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A theory of synaptic transmission
Bin Wang, Olga K Dudko*

Department of Physics, University of California, San Diego, La Jolla, United States

Abstract Rapid and precise neuronal communication is enabled through a highly synchronous 
release of signaling molecules neurotransmitters within just milliseconds of the action potential. Yet 
neurotransmitter release lacks a theoretical framework that is both phenomenologically accurate 
and mechanistically realistic. Here, we present an analytic theory of the action-potential-triggered 
neurotransmitter release at the chemical synapse. The theory is demonstrated to be in detailed 
quantitative agreement with existing data on a wide variety of synapses from electrophysiological 
recordings in vivo and fluorescence experiments in vitro. Despite up to ten orders of magnitude 
of variation in the release rates among the synapses, the theory reveals that synaptic transmission 
obeys a simple, universal scaling law, which we confirm through a collapse of the data from strikingly 
diverse synapses onto a single master curve. This universality is complemented by the capacity of 
the theory to readily extract, through a fit to the data, the kinetic and energetic parameters that 
uniquely identify each synapse. The theory provides a means to detect cooperativity among the 
SNARE complexes that mediate vesicle fusion and reveals such cooperativity in several existing 
data sets. The theory is further applied to establish connections between molecular constituents of 
synapses and synaptic function. The theory allows competing hypotheses of short-term plasticity to 
be tested and identifies the regimes where particular mechanisms of synaptic facilitation dominate 
or, conversely, fail to account for the existing data for the paired-pulse ratio. The derived trade-off 
relation between the transmission rate and fidelity shows how transmission failure can be controlled 
by changing the microscopic properties of the vesicle pool and SNARE complexes. The established 
condition for the maximal synaptic efficacy reveals that no fine tuning is needed for certain synapses 
to maintain near-optimal transmission. We discuss the limitations of the theory and propose possible 
routes to extend it. These results provide a quantitative basis for the notion that the molecular-level 
properties of synapses are crucial determinants of the computational and information-processing 
functions in synaptic transmission.

Editor's evaluation
The present manuscript describes an effort to create a general mathematical model of synaptic 
neurotransmission. The authors invested great efforts to create a model of the presynaptic mech-
anisms. This is an exceptionally challenging task and this model makes substantive progress, and 
highlights where further opportunities lie.

Introduction
Neurons communicate across special junctions – synapses – using neurotransmitter molecules as 
a chemical signal (Südhof, 2013). Release of neurotransmitters into the synaptic gap occurs when 
neurotransmitter-loaded vesicles fuse with the membrane of the presynaptic (transmitting) neuron in 
response to calcium influx during an action potential ‘spike’. Synaptic vesicle fusion is remarkably fast 
and precise: both the duration of fusion and the time between the trigger and fusion initiation are less 
than a millisecond (Katz and Miledi, 1965; Südhof, 2013).

The electrical propagation of information along the axon of the presynaptic neuron (the pre-
transmission stage) and the response of the postsynaptic neuron to the chemical signal (the 
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post-transmission stage) have been described by theories that capture phenomenology while 
connecting to microscopic mechanisms (Hodgkin and Huxley, 1952; Destexhe et  al., 1994). 
However, neurotransmitter release, which enables the synaptic transmission itself, lacks a theory that 
is both phenomenologically accurate and microscopically realistic (Stevens, 2000). This void contrasts 
with detailed experiments, which have revealed the molecular constituents involved. The key to speed 
and precision of neurotransmitter release is a calcium-triggered conformational transition in SNAREs 
(soluble N-ethylmaleimide sensitive factor attachment protein receptors) (Kaeser and Regehr, 2014; 
Baker and Hughson, 2016; Brunger et al., 2018). The free energy released during the conforma-
tional transition is harnessed by SNAREs to pull the membranes of the vesicle and the cell together, 
reducing the high kinetic barriers that otherwise hinder fusion. Fusion culminates in the release of 
neurotransmitters from vesicles into the synaptic cleft (Figure 1A).

Here, we present a theory of the action-potential-evoked (AP-evoked) synaptic transmission, which 
quantitatively reproduces a wide range of data from fluorescence experiments in vitro (Kyoung et al., 
2011; Diao et al., 2012) and electrophysiological experiments in vivo (Barrett and Stevens, 1972; 
Heidelberger et al., 1994; Schneggenburger and Neher, 2000; Voets, 2000; Beutner et al., 2001; 
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Figure 1. Synaptic transmission in vivo and in vitro. (A) Release of neurotransmitters into the synaptic cleft 
(diameter ‍∼ 1 − 20µm‍) occurs when neurotransmitter-loaded vesicles (diameter ‍∼ 30nm‍) fuse with the presynaptic 
cell membrane in response to ‍Ca2+‍ influx during an action potential. Fusion is facilitated by SNARE protein 
complexes and proceeds via two parallel pathways that originate in the ‘fast’ and ‘slow’ vesicle pools. (B and C) 
Fusion stages in vivo and in vitro. SNARE conformational transition constitutes the fast step, k1. Vesicle transfer 
from the reserve pool to the readily releasable pool (RRP) in vivo and escape from the hemifusion diaphragm in 
vitro constitute the slow step, k2. (D and E) Reaction schemes for (B) and (C). In vivo, state ‍R‍ represents the reserve 
pool, ‍D‍ the RRP, ‍Ii‍ the state with i independent SNARE assemblies that underwent conformational transitions, ‍F ‍ 
the fused state. In vitro, ‍D1‍ and ‍D2‍ represent docked vesicles with point- and extended-contact morphologies, 
‍H ‍ the hemifusion diaphragm. Mathematical equivalence of the reaction schemes in vivo and in vitro enables the 
treatment through a unifying theory.
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Yang and Gillis, 2004; Lou et al., 2005; Bollmann et al., 2000; Sun et al., 2007; Wölfel et al., 2007; 
Sakaba, 2008; Kochubey et al., 2009; Duncan et al., 2010; Miki et al., 2018; Fukaya et al., 2021). 
The theory yields analytic expressions for measurable quantities, which enables a direct fit to the data. 
Fitting yields parameters that describe the fusion machinery of each synapse: activation barriers and 
rates of SNARE conformational transitions at any calcium concentration, the size of vesicle pools, and 
the number of independent SNARE assemblies necessary for fusion. The analytic expressions explain, 
quantitatively, the remarkable temporal precision of neurotransmitter release. Perhaps the most 
striking result of the theory is that the peak release rate as a function of calcium concentration can be 
written, with proper normalization, in a universal form so that data on different synapses – with release 
rates spanning ten orders of magnitude – collapse onto a single curve. The established universality 
is especially remarkable given that these synapses have been known to exhibit strikingly different 
properties in synaptic transmission due to distinct ‍Ca2+‍-sensors (Volynski and Krishnakumar, 2018; 
Wolfes and Dean, 2020) as well as different couplings between the SNAREs and their regulatory 
proteins or calcium channels (Kasai et al., 2012; Vyleta and Jonas, 2014; Stanley, 2016).

The theory is further applied to relate the properties of neurotransmitter release machinery to 
the proposed mechanisms of short-term plasticity (Regehr, 2012; Jackman and Regehr, 2017). A 
quantitative comparison with experimental data for the paired-pulse ratio enables us to identify the 
regimes where particular mechanisms of synaptic facilitation dominate or, on the contrary, fail to 
account for the observed facilitation. We establish how the molecular properties of the transmitter 
release machinery impose constraints on the tradeoff between transmission rate and fidelity, where 
fidelity measures the ability of a synapse to generate a desired postsynaptic output in response to 
a presynaptic input. Finally, we show how the molecular-level properties of synapses determine the 
optimal synaptic efficacy, or the ability of a synapse to avoid both the transmission errors (lack of a 
postsynaptic output) and error reads (an output in the absence of an input). Altogether, the theory 
shows how the key characteristics of synaptic function – plasticity, fidelity, and efficacy – emerge from 
molecular mechanisms of neurotransmitter release machinery, and thereby provides a mapping from 
molecular constituents to biological functions in synaptic transmission.

Results
Theory
We start from the observation that published data on neurotransmitter release for different synapses 
and experimental setups (Barrett and Stevens, 1972; Kyoung et al., 2011; Diao et al., 2012; Heidel-
berger et al., 1994; Schneggenburger and Neher, 2000; Lou et al., 2005; Bollmann et al., 2000; 
Miki et al., 2018; Duncan et al., 2010; Kochubey et al., 2009; Wölfel et al., 2007; Sun et al., 2007; 
Voets, 2000; Sakaba, 2008; Yang and Gillis, 2004; Beutner et al., 2001; Fukaya et al., 2021) can 
all be encompassed by a unifying kinetic scheme:

Scheme 1. The unifying kinetic scheme for synaptic vesicle fusion.

In this kinetic scheme, synaptic vesicle fusion proceeds through two parallel reaction pathways. 
Both pathways contain fast steps of rate constants ‍{kfast,i}‍. One of the pathways contains an addi-
tional, slow, step of rate constant ‍kslow ≪ {kfast,i}‍. The pathways originate in the ‘fast’ and ‘slow’ vesicle 
pools of sizes ‍ntot1‍ and ‍ntot2‍, respectively. The interpretations of the fast and slow steps as well as the 
individual states in this unifying kinetic scheme for different experimental setups are summarized in 
Figure 1 and detailed below.

In the context of in vivo experiments (Heidelberger et al., 1994; Schneggenburger and Neher, 
2000; Lou et al., 2005; Bollmann et al., 2000; Miki et al., 2018; Duncan et al., 2010; Kochubey 
et al., 2009; Wölfel et al., 2007; Sun et al., 2007; Voets, 2000; Sakaba, 2008; Yang and Gillis, 
2004; Beutner et al., 2001; Fukaya et al., 2021), Scheme 1 concretizes into the kinetic scheme in 
Figure 1B and D. The fast pool represents the readily releasable pool (RRP) comprised of vesicles 
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that are docked on the presynaptic terminal (state ‍D‍) and fuse readily upon ‍Ca2+‍ influx (Kaeser and 
Regehr, 2017). The slow pool represents the reserve pool (state ‍R‍), which supplies vesicles to the RRP 
(‍R → D‍) with slow rate k2. Fusion of an RRP vesicle (‍... → F‍) requires ‍N ‍ independent SNARE assem-
blies tethering the vesicle at the cell membrane to concurrently undergo a conformational transition. 
This transition is ‍Ca2+‍-dependent and involves a single rate-limiting step (Hui et al., 2005) of rate 
constant ‍k1([Ca2+])‍. Note that ‍N ‍ is defined broadly as the critical number of independent SNARE 
assemblies per docked vesicle. Each of the ‍N ‍ independent assemblies may consist of a single SNARE 
or may represent a ‘super-assembly’ of multiple SNAREs that undergo the conformational transition 
cooperatively (Acuna et al., 2014; Wang et al., 2014; Grushin et al., 2019; Tagliatti et al., 2020; 
Zhu et al., 2021).

In the context of in vitro experiments (Kyoung et al., 2011; Diao et al., 2012), Scheme 1 becomes 
the kinetic scheme in Figure 1C and E. All vesicles are initially docked (states D1 and D2) but adopt 
different morphologies (Figure 1C) and, consequently, fuse through different pathways (Gipson et al., 
2017). Vesicles in a point contact with the membrane (state D1) fuse rapidly upon ‍Ca2+‍-triggered 
SNARE conformational transition, mimicking RRP vesicles in vivo. Vesicles in an extended contact 
(state D2) become trapped in a hemifusion diaphragm intermediate (state ‍H ‍), escape from which 
(‍H → F‍) constitutes the slow step k2.

In all these experiments, the delay due to steps ‍IN → F‍ is negligible compared to both fast and slow 
steps k1 and k2. Note that a scheme with ‍N ‍ independent and concurrent steps of rates k1 (Figure 1B 
and C) is equivalent to a scheme with ‍N ‍ sequential steps of rates ‍Nk1, (N − 1)k1, ..., k1‍ (Figure 1D and 
E).

Despite the differences in the details of the fusion process in vivo and in vitro described above, the 
mathematical equivalence of the corresponding kinetic schemes enables their treatment through a 
unifying theory. We will assume that the calcium influx is triggered by an action potential that arrives 
at the presynaptic terminal at ‍t = 0‍. The microsecond timescales (much faster than neurotransmitter 
release) of the opening of voltage-gated ‍Ca2+‍ channels and diffusion of ‍Ca2+‍ ions across the active 
zone justify treating the ‍[Ca2+]‍ rising as instantaneous. Since the typical width of ‍[Ca2+]‍ profile is 
‍∼ 1 − 10ms‍ (Bean, 2007) while most vesicles fuse within ‍t ∼ 100µs‍ (Katz and Miledi, 1965), ‍[Ca2+]‍ can 
be treated as approximately constant during the fusion process. The theory is thus applicable both 
for step-like and for spike-like ‍[Ca2+]‍ profiles, as well as for responses to long sequences of spikes 
of the duration shorter than the timescale ‍k

−1
2 ‍ of RRP replenishment. With the above assumptions, 

the theory is developed in detail in Appendix 1. Below, we present analytic expressions derived from 
the theory for the key outputs of the experiments that probe synaptic transmission at the single-
synapse level in vivo and in vitro. These expressions relate experimentally measurable characteristics 
of synaptic transmission to the molecular parameters of synaptic release machinery, thereby enabling 
the extraction of these parameters through a fit to experimental data.

An informative characteristic of synaptic transmission is the average release rate. Defined as the 
average (over an ensemble of repeated stimuli) rate of change in the number of fused vesicles, this 
quantity is usually reported in experiments on the kinetics of neurotransmitter release (Schneggen-
burger and Neher, 2000; Bollmann et al., 2000; Kyoung et al., 2011; Diao et al., 2012). The rate 
equations for the kinetic scheme in Scheme 1 yield the exact solution for the average release rate:

	﻿‍

d ⟨n(t)⟩
dt

= Nk1ntot1(1 − e−k1t)N−1e−k1t + Nk1k2ntot2

N−1∑
j=0

(−1)j
(

N − 1
j

)
e−k2t − e−(j+1)k1t

(j + 1)k1 − k2

≡ ntot1p1(t) + ntot2p2(t), ‍�

(1)

where ‍p1,2(t)‍ are the probability distributions for the fusion time in the fast and slow pathways, ‍N ‍ is 
the necessary number of independent SNARE assemblies, and ‍ntot1‍ and ‍ntot2‍ are the sizes of the fast 
and slow pools, respectively. We use the standard notation for binomial coefficient ‍

(N
m
)
≡ N!

m!(N−m)!‍.
In practice, the average release rate is obtained from the average cumulative release ‍⟨n(t)⟩‍, which 

is defined as the average number of vesicles fused by time ‍t‍ and can be measured directly through 
electrophysiological recording on the postsynaptic neuron (Schneggenburger and Neher, 2000; Lou 
et al., 2005; Bollmann et al., 2000; Wölfel et al., 2007; Kochubey et al., 2009; Duncan et al., 2010; 
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Miki et al., 2018) or through fluorescence imaging in synthetic single-vesicle systems (Kyoung et al., 
2011; Diao et al., 2012). Integrating Equation 1 yields the exact solution for average cumulative 
release:

	﻿‍

⟨n(t)⟩ =
ˆ t

0

d ⟨n(t)⟩
dt

dt = ntot1(1 − e−k1t)N + ntot2

N∑
j=1

(
N
j

)
(−1)j−1(1 − jk1e−k2t − k2e−jk1t

jk1 − k2
)

≡ ntot1F1(t) + ntot2F2(t), ‍�

(2)

where ‍F1,2(t) =
´ t

0 p1,2(t)dt‍ are cumulative distributions for the fusion time in the fast and slow pathways 
and are given by Equations 15; 18. In vivo, ‍F1(t = T) = (1 − e−k1T)N

‍ is the fusion probability for an 
RRP vesicle after an action potential of duration ‍T ‍ (Neher, 2015; Miki et al., 2018; Malagon et al., 
2016). We also derived the full probability distribution of cumulative release by time ‍t‍ (Appendix 1), 
which, although at present is challenging to measure experimentally, contains more information than 
the average values in Equations 1; 2.

