columns
represent metabolites.
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TABLE 1 Metabolites with changes in the serum, intestine, colon, liver, and spleen.

Metabolites HMDB Serum Intestine Colon Liver Spleen

VIP Trend VIP Trend VIP Trend VIP Trend VIP Trend

(R)-3-Hydroxybutyric acid HMDB0000011 1.46 ↑
1,1’-Biphenyl HMDB0034437 1.85 ↓
11-Octadecenoic acid HMDB0003231 1.81 ↑ 1.33 ↓
1-Monopalmitin HMDB0011564 1.36 ↑ 1.26 ↓ 1.61 ↑
2(3H)-Furanone HMDB0094707 1.33 ↑
2-Butenedioic acid HMDB0000176 1.93 ↑
3-Aminoisobutyric acid HMDB0003911 1.17 ↑
Aminomalonic acid HMDB0001147 1.78 ↑
Arabinofuranose HMDB0012325 1.33 ↓
Cadaverine HMDB0002322 1.35 ↓
Cholesterol HMDB0000067 1.84 ↓
D-Arabinose HMDB0029942 1.46 ↓ 1.94 ↑
Decane HMDB0031450 1.30 ↑ 1.40 ↓
D-GluCIMol HMDB0000247 1.64 ↓ 1.97 ↓
D-Mannose HMDB0000169 1.47 ↑
Dodecane HMDB0031444 1.52 ↓
Furan HMDB0013785 1.31 ↑
Glucose HMDB0000122 1.58 ↓ 1.79 ↓ 2.19 ↑
Glycerol HMDB0000131 1.24 ↓
Glycerol monostearate HMDB0011535 1.46 ↑ 1.42 ↑
Glycine HMDB0000123 2.00 ↑ 1.86 ↑
Hydroquinone HMDB0002434 1.22 ↓
l-Norleucine HMDB0001645 1.52 ↑
L-Serine HMDB0000187 1.49 ↓
L-Valine HMDB0000883 1.61 ↑
Malic acid HMDB0000744 1.85 ↑
Myo-Inositol HMDB0000211 1.77 ↓ 1.63 ↑
Nonane HMDB0029595 1.61 ↑
Octadecane HMDB0033721 1.54 ↓
Octane HMDB0001485 1.61 ↑
Palmitic Acid HMDB0000220 1.78 ↓
Phenol HMDB0000228 1.39 ↑
Phosphoric acid HMDB0002142 1.34 ↓ 1.25 ↓
Phosphorylethanolamine HMDB0000224 1.61 ↑
Phthalic acid HMDB0002107 1.34 ↑
Pipecolic acid HMDB0000070 1.30 ↑
Pyrogallol HMDB0013674 1.78 ↓
Scyllo-Inositol HMDB0006088 2.21 ↑ 1.48 ↓
Sedoheptulose HMDB0003219 1.44 ↓
Stearic acid HMDB0000827 1.37 ↓
Tranexamic acid HMDB0014447 1.46 ↑
Undecane HMDB0031445 1.24 ↑
Uracil HMDB0000300 1.75 ↑ 1.80 ↑
Urea HMDB0000294 1.44 ↑
Xylitol HMDB0002917 1.50 ↓
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kappa B (NF-κB). This action leads to downregulation of

expression of pro-inflammatory markers, such as interleukin-

1β (IL-1β), tumor necrosis factor-α (TNF-α), and IL-12

(Daynes and Jones 2002; Loscher et al., 2005). Moreover,

expression of IL-1β and TNF-α is upregulated via NF-κB
signaling (Logan et al., 2008; Logan et al., 2008), which

occurs during the early stage of CIM and induces mucosal

injury not only by direct damage to tissue but also by providing

a positive-feedback loop to amplify the primary damage (Davis

2000; Angel et al., 2001; Bamba et al., 2003). The VA level was

reduced in the livers of mice in the model group (Figure 5C),

which could aggravate the inflammation caused by IIM.

However, the VA level was increased in serum (Figure 5A).

Additionally, L-Serine reduces the secretion of pro-

inflammatory cytokines, including IL-1, IL-17, interferon-γ,
and TNF-α, in serum to inhibit macrophage- and

neutrophil-mediated inflammatory responses (He et al.,

2019). L-Serine level was reduced in the livers of mice in the

model group (Figure 5C), similar to the observation on the VA

level.

Although some studies have indicated that pyrogallol has anti-

inflammatory actions (Nicolis et al., 2008; Geißler et al., 2019), other

studies have refuted this hypothesis (Sharma et al., 2000; Upadhyay

et al., 2010). The pyrogallol level in the liver was reduced

(Figure 5C), indicating that pyrogallol may be protective against

IIM. Stearic acid can function as a natural ligand of PPARs and

protect cells from oxidative damage (Wang et al., 2007). Stearic acid

can attenuate bile duct ligation (BDL)-induced inflammation by

suppressing recruitment or accumulation of inflammatory cells and

NF-κB activation (Pan et al., 2010). The level of stearic acid in the

colon was reduced, indicating that stearic acid may be a protective

metabolite against IIM (Figure 5B).