Experiments indicate a separation of timescales, ‍k2 ≪ k1‍ (Neher, 2010; Kaeser and Regehr, 
2014), which yields useful asymptotic behaviors for AP-evoked neurotransmitter release. At short 
times, ‍t ≪ 1/k1, 1/k2‍, the release rate in Equation 1 is ‍

d⟨n(t)⟩
dt ∼ tN−1

‍, which can be readily fit to data to 
extract the number ‍N ‍ of independent SNARE assemblies necessary for fusion. At intermediate times, 

‍1/k1 ≪ t ≪ 1/k2‍, cumulative release in Equation 2 becomes ‍⟨n(t)⟩ ≈ ntot1 + ntot2k2t‍, which can be used 
to determine the RRP size, ‍ntot1‍, by extrapolation (Neher, 2015). At long times, ‍t ∼ 1/k2 ≫ 1/k1‍, cumu-
lative release is ‍⟨n(t)⟩ ≈ ntot1 + ntot2(1 − e−k2t)‍. As expected, the cumulative release on the intermediate 
and long timescales is independent of the number ‍N ‍ of SNARE assemblies and conformational rate k1 
of an assembly as all the fast steps have been completed.

A measure of sensitivity of a synapse to ‍[Ca2+]‍ is the peak release rate (Schneggenburger and 
Neher, 2000; Lou et al., 2005; Bollmann et al., 2000). The time at which the peak is reached is found 

from Equation 1 using 
‍
k2/k1 ≪ 1 : tmax ≈ k−1

1

[
ln N + (ntot2/ntot1)

(
(N − 1)/N3

)
(k2/k1)

]
‍
 . The peak release 

rate is then

	﻿‍
d⟨n(t)⟩

dt

���
t=tmax

≈ ntot1k1

(
1 − 1

N

)N−1 (
1 + ntot2(N−1)

ntot1N
k2
k1

)
.
‍�

(3)

Now we must establish an explicit form for the calcium-dependence of the rate constant of SNARE 
conformational transition ‍k1([Ca2+])‍ in Equations 1–3. We utilize the formalism of reaction kinetics 
(Kramers, 1940) generalized to the presence of a bias field (Dudko et  al., 2006). The formalism 
treats a conformational transition as thermal escape over a free energy barrier along a reaction coor-
dinate. In the present context, the role of the reaction coordinate is fulfilled by the average number 

‍nCa‍ of ‍Ca2+‍ ions bound to a SNARE assembly at a given ‍[Ca2+]‍, assuming that this average follows the 
dynamics of the conformational degree of freedom of the SNARE assembly. The generic shape of the 
free energy profile with a barrier that separates the two conformational states of a SNARE assembly 
is captured by a cubic polynomial (Appendix 1—figure 1). The effect of calcium on the free energy 
profile is incorporated in analogous manner to the ‍pH ‍-dependence of Gibbs free energy of a protein, 
taking into account the contributions both from the electrostatic energy and from entropy (Schaefer 
et al., 1997; Zhang and Dudko, 2015; Mostafavi et al., 2017). As shown in Appendix 1, the rate 
constant of the conformational transition of the SNARE assembly is then

	﻿‍

k1([Ca2+]) = k0

(
1 − 2

3
kBTn‡Ca
∆G‡ ln [Ca2+]

[Ca2+]0

) 1
2

exp


∆G‡

kBT


1 −

(
1 − 2

3
kBTn‡Ca
∆G‡ ln [Ca2+]

[Ca2+]0

) 3
2



 .

‍�

(4)

Here, k0 is the rate constant and ‍∆G‡‍ is the activation barrier for SNARE conformational transi-
tion, and ‍n

‡
Ca‍ is the number of ‍Ca2+‍ ions bound to a SNARE assembly at the transition state, with all 

three parameters corresponding to a reference calcium concentration ‍[Ca2+]0‍. Equation 4 provides a 
quantitative explanation for the remarkable temporal precision of neurotransmitter release. Indeed, 
the argument of ‍exp(. . . )‍ is the change in the barrier height at a given ‍[Ca2+]‍ relative to the reference 
state. The logarithm of calcium concentration, ‍ln[Ca2+]‍, is the external force that lowers the barrier 
(concentrations appear logarithmically because the relevant ‘force’ on the molecule comes from the 
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chemical potential, and this helps us to understand how changes in concentration by many orders of 
magnitude have sensible, graded effects). Equation 4 shows that the rate k1 is exponentially sensitive 
to this external force, and so are the release rate (Equation 1) and its peak (Equation 3) that are both 
proportional to k1. This exponentially strong sensitivity of the release rate to the force that drives 
the release explains, quantitatively, the precisely timed character of synaptic release: synaptic fusion 
machinery turns on rapidly upon ‍Ca2+‍ influx during the action potential and terminates rapidly upon 
‍Ca2+‍ depletion (Sudhof, 2011).

Equations 1 and 4 reveal that the number of independent SNARE assemblies ‍N = 2‍ per vesicle 
provides the optimal balance between stability and temporal precision of release dynamics (Sinha 
et  al., 2011). Indeed, at ‍N = 1‍, the release is hypersensitive to sub-millisecond ‍[Ca2+]‍ fluctuations 
caused by stochastic opening of ‍Ca2+‍ channels (note the high release rate on the sub-millisecond times-
cale at ‍N = 1‍ in Appendix 1—figure 2B). On the other hand, at ‍N > 2‍, the peak of release following 
an action potential is delayed. The optimality of ‍N = 2‍ is further supported by the least squares fit of 
the experimental data (Kochubey et al., 2009) to Equation 1 with different values of ‍N ‍: ‍N = 2‍ results 
in the smallest fitting errors for all calcium concentrations used in the experiment (Appendix 3—table 
1). However, the theory also reveals that incorporating additional independent SNARE assemblies 
beyond ‍N = 2‍ may be advantageous for the synapses that require robustness against slower ‍[Ca2+]‍ 
fluctuations, beyond the sub-millisecond timescale. Indeed, the presynaptic calcium channels are 
diverse in their intrinsic properties and their interactions with regulatory proteins, and, as the result, 
generate ‍[Ca2+]‍ fluctuations on a wide range of timescales, ‍0.5ms − 20ms‍ (Perez-Reyes, 2003; Dolphin 
and Lee, 2020). The shift of the peak release to longer timescales that accompanies an increase in ‍N ‍, 
as seen in Appendix 1—figure 2B, allows the synapses to ‘avoid’ correspondingly longer-timescale 
fluctuations in ‍[Ca2+]‍. This point is illustrated further in Appendix 1—figure 2C: in synapses with the 
larger values of ‍N ‍, the RRP vesicle release (Equation 2) remains low over longer timescales, thereby 
providing robustness against slower ‍[Ca2+]‍ fluctuations.

In the presence of cooperative interactions among SNAREs that form super-assemblies, k1 in Equa-
tion 4 represents the effective transition rate of a super-assembly. Appendix 1—figure 2D illustrates 
how cooperativity between SNAREs results in a steeper increase of the rate k1 with increasing ‍[Ca2+]‍, 
and hence in a faster vesicle release. Specifically, every additional SNARE in the super-assembly is esti-
mated to increase the release rate by a factor of ‍∼ 100‍ (Appendix 1—figure 2D), a result consistent 
with the previous work (Manca et al., 2019) that utilized a different approach.

Now that we have closed-form expressions for the key characteristics of the neurotransmitter 
release dynamics in hand, we can establish a universal relation for the sensitivity ‍r‍ of a synapse to the 
strength ‍c‍ of the trigger. Nondimensionalization of Equations 3 and 4 gives:

	﻿‍
r = exp

[
1 − (1 − c)

3
2
]

,
‍� (5)

where ‍c ≡ 2n‡CakBT
3∆G‡ ln [Ca2+]

[Ca2+]0 ‍ and 
‍
r ≡

(
a

(1−c)1/2
d⟨n(t)⟩

dt |tmax

) kBT
∆G‡

‍
 are the dimensionless calcium concentra-

tion and peak release rate, and 
‍
a ≡

(
1 + 1

N−1

)N−1
/(ntot1k0)

‍
. If the scaling law in Equation 5 indeed 

captures universal principles of synaptic transmission, data from different synapses should collapse 
onto the curve given by Equation 5. This prediction is tested in the section ‘Application of the theory 
to experimental data’ below.

A postsynaptic response to the action potential events is measured by the peak value of the 
postsynaptic current (PSC). Using the well-established conductance-based model (Destexhe et al., 
1994), the average of the peak PSC can be shown to be proportional to the total number of released 
neurotransmitters (Katz and Miledi, 1965):

	﻿‍ ĪPSC = γ ⟨n(T)⟩ ,‍� (6)

where ‍T ‍ is the duration of the action potential (‍∼ 1ms‍) and ‍γ‍ depends only on the properties of the 
postsynaptic neuron. As our focus is on the AP-evoked neurotransmitter release in synaptic transmis-
sion, ‍γ‍ can be regarded as a constant and postsynaptic receptor saturation can be neglected, so that 

‍⟨n(T)⟩‍ and ‍̄IPSC‍ can be used interchangeably. Note that the presynaptic factors affect the postsynaptic 
response through ‍⟨n(t)⟩‍ as described by Equation 2, and include ‍Ca2+‍-sensitivity of different ‍Ca2+‍ 
sensors in SNAREs (captured through ‍N ‍, ‍k0‍, ‍n

‡
Ca‍ and ‍∆G‡‍) and the sizes of both vesicle pools (‍ntot1‍ 

https://doi.org/10.7554/eLife.73585
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and ‍ntot2‍). Equations 2, 4 and 6 relate the presynaptic action potential to the postsynaptic current 
response and thus complete our framework for synaptic transmission. Detailed derivations of Equa-
tions 1–6 are given in Appendix 1.

To validate the developed analytic theory, we first compare its predictions to data generated 
through numerical simulations of the kinetic scheme in Scheme 1. A simple least squares fit reliably 
recovers input parameters of the simulations (Appendix 2—figure 1 and Appendix 2—figure 2). 
Next, we test the robustness of the theory by comparing it to modified simulations, in which devi-
ations from the assumptions underlying (Equations 1–4) are introduced. The modified simulations 
incorporate (i) the finite-capacity effect of RRP and (ii) heterogeneity of ‍[Ca2+]‍ among different release 
sites. For deviations within physiological range, the analytic expressions still reliably recover the input 
parameters (Appendix 2—figure 3). Details of the simulations are given in Appendix 2.

Application of the theory to experimental data
The availability of analytic expressions for measurable quantities enables direct application of the 
theory to experimental data. A fit of the peak release rate vs. ‍[Ca2+]‍ with Equations 3 and 4 was 
performed for a range of synapses to extract a set of parameters ‍{∆G‡

‍, ‍n
‡
Ca‍, ‍k0}‍ for each synapse. 

These parameters were then used to rescale the peak release rate and calcium concentration to get 
the dimensionless quantities ‍r‍ and ‍c‍ that appear in Equation 5. We utilized the experimental data 
from in vivo measurements on (i) the calyx of Held, a large synapse (diameter ‍∼ 20µm‍) in the auditory 
central nervous system, at different developmental stages (Schneggenburger and Neher, 2000; Lou 

Figure 2. Application of the theory to experiments: verifying universality and quantifying specificity. (Left) 
Measured peak release rate versus calcium concentration for a variety of synapses (Schneggenburger and Neher, 
2000; Bollmann et al., 2000; Miki et al., 2018; Duncan et al., 2010; Diao et al., 2012; Kochubey et al., 2009; 
Wölfel et al., 2007; Lou et al., 2005; Heidelberger et al., 1994; Beutner et al., 2001; Fukaya et al., 2021; 
Sakaba, 2008; Voets, 2000; Yang and Gillis, 2004; Sun et al., 2007). (Right) The same data as shown on the 
left, after the peak release rate and calcium concentration have been rescaled. Despite ten orders of magnitude 
variation in the dynamic range and more than 3 orders of magnitude variation in calcium concentration (left), the 
data collapse onto a single master curve, Equation 5 (right). The collapse indicates that the established scaling 
in Equation 5 is universal across different synapses. The distinct sets of parameters for each of the synapses 
(Appendix 3—table 2) demonstrate the predictive power of the theory as a tool for extracting the unique 
properties of individual synapses from experimental data.

https://doi.org/10.7554/eLife.73585
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et al., 2005; Bollmann et al., 2000; Sun et al., 2007) (ii) parallel fiber - molecular layer interneuron 
(PF-MLI), a small synapse (‍∼ 1µm‍) in the cerebellum (Miki et al., 2018) (iii) the photoreceptor synapse 
(Duncan et al., 2010) (iv) the inner hair cell (Beutner et al., 2001) (v) hippocampal mossy fibre (Fukaya 
et al., 2021) (vi) the cerebellar basket cell (Sakaba, 2008) (vii) the retina bipolar cell (Heidelberger 
et al., 1994) (viii) the chromaffin cell (Voets, 2000) and (ix) insulin-secreting cell (Yang and Gillis, 
2004), as well as (x) two in vitro measurements (Kyoung et al., 2011; Diao et al., 2012). Figure 2 
demonstrates that the data from all these synapses collapse on a single curve given by Equation 5, 
consistent with the prediction of the theory. Even though these synapses have been known to have 
a huge variation in their release rates (up to 10 orders of magnitude) due to the different underlying 
calcium sensors (Cohen and Atlas, 2004; Kerr et al., 2008; Johnson et al., 2010; Kochubey et al., 
2016) and different couplings between the SNAREs and their regulatory proteins or calcium channels 
(Kasai et al., 2012; Vyleta and Jonas, 2014; Stanley, 2016), our theory reveals that all these rates 
can be brought into a compact, universal form (Equation 5). The universal collapse is an indication 
that synaptic transmission in different synapses is governed by common physical principles and that 
these principles are captured by the present theory. Variability across synapses on the molecular level 
is captured through the distinct sets ‍{∆G‡, n‡Ca, k0}‍ for each synapse. Notably, the generality of Equa-
tion 5 spans beyond the context of synaptic transmission: the same scaling has appeared in another, 
seemingly unrelated, instance of biological membrane fusion – infection of a cell by an enveloped 
virus (Zhang and Dudko, 2015).

While a single SNARE can maximally bind ‍nCamax = 4 − 5‍ ions (Radhakrishnan et al., 2009; Brunger 
et al., 2018), the fit of some of the experimental data on the calyx of Held analyzed in Figure 2 
produces the transition state values of ‍n

‡
Ca > 5‍ (Appendix 3—table 2). This result indicates that each 
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Figure 3. Application of the theory to experiments: extracting parameters of synaptic fusion machinery. (A) 
Cumulative release from in vivo experiments (Wölfel et al., 2007) on the Calyx of Held (symbols) and a fit 
with Equation 2 (lines) for different calcium concentrations. (B) ‍Ca2+‍-dependent rate constant of SNARE 
conformational transition from in vivo experiments (Wölfel et al., 2007) and a fit with Equation 4. (C) Content 
mixing occurrence from in vitro experiments (Diao et al., 2012) and a fit with Equation 1. (D) Rapid burst 
magnitude from in vitro experiments (Kyoung et al., 2011) and Equation 2. (E) Facilitation as a function of the 
ratio of residual and control release (as defined in Appendix 3) from the experiment (Barrett and Stevens, 1972) 
on the frog neuromuscular junction (symbols) and from the present theory, Equation 4 (solid line). The fourth-
power model (Barrett and Stevens, 1972; Jackman and Regehr, 2017) is also shown for comparison (dashed 
line). Parameters are shown in Appendix 3.
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SNARE assembly in these synapses is in fact a super-assembly containing two or more cooperative 
SNAREs. We further note that, since the number of calcium ions bound to a SNARE at the transition 
state is generally less than the maximum occupancy for the SNARE, ‍n

‡
Ca < nCamax‍, the synapses with 

the values of ‍n
‡
Ca‍ less than but close to five are likely to contain SNARE super-assemblies as well. Inter-

estingly, if we assume that these synapses have the optimal number ‍N = 2‍ of the super-assemblies, 
and note that the typical rate ‍k1 ≈ 4ms−1

‍ at ‍[Ca2+] = 10µM ‍ would require ‍∼ 3‍ SNAREs per super-
assembly (see Appendix 1—figure 2D), then the theory estimates that each docked vesicle contains 
2 superassemblies × 3 SNAREs/superassembly ‍= 6‍ SNAREs total. This estimate is consistent with the 
sixfold symmetric structure recently found using cryoelectron tomography analysis in cultured hippo-
campal neurons (Radhakrishnan et al., 2021).

The utility of the theory as a tool for extracting microscopic parameters of synaptic fusion machinery 
is further illustrated in Figure 3A–E. A fit of in vivo data for cumulative release at different levels of 

‍[Ca2+]‍ (Wölfel et  al., 2007) with Equation 2 extracts the rate of conformational transition of the 
SNARE assembly, ‍k1([Ca2+])‍ (Figure 3A). A fit of the rate with Equation 4 extracts activation barrier 
and rate at reference concentration ‍[Ca2+]0‍ (Figure 3B) of the SNARE assembly. Fits of in vitro data 
(Kyoung et  al., 2011; Diao et  al., 2012) with Equations 1 and 2 are shown in Figure  3C,D. In 
Figure 3C, the content mixing occurrence, defined in Kyoung et al., 2011 as the average release rate 
normalized by the total number of vesicles, ‍

d⟨n(t)⟩
dt /(ntot1 + ntot2)‍, is fitted with Equation 1. In Figure 3D, 

the rapid burst magnitude, defined in Diao et al., 2012 as the ratio of the numbers of vesicles fused 
within the first ‍1s‍ and within ‍50s‍ after calcium trigger, ‍⟨n(t = 1s)⟩ / ⟨n(t = 50s)⟩‍, is fitted with Equation 2. 
Figure 3E demonstrates that Equation 4 yields a significantly better agreement with the experimental 
data on the frog neuromuscular junction (Barrett and Stevens, 1972) than the empirical fourth-power 
model (Barrett and Stevens, 1972; Jackman and Regehr, 2017) that was originally used to describe 
these data. In contrast to the fourth-power model, Equation 4 accounts for the saturation effect in the 
dose-response curve of a SNARE assembly at high-calcium concentrations (see, e.g. the nonlinearity 
in the rate as a function of calcium concentration on the double logarithmic plots in Figure 2 and 
Figure 3B).

The parameter values extracted from the fits in Figure 2 and Figure 3 as well as the least-square 
fitting algorithm for extracting these parameter values are provided in Appendix 3.

Linking molecular mechanisms to synaptic function
Short-term plasticity
Synaptic plasticity, or the ability of synapses to strengthen or weaken over time depending on the 
history of their activity, underlies learning and memory (Regehr, 2012; Bailey et al., 2015). A measure 
of synaptic strength is the peak of the post-synaptic current, which, in turn, is proportional to cumu-
lative release (Equation 6). The change in synaptic strength that lasts for less than a minute, known 
as short-term plasticity (Regehr, 2012), can be assessed through the paired-pulse ratio, or the ratio 
of the cumulative release for two consecutive action potentials of width ‍T ‍ (typically ‍T ∼ 1/k1 ≪ 1/k2‍) 
that are separated by interpulse interval ‍τint‍. The weakening of a synapse, or short-term depression, 
is typically caused by the decrease of RRP size due to depletion of vesicles or inactivation of RRP 
sites (Regehr, 2012). In contrast, the strengthening of synapses, or short-term facilitation, has been 
attributed to multiple mechanisms (Jackman and Regehr, 2017), including the residual calcium 
hypothesis put forward in the early studies (Katz and Miledi, 1965) and recently proposed buffer 
saturation (Klingauf and Neher, 1997; Neher, 1998; Blatow et al., 2003; Babai et al., 2014; Kawa-
guchi and Sakaba, 2017) and syt7-mediated facilitation (Jackman et al., 2016; Turecek et al., 2016; 
Turecek and Regehr, 2018).

Based on the measured levels of residual calcium concentration of tens to a few hundred nano-
molar (Zucker, 1996; Müller et al., 2007; Jackman et al., 2016), Equation 4 gives an upper bound 
of ‍∼ 1.02‍ for the paired-pulse ratio. This estimate indicates that the level of residual calcium is far from 
what is necessary to trigger the large amplitudes of facilitation that are observed in multiple exper-
iments (Müller et al., 2007; Jackman et al., 2016), in qualitative agreement with the conclusion in 
Jackman et al., 2016.

A more complex version of the residual calcium hypothesis incorporates a facilitation sensor, 
distinct from the calcium sensor that triggers fusion (usually syt1), which binds to residual ‍Ca2+‍ in 
between the consecutive action potentials and increases the release probability by interacting with 

https://doi.org/10.7554/eLife.73585
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the fusion machinery. Synaptotagmin isoform syt7 has been shown to act as a calcium sensor for 
facilitation for multiple synapses in the brain (Jackman et  al., 2016; Chen et  al., 2017; Turecek 
and Regehr, 2018). According to the syt7-mediated facilitation scenario proposed in Jackman and 
Regehr, 2017, let us assume that syt7 is activated by the residual calcium supplied by the first action 
potential, and this activation transiently increases the rate of conformational transition ‍k1([Ca2+])‍ of 
the main calcium sensor (syt1) by a factor of ‍σ > 1‍. Let ‍τres‍ denote the characteristic timescale on 
which the new rate ‍σk1([Ca2+])‍ decays due to the removal of intracellular residual calcium, and let ‍τRRP‍ 
denote the recovery timescale of RRP. Assuming the first-order kinetics of calcium removal and RRP 
recovery, the change in synaptic strength due to the facilitation sensor mechanism can be obtained 
from Equation 2 as (see Appendix 1)

	﻿‍

⟨nf(T)⟩
⟨ni(T)⟩ ≃

[
1 − e−

τint
τRRP

(
1 − e−k1([Ca2+])T

)N
](

1−e−
(

1+(σ−1)e−τint /τres
)

k1([Ca2+])T

1−e−k1([Ca2+])T

)N
,
‍�

(7)

where the rate constant ‍k1([Ca2+])‍ is given by Equation 4.
Equation 7 enables a quantitative comparison with existing experimental data on a variety of 

synapses where the activation of syt7 by residual calcium has been proposed as the primary mech-
anism of facilitation (Luo et al., 2015; Jackman et al., 2016; Turecek and Regehr, 2018). Figure 4 
(A–E) shows that the facilitation sensor model in Equation 7 successfully explains, with no additional 
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Figure 4. Functional implications of the theory. (A–F) The paired-pulse ratio as a measure of short-term plasticity 
from experiments (Jackman et al., 2016; Turecek and Regehr, 2018; Müller et al., 2007) (symbols) and theory 
(lines) on a variety of synapses. Equation 7 for the syt7-mediated facilitation captures the data in A-E, and 
Equation 8 for the buffer saturation mechanisms captures the data in F over most of the interstimulus timescales 
probed in the experiments. The theory also identifies the regimes where particular mechanisms fail to account for 
the observed facilitation (A, B, D, E). (G) Paired-pulse ratio predicted by Equation 8. Synapses exhibit short-term 
facilitation or depression depending on the relative timescales of the recovery of the readily releasable pool, 

‍τRRP‍, and dissociation of calcium, ‍τCa‍. A given synapse can exhibit multiple forms of short-term plasticity as the 
time interval ‍τint‍ is varied. (H) Trade-off between the maximum transmission rate ‍f = 1/T ‍ and fidelity ‍1 − pfail‍ from 
Equation 9 for different RRP sizes. (I) Synaptic efficacy, ‍1 − P(error)‍, from Equation 11. The plateau around the 
optimal synaptic strength (Equation 12) indicates that no fine-tuning is required for near-optimal transmission 
of large synapses. Higher ‍Ca2+‍-sensitivity ‍FAP/Frest‍ results in broader plateau for near-optimal performance. 
Parameters are shown in Appendix 3.
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assumptions, the experimental data on Schaffer collateral, perforant path, corticothalamic, cerebellar 
granule cell, and retinal ribbon synapses over most of the interstimulus timescales probed in the 
experiments. At the same time, the comparison between the data and theory shows that the facil-
itation sensor mechanism alone fails to explain the data on short (‍< 10ms‍) timescales for Schaffer 
collateral and perforant path synapses (Figure 4D and E) as well as on the timescales ‍> 500ms‍ for 
corticothalamic and granule cell synapses (Figure 4A and B), indicating that other facilitation mecha-
nisms are present and dominate on these timescales. It is worth emphasizing that Equation 7 provides 
a quantitative model for the syt7-syt1 mechanism, and enables a quantitative test of the facilitation 
sensor hypothesis, for different synapses through a single unifying analytic expression. Furthermore, 
the analytic tractability of the present theory allows the extraction of the parameters that govern the 
syt7-syt1 mechanism. In particular, the extracted parameters indicate that the syt7-syt1 interaction 
is strongest (‍σ = 2.05‍) in cerebellar granule cell synapses and weakest (‍σ = 1.49‍) in perforant path 
synapses. The full list of parameters is included in Appendix 3—table 3.

According to the buffer saturation hypothesis of facilitation (Neher, 1998; Babai et al., 2014), 
‍Ca2+‍ buffer captures some of the ‍Ca2+‍ ions supplied by the first action potential thereby decreasing 
the calcium signal for the sensor that triggers fusion. Upon arrival of the second action potential, 
the fully or partially saturated buffer no longer constrains calcium concentration so that the signal 
becomes larger, ‍[Ca2+]f > [Ca2+]i‍, and can produce facilitation. Let ‍τCa‍ denote the characteristic 
timescale on which the increment in calcium concentration decays due to the dissociation of calcium 
from the buffer. Assuming the first-order kinetics of the calcium concentration increment and RRP 
vesicle replenishment, the change in synaptic strength due to the buffer saturation mechanism can be 
obtained from Equation 2 as (see Appendix 1)

	﻿‍

⟨nf(T)⟩
⟨ni(T)⟩ ≃

[
1 − e−

τint
τRRP

(
1 − e−k1([Ca2+]f)T

)N
](

1−e−k1([Ca2+]f)T

1−e−k1([Ca2+]i)T

)N
,
‍�

(8)

where the rate constant ‍k1([Ca2+])‍ is given by Equation 4, calcium concentrations during the first and 

second action potentials are ‍[Ca2+]i‍ and ‍[Ca2+]f = [Ca2+]i + ICae−
τint
τCa ‍, and ‍ICa‍ is the amplitude of the 

calcium concentration increment due to buffer saturation.
Figure 4F shows a quantitative comparison between Equation 8 and the experimental data on 

calyx of Held (Müller et al., 2007) where buffer saturation has been proposed as the primary mech-
anism of facilitation (Babai et  al., 2014; Luo and Südhof, 2017). The buffer saturation model in 
Equation 8 successfully explained, with no assumptions of additional mechanisms, the data over all 
interstimulus timescales probed in the experiment, thus supporting buffer saturation as the dominant 
mechanism in mature calyx of Held synapses. Furthermore, the theory enabled the extraction of the 
dissociation constant for the local calcium buffer and the rate of RRP replenishment from the experi-
mental data (Appendix 3).

The analytic expressions in Equations 7; 8 can be used to explore, quantitatively, how short-term 
plasticity is affected by other factors, such as the interplay between the key timescales and the sensi-
tivity of the underlying calcium sensors. For example, Equation 8 predicts that, for fixed interpulse 
interval ‍τint‍, the synapse will exhibit short-term facilitation or short-term depression depending on the 
ratio of the timescales, ‍τCa/τRRP‍, as illustrated in Figure 4G (Tank et al., 1995). Equation 8 further 
shows that a given synapse may exhibit multiple forms of short-term plasticity when the interpulse 
interval ‍τint‍ is varied (Figure 4G). Such coexistence of multiple forms of plasticity has been observed 
experimentally (Regehr, 2012).

A notable feature of Equation 8 is the existence of an optimal value of interpulse interval at which 
facilitation (at large ‍τCa/τRRP‍) or depression (at small ‍τCa/τRRP‍) of synaptic transmission is maximal 
(Figure 4G). The optimality becomes less pronounced at intermediate values of ‍τCa/τRRP‍ where the 
synapse exhibits both facilitation and depression (note the curve at ‍τCa/τRRP = 0.4‍ in Figure  4G), 
suggesting a more subtle role of short-term plasticity in transmitting transient signals (Tsodyks and 
Markram, 1997; Fuhrmann et al., 2002).

Equation 8 further reveals that a higher ‍Ca2+‍-sensitivity of the calcium sensor leads to larger facil-
itation (Appendix 1—figure 3B), indicating that a high ‍Ca2+‍-sensitivity of synaptic fusion machinery 
is essential for the large dynamic range of short-term plasticity. An example of this relationship can 
be found in Rozov et al., 2001, and it generally applies to the facilitation synapses where the second 
spike is associated with higher ‍Ca2+‍ influx, as is the case for the residual ‍Ca2+‍ and buffer saturation 

https://doi.org/10.7554/eLife.73585
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mechanisms. Higher ‍[Ca2+]‍ at the second spike causes a larger increase in rate constant ‍k1([Ca2+])‍ for 
a more sensitive synapse compared to the corresponding increase in ‍k1([Ca2+])‍ for a less sensitive 
synapse, thus triggering more neurotransmitter release.

Finally, Equation 8 reveals how the molecular-level properties of synapses regulate the facilitation 
and depression modes of short-term plasticity (Appendix 1—figure 3C). The unique properties of 
neurotransmitter release machinery in different synapses are captured through unique sets of param-
eters ‍{∆G‡

‍, ‍n
‡
Ca‍, ‍k0}‍ and ‍τCa‍ for each synapse and can reflect different isoforms of synaptotagmin in 

SNAREs (Hui et al., 2005; Wolfes and Dean, 2020), different coupling mechanisms between SNAREs 
and the scaffolding proteins at release sites (Vyleta and Jonas, 2014; Gramlich and Klyachko, 2019), 
or different types of ‍Ca2+‍ buffering proteins present at the presynaptic terminal (Schwaller, 2020). 
These results highlight how the diversity of the molecular machinery for vesicle fusion enables the 
diverse functions of short-term plasticity (Südhof, 2013).

Transmission rate vs. fidelity
An important characteristic of neuronal communication is fidelity of synaptic transmission. Two 
measures of fidelity can be considered at the single-synapse level for different types of synapses. The 
probability of spike transmission is a natural measure of fidelity for giant synapses in sensory systems 
(Borst and Soria van Hoeve, 2012) and neuromuscular junctions. The probability of a postsynaptic 
voltage/current response, beyond the noise level, to a presynaptic spike is a measure of fidelity for 
small synapses in the central nervous system (CNS) (Dobrunz and Stevens, 1997). The probabilistic 
nature of release mechanisms at synapses is a common origin of synaptic failure (Allen and Stevens, 
1994).

Although the two definitions of fidelity apply to different types of synapses, the present theory 
allows for a unifying treatment of both phenomena. We assume that the desired postsynaptic response 
– a postsynaptic spike or a postsynaptic current beyond the noise level – is generated only if the 
number of released vesicles in response to an action potential exceeds some threshold ‍M ‍. The value 
of ‍M ‍ depends on the density of postsyanptic receptors and the excitability of the postsynaptic neuron 
(Biederer et al., 2017). For both types of the postsynaptic response, the probability that the synaptic 
transmission fails is then obtained from the probability ‍P

{
n(t) = m

}
‍ that ‍m‍ vesicles fuse by time ‍t‍ as

	﻿‍
pfail

(
T, k1([Ca2+]), ntot1

)
=

M∑
m=0

P
{

n(T) = m
}
≃

M∑
m=0

(
ntot1

m

)
F1(T)m (

1 − F1(T)
)ntot1−m ,

‍�
(9)

where 
‍
F1(T) =

(
1 − e−k1([Ca2+])T

)N

‍
. Since the presynaptic neuron cannot generate a second spike 

during time ‍[0, T]‍, ‍f ≡ 1/T ‍ represents the maximum transmission rate. Equation 9 predicts that a 
higher maximum transmission rate ‍f ‍ results in a higher probability of transmission failure ‍pfail‍ and thus 
lower fidelity (‍1 − pfail‍). This trade-off between the maximum rate and fidelity in synaptic transmission 
is shown in Figure 4H. Consistent with intuitive expectation, Equation 9 further predicts that, for a 
given maximum transmission rate, the probability of transmission failure can be constrained by the 
RRP size ‍ntot1‍ and/or SNARE conformational rate ‍k1([Ca2+])‍ (Figure 4H).