Imbalance in gut flora-related metabolic
changes

Furan can trigger an imbalance in intestinal flora (e.g.,

bacteria of the class Clostridia and Lactobacillus species)

(Yuan et al., 2019). A similar gut-flora imbalance has been

TABLE 2 Metabolic pathways related to IIM.

Pathway name Tissue Match status Raw p Impact

Glycerolipid Metabolism Colon 3/23 1.07E-02 0.164

Aminoacyl-tRNA biosynthesis Liver 3/48 8.643E-03 0.167

Glyoxylate and dicarboxylate metabolism Liver 2/19 3.395E-02 0.148

Glycine, serine and threonine metabolism Liver 2/34 3.800E-02 0.478

FIGURE 6
Pathway analysis using MetaboAnalyst™ 5.0. (A) The colon: a. Glycerolipid metabolism. (B) The liver: a. Glycine, serine, and threonine
metabolism; b. Aminoacyl-tRNA biosynthesis; c. Glyoxylate and dicarboxylate metabolism.
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noted in CIM (Alimonti et al., 2004; Alexander et al., 2017). The

furan level was increased in the serum of IIM mice (Figure 5A).

L-Serine is another metabolite that increases bacterial fitness and

provides Enterobacteriaceae with a growth advantage against

their competitors in the inflamed gut (Kitamoto et al., 2020).

This is a contradiction of its anti-inflammation of CIM, as

already mentioned in.

Ischemia-related metabolic changes

Hydroquinone is an inhibitor of lipid peroxidation. Due to its

reactivity with lipoperoxy radicals and its ability to donate

intramolecular hydrogen bonds, it has protective activity that

transforms toxic reactive oxygen species (ROS) into nontoxic

species (Roginsky et al., 2003; Rodríguez et al., 2007). Studies

have shown that platelet activation is related to a significant

increase in ROS number due to mitochondrial dysfunction

(Geisler et al., 2007; Becatti et al., 2013; Caruso et al., 2015).

In a previous study, we revealed the formation of intestinal

microthrombi and different types of thrombi in CIM and

found that thrombotic intestinal ischemic injury was a core

trigger in the pathologic mechanism of IIM (Yu et al., 2020).

In this study, the hydroquinone level was reduced in the colon,

which could promote thrombotic intestinal ischemia in IIM. A

recent study (Gu et al., 2019) conducted in patients with

colorectal polyps revealed increased levels of lipids and

reduced levels of glycerol, suggesting that glycerolipid

metabolism was abnormal, which might participate in

generation of adenosine triphosphate. Based on those data,

glycerolipid metabolism with reduced levels of hydroquinone,

glycerol, and palmitic acid was identified in the colons of IIM

mouse models (Table 2).

Drug metabolism-related metabolic
changes

Arabinofuranose has been reported to be a component of

polysaccharides that undergo activation during internal secretion

(Zhou et al., 2007), osteogenesis (Zhao et al., 2014), and digestion

(Golovchenko et al., 2012). Additionally, arabinofuranose may be

a suitable carrier for drug delivery to hepatocytes (Groman et al.,

1994). The elimination pathways of CPT-11 were mainly the

hepatic metabolism and biliary secretion with major

contributions from various enzymes, especially β-
glucuronidases (Haaz et al., 1998; Mathijssen et al., 2001).

Arabinofuranose level was reduced in the colons of mice in

the model group (Figure 5B). This phenomenon probably affects

absorption during digestion or metabolism by the liver because

CPT-11 increases drug toxicity to induce IIM. Furan is another

metabolite affecting hepatic metabolism by dysregulating the

biosynthesis of primary bile acids (Yuan et al., 2020) and injury

due to free radical-mediated lipid peroxidation (Yuan et al.,

2013), which was increased to promote IIM (Figure 5A).

Changes in other metabolites

Tranexamic acid has been shown to ameliorate ulcerative

colitis in clinical studies (Hollanders et al., 1982; Almer et al.,

1992). The underlying mechanism and its influence on CIM are

controversial. Moreover, our findings on metabolite levels in

the spleens of IIM mouse models (Figure 5D) were

contradictory. Glycine has been shown to be a protective

factor against gastrointestinal diseases, such as chemical-

induced colitis (Tsune et al., 2003) and IBD (Chou et al.,

2014; Turer et al., 2017). However, glycine level was

increased (Figure 5C), indicating that glycine may have a

protective role in IIM.

Conclusion

Metabolomic changes in the serum and tissues (colon,

intestine, liver, and spleen) of mice after IIM induction were

analyzed using GC-MS. The results provided a holistic view of

metabolic alterations of hydrocarbons, amino acids, lipids,

benzenoids, hydroxy acids, and amines involved in

carbohydrate, amino acid, and lipid metabolism in IIM-

associated tissues. The characterization of metabolomic

patterns (especially in colonic and hepatic samples) and

relationship between the metabolites and metabolic

pathways could provide potential diagnostic clues for

further research and profound theoretical understanding of

IIM pathogenesis.
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