Equation 9 allows us to make a quantitative statement regarding the molecular-level constraints on 
the fidelity of synapses of different sizes. Faithful spike transmission implies that the threshold ‍M ‍ for 
postsynaptic response is smaller than the average cumulative release, ‍M < ⟨n(T)⟩ = ntot1F1(T)‍. Then, 
by the Chernoff bound for Equation 9 (Vershynin, 2018),

	﻿‍
pfail

(
T, k1([Ca2+]), ntot1

)
≤ e−αntot1

(
F1(T)
α +ln α

F1(T) −1
)

,
‍�

(10)

where ‍α ≡ M/ntot1‍. Because both ‍M ‍ and ‍ntot1‍ scale linearly with the area of synaptic junctions (Nakamura 
et al., 2015; Miki et al., 2017; Holler et al., 2021), it is reasonable to assume that ‍α = M/ntot1 < F1(T)‍ 
is kept at an approximately constant level for different synapses. Since ‍F1(T)/α + ln

(
α/F1(T)

)
− 1 > 0‍, 

the probability of synaptic failure decreases exponentially as the RRP size ‍ntot1‍ increases. Thus, it follows 
from Equation 10 that larger synapses tend to be significantly more reliable, i.e., have an exponen-
tially smaller probability to fail, than smaller synapses in transmitting signals (Dobrunz and Stevens, 
1997).

https://doi.org/10.7554/eLife.73585
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Synaptic efficacy
Equations 9–10 show that synaptic strength can be increased, that is, failure suppressed, by increasing 
the RRP size or decreasing the threshold for eliciting postsynaptic response. However, a high synaptic 
strength increases the probability of an error read, that is, a postsynaptic response generated without 
a presynaptic spike. We will now establish the condition for the optimal synaptic strength through 
the balance of probabilities of failure (no postsynaptic response to an action potential) and error 
read (postsynaptic response in the absence of an action potential). Let ‍[Ca2+]rest‍ and ‍[Ca2+]AP‍ be the 
calcium concentrations at rest and during the action potential and ‍q‍ the probability of firing an action 
potential by the presynaptic neuron. The total probability of transmission error is

	﻿‍

P(error) = qpfail

(
T, k1([Ca2+]AP), ntot1

)
� �� �

no postsynaptic response after presynaptic spike

+
(
1 − q

) (
1 − pfail

(
T, k1([Ca2+]rest), ntot1

))
� �� �

postsynaptic response without presynaptic spike

.

‍�
(11)

Here, we consider the long-term (minutes to days) change in synaptic strength, known as long-term 
plasticity, through the presynaptic mechanisms and predominantly due to changes in the RRP size, 

‍ntot1‍, which has been shown to be regulated through retrograde signaling according to the threshold 
‍M ‍ on the postsynaptic side (Haghighi et al., 2003; Yang and Calakos, 2013; Mayford et al., 2012; 
Bailey et al., 2015). Synaptic efficacy, ‍1 − P(error)‍, measures the ability of the synapse to faithfully 
transmit signal. The optimal RRP size is obtained by minimizing the transmission error in Equation 11:

	﻿‍
n∗tot1 =

⌈
M

(
1 +

ln FAP
Frest

ln 1−Frest
1−FAP

)
+

ln q
1−q

ln 1−Frest
1−FAP

⌉
,
‍�

(12)

where ‍⌈x⌉‍ denotes ceiling, i.e. the smallest integer greater than or equal to ‍x‍, and 

‍
FAP =

(
1 − e−k1([Ca2+]AP)T

)N

‍
 and 

‍
Frest =

(
1 − e−k1([Ca2+]rest)T

)N

‍
 are the fusion probabilities during the 

action potential and at rest. Equation 12 predicts that, as the synapse is stimulated more frequently (‍q‍ 
increases), a larger RRP size is needed for the optimal performance, that is, the optimal RRP size and 
hence the optimal synaptic strength increase, resulting in long-term potentiation on the presynaptic 
side.

How far can the RRP size deviate from its optimal value without a significant loss of synaptic effi-
cacy? The range of RRP sizes for near-optimal performance can be estimated through the Chernoff 
bound for Equation 11:

	﻿‍ P(error) ≤ qe−αntot1

(
FAP
α +ln α

FAP
−1

)
+
(
1 − q

)
e−

(
1−α

)
ntot1

(
1−α
Frest

+ln Frest
1−α−1

)
.‍� (13)

According to Equation 13, for synapses that are large (‍ntot1 ≫ 1‍) and sufficiently sensitive to ‍Ca2+‍ 
(‍FAP/Frest ≫ 1‍), the error probability is exponentially small and thus insensitive to changes in the RRP 
size ‍ntot1‍. Specifically, the near-optimal range for ‍ntot1‍ can be estimated from ‍Frest ≲ α ≲ FAP‍ to be 

‍M/FAP ≲ ntot1 ≲ M/Frest‍. Since ‍1/FAP ≪ 1/Frest‍, this range is broad, indicating that large synapses do 
not need to fine-tune their RRP size in order to maintain near-optimal transmission. This robustness in 
synaptic transmission is illustrated in Figure 4I.

Discussion
The capacity of neurons to transmit information through synapses rapidly and precisely is the key to 
our ability to feel, think, or perform actions. Despite the challenge posed for experimental studies 
by the ultrashort timescale of synaptic transmission, a number of recent experiments in vivo (Heidel-
berger et al., 1994; Schneggenburger and Neher, 2000; Lou et al., 2005; Bollmann et al., 2000; 
Miki et al., 2018; Duncan et al., 2010; Kochubey et al., 2009; Wölfel et al., 2007; Sun et al., 2007; 
Voets, 2000; Sakaba, 2008; Yang and Gillis, 2004; Beutner et al., 2001; Fukaya et al., 2021) and in 
reconstituted systems (Kyoung et al., 2011; Diao et al., 2012) demonstrated the ability to probe the 
kinetics of synaptic transmission at the single-synapse level. By design, these experiments generate 
pre-averaged data that encode unprecedented information on the molecular mechanisms of synaptic 
function; this information is lost once the data are averaged over multiple synaptic inputs. However, 
decoding this information requires a quantitative framework that would link the quantities that are 

https://doi.org/10.7554/eLife.73585
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measured in the experiments to the microscopic parameters of the synaptic release machinery. Here, 
we presented a statistical-mechanical theory that establishes these links.

Analytic theory for synaptic transmission
Our theory casts the synaptic fusion scenarios observed in different experimental setups into a 
unifying kinetic scheme. Each step in this scheme has its mechanistic origin in the context of a given 
experimental setup. In the context of in vivo experiments, distinct vesicle pool dynamics are taken into 
account (Alabi and Tsien, 2012; Yang and Calakos, 2013; Kaeser and Regehr, 2017) to quantita-
tively explain the different timescales observed in the vesicle release dynamics (Kaeser and Regehr, 
2014; Neher, 2017; Rozov et al., 2019): vesicles from the readily releasable pool (RRP) fuse readily 
once the critical number of SNARE complexes undergo conformational transitions upon ‍Ca2+‍ influx 
(fast step), while the reserve pool supplies vesicles to the RRP (slow step). In the context of in vitro 
experiments, different timescales in vesicle release dynamics are due to the observed distinct states 
of docked vesicles (Diao et al., 2012; Kweon et al., 2017; Gipson et al., 2017): the vesicles that 
are in a point contact with the membrane fuse readily upon ‍Ca2+‍-triggered SNARE conformational 
transition (fast step), while the vesicles that are in an extended contact become trapped in a hemifu-
sion diaphragm state prior to fusing with the membrane (slow step). Although the presence of these 
distinct docked states in vivo is still under debate (Neher and Brose, 2018; Brunger et al., 2018), 
the realization that both of the fusion scenarios can in fact be mapped onto the same kinetic scheme 
allowed us to capture these scenarios through a unifying analytical theory. The fact that each fusion 
step in the kinetic scheme has a concrete mechanistic interpretation makes the theory directly predic-
tive in both in vitro and in vivo experiments.

The calculated measurable quantities include: (i) cumulative release, which quantifies the number 
of vesicles fused during a given time interval following the action potential, (ii) temporal profile of the 
release rate, which measures the rate of change in the number of fused vesicles, (iii) peak release rate, 
which is a measure of sensitivity of a synapse to the trigger, and (iv) the calcium-dependent rate of 
SNARE conformational change. A least-squares fit of data with these expressions yields the activation 
energy barrier and rate constant for SNARE conformational change at any calcium concentration of 
interest, the critical number of SNARE assemblies necessary for fusion, and the sizes of the readily 
releasable and reserve vesicle pools.

Since the pioneering efforts to quantitatively describe synaptic transmission (Katz and Miledi, 
1965; Dodge and Rahamimoff, 1967), multiple models have been developed, such as the “five-
site” model and its variants (Klingauf and Neher, 1997; Schneggenburger and Neher, 2000; Boll-
mann et al., 2000; Sakaba, 2008; Kochubey et al., 2009; Voets, 2000; Beutner et al., 2001) and 
the dual ‍Ca2+‍ sensor models (Sun et al., 2007; Pan and Zucker, 2009). These models provided valu-
able insights into the action-potential-triggered neurotransmitter release in the particular synapses 
for which they have been developed. However, the existing models have at least two fundamental 
limitations. First, the system-specific nature of these models limits their applicability beyond specific 
systems, so that the description of synapses with different calcium-response properties requires the 
use of different models. In contrast, the present theory is applicable to a wide variety of synaptic 
types, despite the differences in their fusion pathways, different calcium sensors that they imple-
ment (Wolfes and Dean, 2020) and different couplings between their regulatory proteins (Kasai 
et al., 2012; Gramlich and Klyachko, 2019). Indeed, recent experiments have suggested that the 
calcium-response properties of synapses are much more diverse than had been thought previously 
(Özçete and Moser, 2021; Gómez-Casati and Goutman, 2021; Schröder et al., 2021). Second, the 
existing models did not produce analytic expressions for the key observables that emerge from the 
experiments, which limits the predictive value of these models, their utility in extracting information 
from the experiments, and their ability to reveal the organizational principles of synaptic transmis-
sion. In contrast, the present theory yields analytic expressions for the key measurable characteris-
tics of synaptic transmission, which can be used as the tools for extracting the essential molecular 
parameters of synaptic release machinery through a direct fit to experimental data. Thus, the predic-
tive power of the present theory in describing synaptic transmission in vastly different synapses 
through a unifying framework is complemented by the utility of the theory as a tool for extracting the 
molecular parameters that uniquely identify each synapse. The theory links the underlying molecular 
diversity of synapses to the distinct phenomenological responses observed in experiments, and thus 
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constitutes a constructive step toward a yet more complete description of synaptic transmission 
(Stevens, 2000).

The theory presented here has several limitations. (i) Our treatment of the vesicle replenishment rate 
k2 as a constant is justified by its weak sensitivity to the intracellular calcium concentration compared 
to that of k1, as found in recent experiments (Wölfel et al., 2007; Kobbersmed et al., 2020; Kusick 
et al., 2020). However, in the response to a tetanic stimulus, where the asynchronous component of 
the release becomes dominant, the calcium-dependence of k2 may no longer be negligible. Explicitly 
taking this dependence into account in the theory will allow the extraction of the parameters for post-
tetanic potentiation. (ii) The theory describes synaptic transmission at the level of a single synapse. 
The theory was motivated by the experimental setups that are capable of probing synaptic transmis-
sion at the single-synapse level and is applicable both to giant synapses with many active zones in 
sensory systems (Borst and Soria van Hoeve, 2012) and to small synapses with few active zones in 
the brain (Harris and Weinberg, 2012; Figure 2). However, a postsynaptic neuron usually receives 
inputs from many synaptic connections, and the cellular response is an integration of these inputs. The 
analytic expressions presented above can be directly applied to integrated multiple synaptic inputs 
in the cases where the molecular features of the presynaptic and postsynaptic sides are similar across 
the synapses, for example when the synapses originate from the same axon and connect to nearby 
dendritic regions of a postsynaptic neuron (Branco and Staras, 2009). The theory can be extended 
to account for the effects of heterogeneous presynaptic inputs by applying the derived expressions 
to each synapse separately with an individual set of microscopic parameters for each synapse. (iii) 
We treated the postsynaptic response as a linear function of neurotransmitter release (Equation 6). 
Such a treatment is sufficient to explain the experimental data on neurotransmitter release (Figure 2 
and Figure 3) and the paired-pulse ratio in short-term plasticity (Figure 4) through a single, unifying 
framework. The theory can be extended to account for the nonlinearity of postsyanptic response by 
replacing Equation 6 with a relevant nonlinear function. Such an extension will enable the elucidation 
of the details of active dendritic integration of heterogeneous synaptic inputs.

‍Ca2+‍-dependent rate of SNARE conformational transition from Kramers 
theory
The rate-limiting step in the initiation of fusion of the synaptic vesicles that are docked on the presyn-
aptic membrane is the conformational transition of the critical number of SNARE assemblies tethering 
the vesicles to the membrane (Kaeser and Regehr, 2014). We derived the calcium-dependence of 
the SNARE conformational rate from the classical reaction-rate theory (Kramers, 1940) which we 
generalized to include an external trigger – calcium influx. The resulting analytic expression reveals 
that the SNARE conformational rate, and hence both the vesicle release rate and the peak of the 
release rate, are all exponentially sensitive to the force that drives the release – the logarithm of 
calcium concentration (the logarithmic scale arises naturally due to the several-orders-of-magnitude 
changes in ‍[Ca2+]‍ following an action potential). This result provides a quantitative explanation for 
the remarkable synchrony of synaptic vesicle fusion: since the rising of calcium concentration after an 
action potential occurs on a microsecond timescale and is thus essentially instantaneous on the times-
cale of synaptic release, the exponential sensitivity of the release rate to this nearly instantaneous 
trigger ensures an ultra-rapid initiation of vesicle fusion upon calcium influx. Likewise, the exponential 
sensitivity of the release rate to the trigger ensures that the fusion process terminates rapidly upon 
calcium depletion (Brunger et al., 2018).

Unlike the conventional model that postulates ‍kSNARE ∼ [Ca2+]4
‍, our expression in Equa-

tion 4 naturally accounts for the saturation effect at intermediate-to-high calcium concentrations 
(Figure 2 and Figure 3B), which is the typical regime for the AP-evoked neurotransmitter release. 

In the limit of 
‍
ln
(

[Ca2+]
[Ca2+]0

)
≪ 1

‍
, the asymptotic expansion of Equation 4 recovers the power-law 

‍
k1([Ca2+]) ∼

(
[Ca2+]
[Ca2+]0

)n‡Ca

‍
, indicating that a power-law description is only valid for the initial rise of 

the release rate in response to calcium. Moreover, the power exponent ‍n
‡
Ca‍ is not a universal number 

(e.g., 4) but rather it depends on the details of the molecular constitutes of the SNARE complexes 
in a given synapse, such as different calcium sensors from synaptotagmin family (Wolfes and Dean, 
2020) and different couplings between the regulatory proteins (Kasai et al., 2012; Stanley, 2016) 
(Appendix 3—table 2).

https://doi.org/10.7554/eLife.73585
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Critical number of SNARE assemblies for vesicle fusion
The theory further reveals how the kinetics of vesicle fusion are affected by the critical number of 
SNARE assemblies per vesicle. Given the lack of general consensus (Südhof, 2013; Sinha et al., 2011; 
van den Bogaart and Jahn, 2011; Brunger et al., 2018), the theory makes no assumptions about 
the specific number of SNAREs necessary for fusion, and the number itself can serve as a free param-
eter when sufficient data is available for a robust fit. Interestingly, however, the theory suggests that 
‍N = 2‍ independent SNARE assemblies per vesicle provide the optimal balance between stability and 
precision of release dynamics. Indeed, on the one hand, in the presence of a single SNARE, the high 
values and an exponentially-steep temporal dependence of the release rate make the rate highly 
sensitive to sub-millisecond calcium fluctuations, and thus a very fine tuning of the calcium concentra-
tion would be necessary to prevent instability of the fusion process. On the other hand, the values of 
‍N ‍ greater than two lead to longer delays in the peak of the release rate following an action potential, 
thus reducing the temporal precision of vesicle release. Furthermore, a least-squares fit of the release 
rate from the experiment (Kochubey et al., 2009) with the theory at different values of ‍N ‍ reveals that 
‍N = 2‍ indeed results in the smallest fitting errors for all calcium concentrations. The generality of this 
result can be determined as more data on the release dynamics for different synapses becomes avail-
able. The theory further suggests that incorporating additional SNARE assemblies beyond ‍N = 2‍ may 
be advantageous for the synapses that require robustness against slow ‍[Ca2+]‍ fluctuations (Mohrmann 
et al., 2010).

The theory can account for cooperativity between SNAREs and can help identify the presence of 
SNARE super-assemblies (Radhakrishnan et al., 2021). Mathematically, this is due to the formal defi-
nition of the parameter ‍N ‍ as the number of independent reaction steps needed for fusion. Each such 
step may represent a conformational transition of a single SNARE (in the absence of cooperativity) or 
of a multi-SNARE super-assembly (i.e. an assembly of cooperative SNAREs). The calcium-dependent 
release rate ‍k1([Ca2+])‍ in Equation 4 should be regarded as the transition rate for each independent 
SNARE unit: if individual SNAREs act independently, k1 is the transition rate of a single SNARE and 
‍N ‍ is the number of SNAREs per vesicle; alternatively, if multiple SNAREs undergo conformational 
change cooperatively, k1 is the effective transition rate of a super-assembly and ‍N ‍ is the number of 
the super-assemblies per vesicle. The theory allows one to detect the presence of super-assemblies 
through the values of ‍n

‡
Ca‍ extracted from the fit: if ‍n

‡
Ca‍ is larger than the number of ‍Ca2+‍ binding sites 

for a single SNARE (‍nCamax = 5‍), it is an indication that a super-assembly of more than one SNARE 
is present. Applying this criterion produced evidence for the presence of such super-assemblies in 
several experimental data sets analyzed in this study. More detailed measurements will be needed 
to get a more direct estimate of the number of SNAREs in each super-assembly. One approach is 
to perform single-molecule measurements of the kinetics of a single SNARE under different calcium 
concentrations, fit the resulting rate ‍k1([Ca2+])‍ with Equation 4 to extract the value of ‍n

‡
Ca‍ for the 

single SNARE, and to compare this value with the value of ‍n
‡
Ca‍ extracted from a fit with Equation 4 of 

in vivo data to get an estimate for the number of SNAREs in each super-assembly. The theory suggests 
that synapses may have more than 2 SNAREs while still having the optimal value of ‍N = 2‍: the SNAREs 
in these synapses may form ‍N = 2‍ super-assemblies, each comprising more than one SNARE.

Universality vs. specificity in synaptic transmission
The fact that, in all chemical synapses, the delay time from the action potential triggering to vesicle 
fusion is determined by the conformational transition of preassembled SNARE complexes, and that 
the conformational transition itself occurs through a single rate-limited step, suggests possible univer-
sality in synaptic transmission across different synapses despite their structural and kinetic diversity. 
Our theory made this intuition precise through a non-dimensionalized scaling relationship between 
the peak release rate and calcium concentration (Equation 5), which is predicted to hold for all 
synapses irrespective of their variability on the molecular level. In statistical physics, the significance 
of universality is that it indicates that the observed phenomenon (here, synaptic transmission) realized 
in different systems is governed by common physical principles that transcend the details of particular 
systems.

The universal relation was tested using published experimental data on a variety of synapses, 
including in vivo measurements on the calyx of Held studied at different developmental stages, parallel 
fiber-molecular layer interneuron, the photoreceptor synapse, the inner hair cell, the hippocampal 
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mossy fiber, the cerebellar basket cell, the retina bipolar cell, the chromaffin cell, and the insulin-
secreting cell, as well as a reconstituted system. Despite more than an order of magnitude difference 
in the size of these synapses, ten orders of magnitude variation in the dynamic range of synaptic 
preparations, and a range of calcium concentrations spanning more than three orders of magnitude, 
the data for the sensitivity of the synapses to the trigger collapsed onto a universal curve, as predicted 

by the theory. The collapse serves as an evidence that the established scaling of the normalized peak 

release ‍r‍ with calcium concentration ‍c‍, 
‍
r = exp

[
1 − (1 − c)3/2

]
,
‍
 is indeed universal across different 

synapses. At the same time, the unique properties of specific synapses are captured by the theory 
through the distinct sets of parameters of their molecular machinery: the critical number of SNAREs, 
their kinetic and energetic characteristics, and the sizes of the vesicle pools. The practical value of the 
theory as a tool for extracting microscopic parameters of synapses was further illustrated by fitting 
in vivo and in vitro data for cumulative release and for the average release rate at different calcium 
concentrations. Compared to previous work based on phenomenological formulas (Kochubey et al., 
2011), the mechanistic nature of the present theory allows it to be further tested by independently 
measuring the microscopic parameters of synaptic fusion machinery ‍{∆G‡, n‡Ca, k0}‍ through single-
molecule experiments (Gao et al., 2012; Oelkers et al., 2016) and the postsynaptic response through 
electrophysiological recording experiments.

From molecular mechanisms to synaptic function
We applied the theory to establish quantitative connections between the molecular constituents of 
synapses and synaptic function. Previous quantitative analyses of the experimental data on short-term 
plasticity were based either on the empirical fourth-power model (Magleby, 1973) or on custom 
models that are only applicable to specific calcium sensors (Klingauf and Neher, 1997; Pan and 
Zucker, 2009). The present theory provides analytic expressions for the paired-pulse ratio (Equations 
7 and 8) that can be directly compared with the existing experimental data on a variety of synapses 
(Müller et al., 2007; Jackman et al., 2016; Turecek and Regehr, 2018). As an illustration of the func-
tional implications of the theory, we tested two prevalent hypotheses for the mechanism of synaptic 
facilitation: syt7-mediated facilitation and buffer saturation. Our results support the facilitation sensor 
(syt7) as the dominant mechanism for short-term facilitation over most of the interstimulus timescales 
in the Schaffer collateral, perforant path, corticothalamic, cerebellar granule cell, and retinal ribbon 
synapses, in agreement with (Jackman et  al., 2016; Turecek and Regehr, 2018) but contrary to 
an earlier study that has suggested other mechanisms for facilitation in the retinal ribbon synapse 
(Luo et al., 2015). The theory also identified the regimes where the proposed mechanisms fail to 
account for the observed facilitation. In particular, the syt7-mediated facilitation cannot explain data 
at ‍> 500ms‍ for cerebellar granule cell and corticothalamic cell synapses, plausibly due to a dominant 
effect of buffer saturation in this regime (Kawaguchi and Sakaba, 2017; Rebola et al., 2019). Like-
wise, the failure of the syt7 mechanism to explain facilitation in Schaffer collateral and perforant path 
synapses at ‍< 10ms‍ suggests a significant contribution of the calcium current facilitation in this regime 
(Nanou et al., 2016). We limited the discussion of the short-term plasticity to the two mechanisms of 
synaptic facilitation and to the data on the paired-pulse ratio as illustrative examples, but other mech-
anisms can be explored in an analogous manner. For example, spike-broadening effects (Cho et al., 
2020) and calcium-dependent vesicle recycling (Marks and McMahon, 1998) can be incorporated 
into the theory by introducing variations in ‍T ‍ and k2, respectively.

The theory enabled a quantitative description of how short-term facilitation, depression, or coex-
istence of multiple forms of plasticity in a given synapse emerge from the interplay between the 
molecular-scale factors such as the timescales of RRP recovery and buffer dissociation as well as the 
sensitivity of ‍Ca2+‍-sensors. In contrast to phenomenological models of short-term plasticity (Tsodyks 
and Markram, 1997; Fuhrmann et al., 2002; Rosenbaum et al., 2012), the mechanistic nature of 
the present theory reveals the connection between temporal filtering of synaptic transmission and 
calcium-sensitivity of synaptic fusion machinery, and shows how diverse short-term facilitation/depres-
sion modes emerge from the diversity of the molecular constituents.

While one intuitively expects that there must be a tradeoff between the maximum transmission 
rate and fidelity of a synapse, our theory turns this intuition into a quantitative relation (Equation 
10). The trade-off relation shows how transmission failure can be controlled by changing the micro-
scopic properties of the vesicle pool and SNARE complexes. The relation further shows that the 
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probability of synaptic failure decreases exponentially with increasing the synapse size, which makes 
large synapses significantly more reliable than small synapses in transmitting signals. Furthermore, the 
established condition for the maximal synaptic efficacy (Equation 12) reveals that, for large synapses, 
the parameter range of near-optimal performance is broad, indicating that no fine tuning is needed 
for these synapses to maintain near-optimal transmission (Figure 4I). This finding may also be relevant 
to small synapses: although a small size of their individual RRPs makes them less reliable in trans-
mitting signals individually, trans-synaptic interactions that couple many nearby small synapses may 
result in a large ‘effective’ RRP (Bailey et al., 2015) and thus enable small synapses to collectively 
maintain near-optimal transmission without fine-tuning. Altogether, the results of the theory provide 
a quantitative basis for the notion that the molecular-level properties of synapses are not merely 
details but are crucial determinants of the computational and information-processing synaptic func-
tions (Südhof, 2013). Limitations of the theory and possible routes to generalize it to other settings 
are also discussed.

Other biological processes, including infection by enveloped viruses, fertilization, skeletal muscle 
formation, carcinogenesis, intracellular trafficking, and secretion, have features that are very similar to 
those in synaptic transmission, despite the bewildering number and structural diversity of the molec-
ular constituents involved (Harrison, 2017). These processes occur through membrane fusion that 
(i) requires overcoming high energy barriers, (ii) is controlled by proteins that undergo a conforma-
tional transition once exposed to a trigger, (iii) is facilitated by the energy released during this transi-
tion, which reduces the fusion timescale by orders of magnitude. The theory presented here can be 
generalized to encompass these processes while engaging with the diversity of specific systems. The 
mapping from molecular mechanisms to cellular function, provided by the present theory, is a step 
toward a more complete framework that would bridge mechanisms with function at the multicellular 
scale (e.g. neuronal circuits and tissues) and further at the scale of an organism.

Materials and methods
Details of the derivations for analytical results, simulation methods and fitting procedures are described 
in Appendices 1, 2 and 3.
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Appendix 1
Derivations for analytic results
Synaptic fusion dynamics and fusion times
As discussed in the main text, even though the reaction schemes for calcium-triggered synaptic 
release in vivo and in vitro differ in the interpretation of the individual states, their mathematical 
equivalence enables the treatment through a unified theory. Independent of the details of the 
experimental situation, synaptic fusion generally involves a “fast” pool and a “slow” pool of 
synaptic vesicles (Figure 1 in the main text).

We assume that fusion of a vesicle from the fast pool requires a conformational change of each 
of the ‍N ‍ SNARE assemblies attached to it and that the SNAREs undergo their conformational 
changes independently with the corresponding times ‍τ1‍, ‍τ2‍. Since the conformational change of 
a SNARE assembly is dominated by a single barrier (Hui et al., 2005), ‍τi‍ satisfies the exponential 
distribution

	﻿‍ P(τi) = k1e−k1τi for i = 1, 2 · · ·N,‍� (14)

where ‍k1 ≡ k1([Ca2+])‍ is the calcium-dependent rate constant for the conformational change of 
each SNARE assembly. The fusion time for a vesicle in the fast pool, T1, is therefore determined by 
the largest value of ‍τi‍. For an action potential, and the rise of calcium concentration, triggered at 
time ‍t = 0‍, the probability that fusion has occurred by time ‍t‍ is

	﻿‍

F1(t) ≡ P
{

T1 ≤ t
}

= P
{

max(τ1, τ2 · · · τN) ≤ t
}

==
∏N

i=1 P
{
τi ≤ t

}

=
(ˆ t

0
P(τi)dτi

)N

= (1 − e−k1t)N. ‍�

(15)

Equation 15 is the cumulative distribution for the fusion times T1 of vesicles in the fast pool. The 
corresponding probability density function is

	﻿‍ p1(t) ≡ dF1(t)
dt = Nk1(1 − e−k1t)N−1e−k1t.‍� (16)

The fusion process for vesicles in the slow pool consists of two sequential steps: conformation 
changes of ‍N ‍ SNAREs with rate constant k1 and a slow reaction step with rate constant k2. In vivo, 
the slow step corresponds to the replenishment of the readily releasable pool (RRP) with vesicles 
from the reserve pool through their docking and priming. In vitro, the slow step corresponds to 
the escape from the metastable “hemifusion diaphragm” state of the vesicle. Thus, the fusion time 
for vesicles in the slow pool is ‍T2 = T′

1 + t2‍, where ‍T
′
1‍ has the same probability distribution as T1 

(Equations 15; 16) and t2 satisfies the exponential distribution with parameter k2. Since ‍T
′
1‍ and t2 

are mutually independent, the probability density distribution for T2 is the following convolution:

	﻿‍

p2(t) =
ˆ t

0
k2e−k2(t−τ )p1(τ )dτ

=
ˆ t

0
Nk1k2e−k2(t−τ )(1 − e−k1τ )N−1e−k1τdτ

= Nk1k2e−k2t
N−1∑
i=0

(
N − 1

i

)
(−1)i

ˆ t

0
e−((i+1)k1−k2)τdτ

= Nk1k2

N−1∑
i=0

(
N − 1

i

)
(−1)i e−k2t − e−(i+1)k1t

(i + 1)k1 − k2
.

‍�

(17)

We use ‍(1 + x)N =
∑N

i=0
(N

i
)
xi

‍ in the third line. The cumulative distribution for T2 is obtained by 
integration of Equation 17:

	﻿‍
F2(t) ≡

ˆ t

0
p2(t)dt =

N−1∑
i=0

(
N

i + 1

)
(−1)i(1 − (i + 1)k1e−k2t − k2e−(i+1)k1t

(i + 1)k1 − k2
)
‍� (18)
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Synaptic release statistics and the average release rate
The cumulative distributions for fusion time, Equations 15; 18, allow us to calculate the probability 
distribution for the number of vesicles from the fast and slow pathways, ‍n1(t)‍ and ‍n2(t)‍, that have 
fused by time ‍t‍. Assuming that fusion of vesicles within each pool is independent and random, we 
have

	﻿‍ n1(t) ∼ B(ntot1, F1(t)), n2(t) ∼ B(ntot2, F2(t)),‍� (19)

where ‍B(n, p)‍ is binomial distribution with parameters ‍n‍ and ‍p‍, and ‍ntot1‍ and ‍ntot2‍ are the sizes of 
the fast and slow pools. Furthermore, assuming that vesicles in the fast and slow pools are released 
independently, the distribution of the total number of released vesicles, ‍n(t) = n1(t) + n2(t)‍, is found 
as the convolution of two binomial distributions:

	﻿‍

P
{

n(t) = m
}

=
∑m

i=0 P
{

n1(t) = i
}

P
{

n2(t) = m − i
}

=
m∑

i=0

(
ntot1

i

)(
ntot2
m − i

)
F1(t)i(1 − F1(t))ntot1−iF2(t)m−i(1 − F2(t))ntot2−m+i.

‍�

(20)

Equation 20 gives the probability that ‍m‍ vesicles fuse by time ‍t‍. When the slow step k2 is 
neglected, ‍F2(t) ∼ 0‍, Equation 20 reduces to the binomial distribution (Malagon et al., 2016): 

‍P
{

n(t) = m
}

=
(ntot1

m
)
F1(t)m(1 − F1(t))ntot1−m

‍. Using Equation 20, the critical number of SNAREs, ‍N ‍, 
can be accurately determined by Bayesian model comparison from the release statistics.

The average cumulative release is then

	﻿‍ ⟨n(t)⟩ = ⟨n1(t)⟩ + 2(t)⟩ = ntot1F1(t) + ntot2F2(t),‍� (21)

where ‍F1(t)‍ and ‍F2(t)‍ are given by Equations 15; 18. This is Equation 2 in the main text.
The average release rate is obtained by differentiating Equation 21:

	﻿‍
d⟨n(t)⟩

dt = ntot1p1(t) + ntot2p2(t),‍� (22)

where ‍p1(t)‍ and ‍p2(t)‍ are given by Equations 16; 17. This is Equation 1 in the main text.

Average release in various asymptotic regimes
Examining the asymptotic behavior of the exact solutions derived above yields approximate yet 
simple and accurate expressions for experimentally measurable quantities.

On the short timescale, ‍t ≪ 1/k1 ≪ 1/k2‍, keeping the leading-order term ‍k1t‍ and neglecting all 
the terms related to ‍k2t ≪ k1t‍ in Equation 22, we have

	﻿‍

d ⟨n(t)⟩
dt

= Nk1

[
ntot1(1 − e−k1t)N−1e−k1t + ntot2k2

∑N−1
i=0

(N−1
i
)
(−1)i e−k2 t−e−(i+1)k1 t

(i+1)k1−k2

]

≈ Nntot1kN
1 tN−1. ‍�

(23)

Equation 23 provides a means to test the kinetic scheme in Scheme 1 and distinguish it from 
the previously proposed scheme (Bollmann et al., 2000; Miki et al., 2018; Schneggenburger 
and Neher, 2000) that assumed that the binding of each calcium ion to a SNARE complex 
constitutes a separate rate-limiting step along the fusion reaction. Specifically, the schemes may 
be distinguished through the scaling behavior of ‍

d⟨n(t)⟩
dt ‍ at short-times, ‍t ≪ 1/k1‍. It can be shown 

that, for a general stochastic trajectory with sequential transitions that are characterized by rate 
constants ‍

{
ki
}M

i=1‍, ‍
d⟨n(t)⟩

dt ∼ tM−1
‍ at times ‍t ≪ 1/ max(ki)‍. Scheme 1 corresponds to ‍M = N ∼ 2‍. In 

contrast, the scheme based on individual calcium ion binding (Bollmann et al., 2000; Miki et al., 
2018; Schneggenburger and Neher, 2000) corresponds to ‍M ≥ 4‍. The time resolution of the 
current experiments ‍tc ∼ 1/k1 ∼ 1ms‍ may not be sufficient to resolve these different behaviors, but 
future experiments may make this test possible.

On the intermediate timescale ‍1/k1 ≪ t ≪ 1/k2‍, we have ‍F1(t) ≈ 1‍ and thus

https://doi.org/10.7554/eLife.73585
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	﻿‍

F2(t) ≈
N−1∑
i=0

(
N

i + 1

)
(−1)i(1 − (i + 1)k1e−k2t

(i + 1)k1 − k2
)

≈
N−1∑
i=0

(
N

i + 1

)
(−1)i(1 − (i + 1)k1e−k2t

(i + 1)k1
)

= (1 − e−k2t) ≈ k2t. ‍�

(24)

Therefore, Equation 21 becomes

	﻿‍ ⟨n(t)⟩ = ntot1F1(t) + ntot2F2(t) ≈ ntot1 + ntot2k2t.‍� (25)

On the long timescale ‍t ≫ 1/k2 ≫ 1/k1‍, we have ‍F1(t) ≈ 1‍ and ‍F2(t) ≈ 1 − e−k2t
‍ (see Equation 24), 

and thus

	﻿‍ ⟨n(t)⟩ = ntot1F1(t) + ntot2F2(t) ≈ ntot1 + ntot2(1 − e−k2t).‍� (26)

Peak release rate
The time ‍tmax‍ at which the release rate is maximal can be obtained by setting the derivative of the 
average release rate in Equation 22 to be zero:

	﻿‍

0 = ntot1
dp1(t)

dt
+ ntot2

dp2(t)
dt

= Nk1

N−1∑
i=0

(
N − 1

i

)
(−1)i−1

[
ntot1(i + 1)k1e−(i+1)k1t + ntot2k2

k2e−k2t − (i + 1)k1e−(i+1)k1t

(i + 1)k1 − k2

]

= Nntot1k2
1

N−1∑
i=0

(
N − 1

i

)
(−1)i+1(i + 1)e−(i+1)k1t


1 + ntot2k2

(i + 1)ntot1k1

k2
(i+1)k1

e(i+1)(1− k2
(i+1)k1

)k1t − 1

1 − k2
(i+1)k1




≡ Nntot1k2
1

N−1∑
i=0

(
N − 1

i

)
(−1)i+1(i + 1)e−(i+1)k1tAi,

‍�

(27)

where we used ‍p1(t) = Nk1(1 − e−k1t)N−1e−k1t = Nk1
∑N−1

i=0
(N−1

i
)
(−1)ie−(i+1)k1t

‍ in the second line 
and introduced ‍Ai‍ in the last line for convenience. The time ‍tmax‍ is the solution of Equation 27, 
which is a transcendental equation that is challenging to solve for ‍N ≥ 2‍. In practice, ‍k2/k1 ≪ 1‍, 
which allows us to expand ‍Ai‍ up to the first order of ‍k2/k1‍:

	﻿‍

Ai ≈ 1 + ntot2k2
(i + 1)ntot1k1

(1 + k2
(i + 1)k1

)( k2
(i + 1)k1

e(i+1)(1− k2
(i+1)k1

)k1t − 1)

≈ 1 + ntot2k2
(i + 1)ntot1k1

( k2
(i + 1)k1

e(i+1)(1− k2
(i+1)k1

)k1t − 1),
‍�

(28)

where high order terms are dropped in the second line. After dropping the constant factor 

‍Nntot1k2
1‍, Equation 27 becomes

	﻿‍

0 =
N−1∑
i=0

(
N − 1

i

)
(−1)i+1(i + 1)

[
e−(i+1)t − ntot2k2

(i + 1)ntot1k1
e−(i+1)t + ntot2

ntot1
( k2
(i + 1)k1

)2e−k2t
]

≈
N−1∑
i=0

(
N − 1

i

)
(−1)i+1(i + 1)e−(i+1)t − ntot2k2

ntot1k1

N−1∑
i=0

(
N − 1

i

)
(−1)i+1e−(i+1)k1t

= (1 − e−k1t)N−2(N − e+k1t) + ntot2k2
ntot1k1

e−k1t(1 − e−k1t)N−1

= (1 − e−k1t)N−2(N − e+k1t + ntot2k2
ntot1k1

e−k1t − ntot2k2
ntot1k1

e−2k1t).
‍�

(29)

In the second line, the last term is dropped due to ‍(
k2

(i+1)k1
)2e−k2t = O(( k2

k1
)2)‍. In the third line, we 

used ‍
∑N−1

i=0
(N−1

i
)
(i + 1)xi+1 = (1 + x)N−2(N − 1

x )‍ for ‍N ≥ 2‍ and ‍
∑N−1

i=0
(N−1

i
)
xi+1 = (1 + x)N−1

‍.
Now let ‍x = e−k1t‍ and ‍ϵ = ntot2k2

ntot1k1
≪ 1‍. The equation for ‍tmax‍ up to order ‍O(ϵ)‍ becomes

	﻿‍ ϵx3 − ϵx2 − Nx + 1 = 0.‍� (30)
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Assuming ‍x = x0(1 + ϵx1 + O(ϵ2))‍ and comparing the coefficients of ‍ϵ0‍ and ‍ϵ1‍ in Equation 30, we 
find: ‍x0 = 1

N ‍ and ‍x1 = 1−N
N3 ‍. Therefore,

	﻿‍
tmax ≈ − ln x0+ln(1+ϵx1)

k1
+ O(ϵ2) ≈ ln N

k1
+ (N−1)ntot2k2

N3ntot1k2
1

+ O(ϵ2).
‍� (31)

With ‍e
−k1tmax = 1

N + ntot2k2
ntot1k1

1−N
N4 + O(ϵ2)‍, the peak release rate, up to the first order of ‍ϵ = ntot2k2

ntot1k1 ‍, is

	﻿‍

d⟨n(t)⟩
dt

���
t=tmax

= ntot1p1(tmax) + ntot2p2(tmax)

= Nntot1k1

[
(1 − e−k1tmax )N−1e−k1tmax + ntot2k2

ntot1k1

N−1∑
i=0

(
N − 1

i

)
(−1)i e−k2tmax − e−(i+1)k1tmax

(i + 1)k1 − k2

]

≈ Nntot1k1(1 − 1
N

− ntot2k2
ntot1k1

1 − N
N4 )N−1( 1

N
− ntot2k2

ntot1k1

N − 1
N4 )

+Nntot2

N−1∑
i=0

(
N − 1

i

)
(−1)i

k2
(i+1)k1

1 − k2
(i+1)k1

e−(i+1)k1tmax (e(i+1)k1tmax(1− k2
(i+1)k1

) − 1)

≈ ntot1k1(1 − 1
N

)N−1(1 + N − 1
N3

ntot2k2
ntot1k1

)(1 − ntot2k2
ntot1k1

N − 1
N3 )

+Nntot2k1

N−1∑
i=0

(
N − 1

i

)
(−1)i k2

(i + 1)k1
e−(i+1)k1tmax (e(i+1)k1tmax − 1)

≈ Nntot1k1(1 − 1
N

)N−1 + Nntot2k2( 1
N

+ (1 − e−k1tmax )N − 1
N

)

≈ ntot1k1(1 − 1
N

)N−1 + ntot2k2(1 − 1
N

)N = ntot1k1(1 − 1
N

)N−1(1 + ntot2k2
ntot1k1

N − 1
N

),
‍

� (32)

which is Equation 3 in the main text.

Calcium-dependent rate constant ‍k1([Ca2+])‍
Analogous to the expression for the ‍pH ‍-dependent Gibbs free energy of a protein (Schaefer 
et al., 1997), the calcium-dependent free energy can be written as

	﻿‍ G(nCa, [Ca2+]) = G(nCa, [Ca2+]0) − kBTnCa ln( [Ca2+]
[Ca2+]0

),‍� (33)

where ‍nCa‍ is the average occupancy (relative to the reference value) of calcium ions on a SNARE 
complex. The generic free energy profile ‍G(nCa, [Ca2+]0)‍ at reference calcium concentration ‍[Ca2+]0‍ 
with a well and a barrier can be captured by a cubic polynomial (Dudko et al., 2006):

	﻿‍
G(nCa, [Ca2+]0) = 3

2∆G‡ nCa
n‡Ca

− 2∆G‡
(

nCa
n‡Ca

)3
,
‍�

(34)

where ‍∆G‡‍ is the barrier height and ‍n
‡
Ca‍ is the average occupancy number of calcium ions at the 

top of the barrier (Appendix 1—figure 1).

Appendix 1—figure 1. Schematic representation of the free energy profile of a SNARE assembly. 
(Left) The free energy profile at a reference calcium level ‍[Ca2+] = [Ca2+]0‍. The activation barrier 
Appendix 1—figure 1 continued on next pageAppendix 1—figure 1 continued on next page
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‍∆G‡‍ and the average number ‍n
‡
Ca‍ of calcium ions bound to the SNARE assembly at transition state 

are indicated. (Right) An elevation of the calcium level lowers the free energy barrier and thereby 
increases the rate k1 of the SNARE conformation transition.

The reaction rate ‍k1([Ca2+])‍ can then be derived from the Kramers, 1940 formalism 
generalized to the presence of a bias field (Dudko et al., 2006). For given calcium concentration 

‍[Ca2+]‍, the maximum of the free energy can be found from Equations 33 and 34 by solving 

‍dG(nCa, [Ca2+])/dnCa = 0‍:

	﻿‍
Gmax = ∆G‡

2

(
1 − 2kBTn‡Ca

3∆G‡ ln( [Ca2+]
[Ca2+]0

)
) 3

2

‍�
(35)

at

	﻿‍
nmax

Ca
n‡Ca

= 1
2

√
1 − 2kBTn‡Ca

3∆G‡ ln( [Ca2+]
[Ca2+]0

).
‍�

(36)

Due to symmetry in Equation 34, the Kramers rate can be written as (Kramers, 1940)

	﻿‍
k([Ca2+]) = A

(��� d2G
dn2

Ca

���
)

nmax
Ca

e−2Gmax ,
‍�

(37)

where ‍A = k0e
∆G‡
kBT ‍ is a constant, independent of ‍[Ca2+]‍ and 

‍

(��� d2G
dn2

Ca

���
)

nmax
Ca ‍

 is the calcium-dependent 

curvature of ‍G(nCa, [Ca2+])‍ at ‍nCa = nmax
Ca ‍. Substituting Equations 35 and 33 into Equation 37 yields 

Equation 4 for the calcium-dependent reaction rate.
Appendix 1—figure 2A shows the temporal profiles of the average release rate from the 

theory (Equations 1 and 4 ) for different values of calcium concentration. Appendix 1—figure 2B 
shows the average release rate for different values of the critical number of SNARE assemblies, ‍N ‍.
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Appendix 1—figure 2. The effects of calcium concentration, the critical number of independent 
SNARE assemblies, and the number of cooperative SNAREs within a super-assembly on the 
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neurotransmitter release dynamics, as predicted by the theory. (A) Temporal profiles of the average 
release rate from Equations 1 and 4 across the range of calcium concentrations (indicated) typical 
for an action potential. Due to the exponential factor in Equation 4, the release turns on rapidly upon 
calcium influx and terminates rapidly with calcium depletion, resulting in a high temporal precision of 
synaptic release. (B) Temporal profile of the average release rate (Equation 1) when ‍N ‍ independent 
SNARE assemblies per vesicle are required for fusion. ‍N = 2‍ provides the optimal balance between 
stability with respect to fluctuations in calcium concentration (low release rate on the sub-millisecond 
timescale) and temporal precision (the fastest rise of average release rate). (C) Fraction of the RRP 
vesicles released due to spontaneous calcium fluctuations of varying timescales when ‍N ‍ SNARE 
assemblies per vesicle are required for fusion. Synapses with the larger ‍N ‍ exhibit robustness (low 

release fraction) against slower 
‍

[
Ca2+

]
‍
 fluctuations. The timescales of 

‍

[
Ca2+

]
‍
 fluctuations for which 

the synapse with a given ‍N ‍ is robust (fraction of released RRP ‍= 0.1‍ , horizontal line) are indicated. (D) 
Transition rate for a single-SNARE assembly and for a super-assembly of 2 or 3 SNAREs as a function 
of calcium concentration, from Equation 4. Cooperativity between SNAREs within a super-assembly 

results in a steeper increase of the rate of conformational change with 
‍

[
Ca2+

]
‍
 and hence in a faster 

vesicle release. Every additional SNARE within the super-assembly increases the release rate by a 

factor of ‍∼ 100‍ at 
‍

[
Ca2+

]
∼ 10µM

‍
. (E) Temporal profiles of the fraction of RRP vesicles released for a 

(super)-assembly of ‍1, 2‍ or 3 SNAREs, from Equation 2, at 
‍

[
Ca2+

]
= 10µM

‍
. The effect of cooperativity 

between two or three SNAREs is incorporated through the parameter values for the transition barrier, 

‍n
‡
Ca‍ and ‍∆G‡‍, which are, respectively, 2 and 3 times the values for a single SNARE. The parameter 

values for the 1 SNARE curve are matched to the in vitro experiment on syt1 (Hui et al., 2005). 
Parameter values are given in Appendix 3.

Universal scaling form for the peak release rate
Combining Equation 3 and Equation 4, we have

	﻿‍

d⟨n(t)⟩
dt

���
t=tmax

≈ ntot1

(
1 − 1

N

)N−1
k0

(
1 − 2

3
ln

(
[Ca2+]
[Ca2+]0

)
kBTn‡Ca
∆G‡

) 1
2

× exp


∆G‡

kBT


1 −

(
1 − 2

3
ln( [Ca2+]

[Ca2+]0
)
kBTn‡Ca
∆G‡

) 3
2



 ,

‍�

(38)

where ‍
ntot2k2
ntot1k1

≪ 1‍ allowed us to ignore the second term in Equation 3.

Defining ‍c = 2kBTn‡Ca
3∆G‡ ln [Ca2+]

[Ca2+]0 ‍ and ‍a =
(1+ 1

N−1 )N−1

ntot1k0 ‍, the above equation becomes

	﻿‍
d⟨n(t)⟩

dt

���
t=tmax

= (1−c)
1
2

a exp
[
∆G‡

kBT

(
1 − (1 − c)

3
2

)]
.
‍�

(39)

Let 
‍
r=

(
a

(1−c)1/2
d⟨n(t)⟩

dt

���
t=tmax

)kBT/∆G‡

‍
. Equation 39 then gives Equation 5.

Peak postsynaptic current and cumulative release
Following the conductance-based model for postsynaptic response (Destexhe et al., 1994), the 
postsynaptic current caused by an ion channel of a given type can be written as

	﻿‍ I(t) = g(t)
(
V(t) − Erev

)
,‍� (40)

where ‍g(t)‍ is the conductance of the channel, ‍V(t)‍ is the postsynaptic membrane potential and ‍Erev‍ 
is the reversal potential of the ion corresponding to the ion channel. Different types of channels 
may have different ‍g(t)‍ and ‍Erev‍. The peak value of postsynaptic current is usually dominated by a 
single type of channel, e.g. AMPA receptor for excitatory synapses or GABA receptor for inhibitory 
synapses. Thus, in the following, the postsynaptic current will be assumed to be caused by the 
dominate channel type.

Appendix 1—figure 2 continuedAppendix 1—figure 2 continued
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For an action potential triggered at ‍t = ts‍, the conductance has a pulse at ts of amplitude 
proportional to the number ‍n(T)‍ of neurotransmitters released during the action potential:

	﻿‍ g(t) = g0n(T)e−
t−ts
τ .‍� (41)

Here, ‍g0‍ depends on the intrinsic properties of the ion channel and the channel density, and ‍τ ‍ 
is the relaxation timescale of the channel. Since we are concerned with the response to a few 
(probably one or two) action potentials, Equation 41 assumes that the postsynaptic receptors 
are not saturated. Since the time scale for an action potential ‍T ∼ 1ms‍ is much shorter than the 
relaxation time scale of the ion channel (‍τAMPA, τGABA ∼ 20ms − 30ms‍ [Destexhe et al., 1994]), the 
action potential can be regarded as a delta-function pulse.

The membrane voltage is usually far from the reversal potential when responding to a few 
action potentials. When the reversal potential is close to the membranes voltage, Equation 6 is still 
true but it takes more work to calculate the current kinetics. According to Equation 40, the current 

‍I(t)‍ is therefore proportional to the conductance ‍g(t)‍, and the peak of ‍g(t)‍ is at ‍t = ts‍. The peak 
value of postsynaptic current is

	﻿‍ IPSC ≃ g0(V0 − Erev)n(T),‍� (42)

where V0 is the resting membrane potential. By letting ‍γ = g0(V0 − Erev)‍ and taking the average of 
both sides of the above equation, we obtain Equation 6 in the main text.

Paired-pulse ratio in short-term plasticity
The number of RRP vesicles ‍N1(t)‍ is assumed to follow the first-order recovery kinetics:

	﻿‍
dN1(t)

dt = ntot1−N1(t)
τRRP

,‍� (43)

where the RRP pool of total capacity ‍ntot1‍ is assumed to be full initially: ‍N1(0) = ntot1‍. For a pair of 
spikes with interpulse interval ‍τint‍, this equation yields a solution for the number of vesicles in RRP 
by the time of arrival of the second spike:

	﻿‍ n1,f ≡ N1(τint) = ntot1 − ⟨n1(T)⟩ e−
τint
τRRP ,‍� (44)

which contains the vesicles left after the first AP-triggered release and the vesicles replenished 
from the reserve pool during the interspike interval.

To capture the syt7-mediated facilitation scenario, we assume that the rate constant ‍k1([Ca2+])‍ 
during the first spike increases by a factor of ‍σ‍ following the first spike (the timescale on which 
‍Ca2+‍ ions bind to syt7 is negligible compared to the typical values of ‍τint‍) and that the new rate 
constant ‍σk1([Ca2+])‍ decays with timescale ‍τres‍. Therefore, the rate constant during the second 
spike is

	﻿‍
k1,f =

(
1 + (σ − 1)e−

τint
τres

)
k1([Ca2+]).

‍� (45)

Using Equation 2, the pair-pulse ratio is thus

	﻿‍
⟨nf(T)⟩
⟨ni(T)⟩ ≃ n1,f

ntot1

(
1−e−k1,fT

1−e−k1([Ca2+])T

)N
,
‍�

(46)

where the release from the reserve pool (second term in Equation 2) has been ignored. Using 
Equation 44 and Equation 45 for ‍n1,f ‍ and ‍k1,f ‍, we arrive at Equation 7.

To describe the buffer saturation scenario, let ‍[Ca2+]i‍ denote the calcium concentration sensed 
by the calcium sensor during the first spike. Let us assume that the amplitude of the increment 
in the calcium concentration due to the partial buffer saturation is ‍ICa‍. Let us further assume that 
the dissociation of calcium from the buffer follows the first-order kinetics with dissociation time 
constant ‍τCa‍. Therefore, the calcium concentration sensed by the calcium sensor after time ‍τint‍ is

	﻿‍

[
Ca2+

]
f

=
[
Ca2+

]
i
+ ICae−

τint
τCa .

‍� (47)

https://doi.org/10.7554/eLife.73585
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Again using Equation 2 and ignoring the release from the reserve pool (second term in 
Equation 2), the paired-pulse ratio is

	﻿‍

⟨nf(T)⟩
⟨ni(T)⟩ ≃ n1,f

ntot1

(
1−e−k1([Ca2+]f)T

1−e−k1([Ca2+]i)T

)N
.
‍�

(48)

Using Equation 44 for ‍n1,f ‍, we arrive at Equation 8.
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Appendix 1—figure 3. The effect of the molecular-level properties of synapses on release probability 
and short-term plasticity. (A) The initial vesicle release probability, ‍⟨n(T)⟩ /

(
ntot1 + ntot2

)
‍, over a range 

of 
‍

[
Ca2+

]
‍
 typical in experiments, for different synapses. The release probability can vary significantly in 

different synapses because of different types of ‍Ca2+‍ - sensors, different coupling between regulatory 
proteins and SNAREs, and different amount of the initial ‍Ca2+‍ entry. The parameters for each curve 
correspond to the data from the studies that are indicated on the right. (B) Weaker ‍Ca2+‍-sensitivity 
(here, it is ‍∼ 1/3‍ of that in Figure 4G) of a SNARE assembly results in a smaller dynamic range of short-
term facilitation. The ‍Ca2+‍-sensitivity of a SNARE is defined as the ratio of the conformational rate 

constants (Equation 4) during the action potential, 
‍
k1

(
[Ca2+]0 + ∆[Ca2+]

)
‍
, and at rest, 

‍
k1

(
[Ca2+]0

)
‍
. 

The value of ‍∆[Ca2+]‍ is set at ‍10µM ‍. (C) Distinct short-term facilitation/depression modes in synapses 
that differ on the molecular level, from theory (Equation 8). Three different sets of parameters ‍{∆G‡

‍, 

‍n
‡
Ca‍, ‍k0}‍ and ‍τCa‍ are used for curves a, b and c, representing different properties of the molecular 

constituents for the three synapses. In curve a, the high frequency transient input (with small ‍τint‍) 
is facilitated and the low frequency input (with large ‍τint‍) is depressed. The effects are reversed in 
curve c with depression at high frequency and facilitation at low frequency. In curve b, inputs with 
intermediate frequencies are facilitated and inputs with high and low frequencies are depressed. The 
dynamic range for each curve can be amplified by changing the timescale for RRP replenishment, 

‍τRRP‍. Parameter values are given in Appendix 3.

Optimal Synaptic Strength
We derive the condition for optimal RRP size as follows. Typically ‍k2T ≪ 1‍, hence we can ignore 
the contribution of the reserve pool. The probability that there is no response in the postsynaptic 
neuron for an action potential of duration ‍T ‍ can be written as

https://doi.org/10.7554/eLife.73585
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	﻿‍ pfail(T, k1([Ca2+]), ntot1) =
∑M

m=0
(ntot1

m
)
F1(T)k(1 − F1(T))ntot1−m,‍� (49)

where ‍[Ca2+]‍ is calcium concentration in pre-synaptic neuron and ‍F1(T)‍ is defined in Equation 15.
The error probability can be written as

	﻿‍ P(error) = qpfail(T, k1([Ca2+]AP), ntot1)) + (1 − q)(1 − pfail(T, k1([Ca2+]rest), ntot1) ≡ P(ntot1),‍� (50)

as shown in Equation 11 in the main text. Here we focus on the dependence of ‍P(error)‍ on ‍ntot1‍.
To see whether ‍P(ntot1)‍ has a minimum, we solve the following inequality:

	﻿‍

P(ntot1 + 1) ≥ P(ntot1)

⇔ q
[
pfail(T, k1([Ca2+]AP), ntot1 + 1) − pfail(T, k1([Ca2+]AP), ntot1)

]

≥ (1 − q)
[
pfail(T, k1([Ca2+]rest), ntot1 + 1) − pfail(T, k1([Ca2+]rest), ntot1)

]
.
‍�

(51)

But

	﻿‍

pfail(T, k1([Ca2+]), ntot1 + 1) − pfail(T, k1([Ca2+]), ntot1)

=
M∑

k=0

(
ntot1 + 1

k

)
F1(T)k(1 − F1(T))ntot1+1−k −

M∑
k=0

(
ntot1

k

)
F1(T)k(1 − F1(T))ntot1−k

=
M∑

k=0

((
ntot1

k

)
+

(
ntot1
k − 1

))
F1(T)k(1 − F1(T))ntot1+1−k −

M∑
k=0

(
ntot1

k

)
F1(T)k(1 − F1(T))ntot1−k

= −F1(T)
M∑

k=0

(
ntot1

k

)
F1(T)k(1 − F1(T))ntot1−k +

M−1∑
k=0

(
ntot1

k

)
F1(T)k+1(1 − F1(T))ntot1−k

= −

(
ntot1
M

)
F1(T)M+1(1 − F1(T))ntot1−M.

‍�

(52)

Therefore, Equation 51 becomes ‍q
(ntot1

M
)
FM

a (1 − Fa)ntot1−M ≤ (1 − q)
(ntot1

M
)
FM

r (1 − Fr)ntot1−M,‍ where 

‍Fa ≡ (1 − e−k1([Ca2+]AP)T)N
‍ and ‍Fr ≡ (1 − e−k1([Ca2+]rest)T)N

‍ are the probabilities that a vesicle in RRP is 
fused during the action potential and at rest, respectively.

We can solve for ‍ntot1‍ from the above inequality as follows:

	﻿‍
ntot1 ≥ M(1 +

ln Fa
Fr

ln 1−Fr
1−Fa

) +
ln q

1−q

ln 1−Fr
1−Fa

.
‍�

(53)

Since ‍ntot1‍ is an integer, the optimal RRP size ‍n
∗
tot1‍ can be written as Equation 12.

https://doi.org/10.7554/eLife.73585
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Appendix 2

Simulations set-up
We use Gillespie algorithm to model the fusion dynamics in the simulations. To validate the analytic 
expressions derived within the framework of the model in Scheme 1 and Figure 1 , we performed 
simulations of this model and examined whether the analytical expressions can accurately recover 
the input parameters of the simulations when used as a fitting tool. Next, to test the limitations of 
the assumptions of our model, we performed a modified set of simulations and compared their 
results with the original model. Specifically, the simulations were modified to incorporate the 
effects that are thought to be relevant for synaptic transmission in vivo: (i) the finite-capacity effect 
of the readily-releasable pool and (ii) the spatial coupling between voltage-gated calcium channels 
and vesicle release sites.

Testing the analytic theory
Numerical simulations were carried out for the vesicle fusion model in Scheme 1 and Figure 1 with 
the following parameter values: ‍ntot1 = 500‍, ‍ntot2 = 1000‍, ‍k2 = 0.027ms−1

‍, ‍∆G‡ = 18.4kBT ‍, ‍n
‡
Ca = 3.48‍, 

‍k0 = 1.67 × 10−7ms−1
‍, and ‍N = 2‍. Calcium concentration was varied from ‍0.05µM ‍ to ‍20µM ‍, with 

the reference value set at ‍[Ca2+]0 = 50nM ‍. The number of vesicles that fuse by time ‍t‍, ‍n(t)‍, was 
recorded from ‍t = 0ms‍ to ‍t = 100ms‍ with time interval ‍0.4ms‍, and the average over 40 trajectories 
was calculated to obtain the average cumulative release ‍⟨n(t)⟩‍. The data generated through 
simulations were then fitted with the analytic expression for the average cumulative release 
(Equation 2 ). The theory was found to accurately reproduce the input parameters used in the 
simulations (Appendix 2—figure 1). For low calcium concentration (‍[Ca2+] < 1µM ‍), the recording 
time for ‍⟨n(t)⟩‍ had to be extended to ‍∼ 1000ms‍ in order to reliably extract the rate constant k1. 
This is because, at low calcium concentration, k1 and k2 become comparable and the term ‍k1 − k2‍ 
in the denominator in the expression of ‍⟨n(t)⟩‍ (Equation 2 ) tends to cause numerical instability. 
Nevertheless, the fit to ‍k([Ca2+])‍ in Equation 4 in the main text was found to be always reliable as 
long as there are enough data points at high calcium concentrations (‍[Ca2+] > 1µM ‍), which is the 
case for the experimental data in Figure 2.
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Appendix 2—figure 1. Validation of the theory through simulations. (A) Temporal profiles of 
average cumulative release at different values of calcium concentrations from simulations (symbols) 
and a fit to the theory in Equation 2 (lines). (B) Calcium dependence of the rate constant of SNARE 
conformational change from simulations in (A), and a fit to Equation 4 . The reference concentration 

‍[Ca2+]0 = 50nM ‍ is set at a typical resting value of a synapse in vivo (Kaeser and Regehr, 2014) and 
‍N = 2‍. The fit yields the height and width of the activation barrier and the rate constant of SNARE 
conformational change at ‍[Ca2+]0‍, which accurately recover the input parameters of the simulations. 
Parameters are listed in Appendix 3.

To test the validity of the analytical expression for peak release rate in Equation 3, the kinetic 
scheme in Scheme 1 was simulated at the parameter values indicated above and the peak 

release rate was computed at different values of 
‍

[
Ca2+

]
‍
. Equation 3 was used to extract the 

microscopic parameters ‍∆G‡‍, ‍n
‡
Ca‍, ‍

ntot1k0

(
1 − 1

N

)N−1

‍
, which were then compared with the input 

parameters of the simulations. This procedure was repeated at different values of ‍ntot1/ntot2‍ and 

k2. For the biologically relevant ratio ‍ntot1/ntot2 ∼ 1‍ and in the range of calcium concentrations 

‍
0.1µM ≤

[
Ca2+

]
≤ 0.1mM

‍
, the analytic expression in Equation 3 was found to be highly accurate: 

https://doi.org/10.7554/eLife.73585
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the parameters returned by the fit were within less than 5% from the exact parameters used in 
the simulations. Appendix 2—figure 2 shows that the accuracy of Equation 3 does not depend 
significantly on the value of k2. Even for the very low ratio ‍ntot1/ntot2 ∼ 0.5‍, the parameters extracted 
from Equation 3 still have ‍> 90%‍ accuracy.
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Appendix 2—figure 2. Testing the accuracy of the analytical theory for the peak release rate, 
Equation 3. Plotted are the ratios between the parameters extracted from a fit to Equation 3 
with k1 given by Equation 4 and the exact parameters of the simulations, across a broad range 
of values of ‍ntot1/ntot2‍ and k2 (indicated in the figure), over the range of calcium concentrations 

‍
0.1µM ≤

[
Ca2+

]
≤ 0.1mM

‍
. Blue circle is the ratio for 

‍
ln
[
(1 − 1

N )N−1ntot1k0

]
‍
, orange square for ‍∆G‡‍, 

green diamond for ‍n
‡
Ca‍. For the biologically relevant value ‍ntot1/ntot2 ∼ 1‍, the ratios are very close to 1, 

indicating that the theory is highly accurate (‍> 95%‍ accuracy).

Finite-capacity effect of the readily releasable pool
As found in recent experiments (Biederer et al., 2017), synaptic vesicles are released at 
specialized sites, known as active zones, at the presynaptic terminal. Because there are only a finite 
number of active zones in each presynaptic button, the maximal number of docked vesicles (state 
‍D‍ in Figure 1D) is finite. Let ‍nmax‍ be the number of release sites on the presynapic membrane 
and set ‍ntot1 = nmax‍ in the simulations, which corresponds to the release sites being initially fully 
occupied by the docked vesicles. To incorporate this finite-capacity effect in the simulations, 
we now assume that the vesicles in the reserve pool (state ‍R‍ in Figure 1D) can be docked to 
presynaptic membrane only if there is a vacant release site (‍nmax − n1(t) > 0‍).

We note that the model with the finite size of the readily releasable pool corresponds to the 
‍G/G/N/N/k‍ queue model in queueing theory (Gautam, 2012). Few results are known for the general 
‍G/G/N/N/k‍ queue model, although bounds and approximation methods have been developed 
for various situations. When the capacity ‍N → +∞‍, the ‍G/G/N/N/k‍ queue model converges to 
our model in Appendix 1 with infinite capacity of the RRP pool, and is exactly solvable. Here, 
rather than seeking analytic approximations for the finite-capacity effect, we use simulation 
to explore its properties and the validity of our model in the light of this effect. We define the 
dimensionless ratio ‍f ≡

ntot1k1
ntot2k2 ‍ and change it from 10 to 0.5. When ‍f ≫ 1‍, the depletion rate of the 

https://doi.org/10.7554/eLife.73585
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readily releasable pool is much larger than the replenishing rate, and the readily releasable pool 
is effectively of an infinite capacity. As expected, the theory (Equation 2 ) is valid in this regime 
(Appendix 2—figure 3A). When ‍f ‍ decreases, deviations from the analytic theory appear, with 
the cumulative release being slower than that predicted by Equation 2 (Appendix 2—figure 
3A). In real neuron, action potential-evoked calcium elevation will lead to ‍k1 ≫ k2‍ and thus ‍f ≫ 1‍, 
therefore, Equation 2 is expected to perform well in the biologically relevant range of parameters.

The Effect of Heterogeneity among Release Sites
It has been pointed out that the docked vesicles in the same synapse may have different release 
rates due to their different distances to the voltage-gated calcium channels (Trommershäuser 
et al., 2003; Neher, 2015). Action potential-evoked calcium influx forms a so-called nanodomain 
around each channel. Let us assume that diffusion and buffering are the dominant factors that 
shape the concentration profile of calcium. When the channel is open, the steady state of calcium 
concentration profile can be described by the following reaction-diffusion equation:

	﻿‍ D[Ca2+]∇2c(r) − κc(r) = 0,‍� (54)

where ‍D[Ca2+] ≈ 200µm2/s‍ is the diffusion coefficient of a calcium ion inside the cell and 

‍κ = k−[B] ≈ 0.3µs−1
‍(Delvendahl et al., 2015) is the binding rate that characterizes calcium buffers. 

Equation 54 can be solved by assuming spherical symmetry (Neher, 1998):

	﻿‍ c(r) = α([Ca2+]out) e−r/λ

r ,‍� (55)

where ‍λ =
√

D[Ca2+]/κ ≈ 30nm‍ sets the characteristic length scale of the calcium nanodomain, 

‍α([Ca2+]out)‍ measures the magnitude of the calcium current through the channel at extracellular 
calcium concentrations ‍[Ca2+]out‍, and ‍r‍ is the distance from the channel. Due to the decaying 
concentration profile in Equation 55, vesicles that are closer to the channel experience higher 
calcium concentration and thus have higher release rate. The relative positions of the release site 
and voltage-gated calcium channels on the presynaptic membrane may therefore have a significant 
impact on the action-potential-evoked vesicle release dynamics.

Recently, several studies established the nanoscale organization of the molecular apparatus 
around the vesicle release sites (Stanley, 2016; Gramlich and Klyachko, 2019; Biederer et al., 
2017). It has been found that release sites and channels together form clusters within active zones 
on the presynaptic membrane (Maschi and Klyachko, 2017; Miki et al., 2017; Nakamura et al., 
2015). The typical size of an active zone is about 250 nm (Gramlich and Klyachko, 2019), with 
multiple release sites present within a single active zone (Maschi and Klyachko, 2017). Multiple 
channels cluster around a single release site and their distances to the release site are regulated by 
scaffold proteins (Böhme et al., 2016).

Based on these experimental facts, we set up our modified simulations as follows. Each 
active zone is modeled as a disk of radius ‍r = 125‍ nm, the total number of active zones on 
the presynaptic synapse is ‍NAZ = 300‍, the number of release sites in an active zone is ‍Nr = 3‍ 
and the number of channels around each release site is ‍Nc = 3‍. These values are chosen to 
mimic the organization of release sites in the calyx of Held (Borst and Soria van Hoeve, 
2012). We further assume that the release sites are uniformly distributed within each active 
zone (Maschi and Klyachko, 2017), and the channels are uniformly distributed around each 
release site within the range of distances ‍(λmin = 30nm,λmax = 40nm)‍. The calcium current 

‍α([Ca2+]out) = αmax
[Ca2+]out

KD+[Ca2+]out
≈ αmax[Ca2+]out ≈ 15µm · µM × ( [Ca2+]out

10µM )‍(Schneggenburger et al., 

1999), and the concentration ‍[Ca2+]out‍ is varied from ‍0.5µM ‍ to ‍10µM ‍. The release rates for docked 
vesicles are determined by Equation 4 in the main text and the parameter values are the same 
as in the above simulations (See ”Testing the Analytic Theory”). Each release site is assumed to 
have its corresponding reserve pool of size ‍ntot2 = 3‍, and the release rate for vesicles in the reserve 
pool is ‍k2 = 0.02ms−1

‍. Simulation results and the corresponding fits to Equation 2 in the main text 
are shown in Appendix 2—figure 3B. The simulations show that, as long as ‍λmax − λmin‍ is not 
too large, our theory is accurate. Further simulations (not shown) show that, if ‍λmax − λmin‍ is too 
large, the cumulative release curve in Appendix 2—figure 3B is no longer double-exponential. 
The fact that cumulative release has in fact been observed to be double-exponential (Miki et al., 

https://doi.org/10.7554/eLife.73585
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2018) indicates that the distance between the channel and the release sites is likely to be tightly 
regulated by the scaffold proteins. We conclude that, in the range of parameters that correspond 
to real biological systems, the spatial heterogeneity of calcium concentration has no significant 
effect on the accuracy of the results presented in the main text.
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Appendix 2—figure 3. Testing the limitations of the theory: Finite capacity of the readily releasable 
pool and heterogeneity in vesicle pools. (A) Temporal profiles of the average cumulative release ‍⟨n(t)⟩‍ 
at different ratios ‍f = ntot1k1

ntot2k2 ‍. Parameter values are ‍ntot2 = 1000‍, ‍k2 = 0.005ms−1
‍ and ‍k1 = 0.05ms−1

‍, and 

‍ntot1‍ is varied to change the ratio ‍f ‍ of the depletion and replenishment rates of the readily releasable 
pool. Symbols: data generated from modified simulations that introduced the finite-capacity effect 
of the readily releasable pool, lines: Equation 2 with the same parameter values as those used in the 
simulations. (B) Temporal profiles of the average cumulative release ‍⟨n(t)⟩‍ at different values of the 
extracellular calcium concentration ‍[Ca2+]out‍. The parameters are described in the text. ‍[Ca2+]out‍ is 
shown in the legend. Data is fitted with Equation 2. The cumulative release rate exhibits a double-
exponential shape if ‍λmax − λmin‍ is not too large (‍≲ 10nm‍).

https://doi.org/10.7554/eLife.73585


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience | Physics of Living Systems

Wang and Dudko. eLife 2021;10:e73585. DOI: https://doi.org/10.7554/eLife.73585 � 38 of 42

Appendix 3
Critical Number of SNARE assemblies,‍N‍
To achieve robustness of the fits with limited experimental data available, the fits in the main 
text were performed at a fixed value of the critical number of SNARE assemblies, ‍N ‍, necessary 
for vesicle fusion. The choice of ‍N = 2‍ was based on the indirect experimental evidence (Sinha 
et al., 2011). Additionally, we performed the least square fits of the in vivo data in Figure 3 with 
Equation 2 with the values of ‍N = 1, 2, 3, 4, 5‍. Values ‍N ≥ 6‍ would be too large to be biologically 
realistic (Brunger et al., 2018). The fitting errors for different values of ‍N ‍ are reported in 
Appendix 3—table 1.

It can be seen that ‍N = 2‍ results in the consistently smallest fitting errors across all values of 
calcium concentrations used in the experiment, and thus represents the optimal fit. This numerical 
test provides an additional support for ‍N = 2‍ representing the critical number of SNAREs necessary 
for fusion.

Appendix 3—table 1. Errors from the least square fit for different values of N.
The fits are performed for the experimental data from Wölfel et al., 2007 to Equation 2 in the 
main text. The fitting error is calculated according to ‍

∑
i |yi − f(xi)|2‍. The fit with N = 2 results in 

consistently smallest fitting errors across all calcium concentrations used in the experiment.

Least squares error N = 1 N = 2 N = 3 N = 4 N = 5

[Ca2+] = 27 µM 27.431 25.896 26.742 29.016 33.234

[Ca2+] = 11 µM 19.662 13.968 14.656 15.374 16.737

[Ca2+] = 7 µM 10.241 8.115 8.189 8.260 8.416

[Ca2+] = 6 µM 84.908 84.732 85.255 85.553 85.701

Parameter Values Extracted from the Fits or Used for Illustration

Appendix 3—table 2. Microscopic parameters of synaptic fusion machinery extracted from the fits 
in Figure 2 in the main text.

Rate constant ‍ko‍ is in ms−1, and 
‍
v ≡

(
1 − 1

N

)N−1

‍
.

ΔG‡(kBT) n‡
Ca log10[ntot1k0v] Data source

34.1 ± 3.0 7.84 ± 1.92 −11.5 ± 1.3
Calyx of Held (Schneggenburger and Neher, 
2000)

35 ± 19 4.48 ± 5.98 −7.3 ± 0.8 Calyx of Held (Lou et al., 2005)

27.0 ± 1.31 6.22 ± 0.50 −10.7 ± 0.5 Calyx of Held (Bollmann et al., 2000)

22.6 ± 1.7 5.58 ± 1.18 −5.4 ± 0.4 Calyx of Held (Sun et al., 2007)

16.6 2.66 −3.7 PF-MLI (Miki et al., 2018)

7.63 ± 3.34 3.34 ± 2.36 −2.0 ± 0.7 Photoreceptor (Duncan et al., 2010)

19.8 ± 1.5 3.54 ± 1.00 −4.7 ± 1.2 Calyx of Held (Wölfel et al., 2007)

20.3 ± 1.5 3.86 ± 0.40 −5.3 ± 0.6 Calyx of Held P8-9 (Kochubey et al., 2009)

25.2 ± 1.9 5.28 ± 0.54 −7.2 ± 0.7 Calyx of Held P12 (Kochubey et al., 2009)

26.3 ± 2.1 5.96 ± 0.56 −11.1 ± 0.9 Inner hair cell (Beutner et al., 2001)

19.5 ± 5.1 5.92 ± 2.26 −8.7 ± 2.5 Hippocampal mossy 1ber (Fukaya et al., 2021)

20.3 ± 2.0 4.40 ± 0.74 −8.8 ± 0.8 Cerebellar basket cell (Sakaba, 2008)

30.3 ± 3.4 4.92 ± 0.56 −9.6 ± 1.3 Retina bipolar cell (Heidelberger et al., 1994)

20.5 1.28 −5.1 Chromaffin cell (Voets, 2000)

25.7 1.02 −7.6 Insulin-secreting cell (Yang and Gillis, 2004)

20 2.82 −9.3 in vitro (Diao et al., 2012)

https://doi.org/10.7554/eLife.73585
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Appendix 3—table 3. Parameter values extracted from the fit in Figure 4A-E in the main text for 
syt7-mediated facilitation.
In addition, ‍∆G‡ = 20kBT ‍ and ‍n

‡
Ca = 4‍ were fixed at the values typical for the synapse with syt1 as 

the main ‍[Ca2+]‍-sensor (see Appendix 3—table 2, ‍T = 1ms‍ and ‍[Ca2+] = 10µM ‍. The value of ‍τRRP‍ 
was set at ‍100ms‍ for the facilitation-dominated synapses (Figure 4A, B, D and E) and 2000ms for the 
retinal ribbon synapse (Figure 4C).

σ τres (ms) log10 [k0(ms–1)] Data source

1.90 200 −8.0 Corticothalamic Jackman et al., 2016

1.66 108 −8.1
Schaffer collateral Jackman et al., 
2016

1.47 110 −8.0 Perforant path Jackman et al., 2016

2.05 70 −7.6
Granule cell Turecek and Regehr, 
2018

1.80 860 −6.7 Retinal ribbon Luo et al., 2015

https://doi.org/10.7554/eLife.73585
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In Figure 3B, the fit yields the height and width of the activation barrier and the rate constant 
of the SNARE conformational change in the resting state (‍[Ca2+]0 = 50nM ‍): ‍∆G‡ ≈ (18.7 ± 1.0)kBT ‍, 

‍n
‡
Ca ≈ 3.54 ± 0.13‍ and 

‍
log10

(
k0

ms−1

)
≈ −6.8 ± 1.0

‍
. Based on the results in Appendix 3—table 1, the 

fit was performed with ‍N = 2‍.
In Figure 3C, the fit yields ‍k1 ≈ 2.32s−1

‍ and ‍k2 ≈ 0.0117s−1
‍ (‍250µM ‍) and ‍k1 ≈ 2.71s−1

‍ and 

‍k2 ≈ 0.0198s−1
‍ (‍500µM ‍).

In Figure 3D, parameter values used: ‍∆G‡ = 35kBT ‍, ‍n
‡
Ca = 2‍, ‍k0 = 10−5s−1

‍, ‍
ntot1
ntot2

= 3
7‍ and 

‍k2 = 0.0105ms−1
‍.

In Figure 3E, parameter values used: ‍∆G‡ = 24kBT ‍ and ‍n
‡
Ca = 4‍. Facilitation ratio is defined as 

‍

[
k1

(
[Ca2+]i + ∆[Ca2+]

)]
/k1

(
[Ca2+]i

)
‍
(Barrett and Stevens, 1972). Normalized release is defined 

as the ratio of residual release, 
‍
k1

(
∆[Ca2+]

)
‍
, and control release, 

‍
k1

(
[Ca2+]i

)
‍
. The value ‍[Ca2+]i‍ 

was set at ‍10µM ‍ and ‍∆[Ca2+]‍ was varied when plotting the curve for the present theory.
In Figure 4F, parameter values used: ‍T = 1.8ms‍, ‍∆G‡ = 18.7kBT ‍, ‍n

‡
Ca = 3.54‍, 

‍k0 = 1.67 × 10−7ms−1
‍, ‍τRRP = 350ms‍, ‍τCa = 37ms‍, ‍[Ca2+]0 = 50nM ‍ and‍Ica = 10µM ‍.

In Figure 4G, parameter values used: ‍T = 3ms‍, ‍∆G‡ = 18.7kBT ‍, ‍n
‡
Ca = 3.54‍, ‍k0 = 1.67 × 10−7ms−1

‍, 

‍ntot1 = 1000‍, ‍τRRP = 40ms‍, ‍[Ca2+]0 = 50nM ‍ and ‍ICa = 10µM ‍.
In Figure 4H, parameter values used: ‍k1 = 0.5ms‍, ‍M = 100‍.
In Figure 4I, parameter values used: ‍M = 10‍, ‍k1([Ca2+]a) = 0.32ms−1

‍, ‍q = 10−1
‍, ‍T = 2.5ms‍.

In Appendix 1—figure 2A, parameter values are ‍k0 = 2.3 × 10−3ms−1
‍, ‍∆G‡ = 18.5kBT ‍, 

‍n
‡
Ca = 3.20‍, ‍ntot1 = 500‍, ‍ntot2 = 1000‍, ‍k2 = 0.027ms−1

‍, ‍N = 2‍. Parameters values used in Appendix 1—
figure 2B are ‍ntot1 = 500‍, ‍ntot2 = 1000‍, ‍k2 = 0.027ms−1

‍ and ‍k1 = 1ms−1
‍ (corresponds to 

‍[Ca2+] ≈ 20µM ‍ for the calyx of Held).
In Appendix 1—figure 2C, parameter values are ‍k1 = 0.1ms−1

‍ and ‍ntot1 = 500‍.
In Appendix 1—figure 2D, the parameter values ‍∆G = 10kBT ‍, ‍n

‡
Ca = 1.7‍ and ‍k0 = 6 × 10−5ms−1

‍ 
are approximately matched to the data in Hui et al., 2005.

In Appendix 1—figure 2E, the values of k1 correspond to ‍[Ca2+] = 10µM ‍ in Appendix 1—
figure 2D.

In Appendix 1—figure 3B, the values for ‍T ‍, ‍n
‡
Ca‍, ‍ntot1‍, ‍τRRP‍, ‍[Ca2+]0‍ and ‍ICa‍ are as in Figure 4G 

in the main text. The values ‍∆G‡ = 15.4kBT ‍ and ‍k0 = 5.45 × 10−7ms−1
‍ are chosen such that 

‍Ca2+‍-sensitivity is ‍∼ 1/3‍ of that in Figure 4G while the response to a single action potential is the 
same.

In Appendix 1—figure 3C, parameter values are ‍∆G‡ = 18.5kBT ‍, ‍n
‡
Ca = 3.54‍, 

‍k0 = 1.67 × 10−7ms−1
‍ and ‍τCa = 12ms‍ for curve a; ‍∆G‡ = 16.5kBT ‍, ‍n

‡
Ca = 3.14‍, ‍k0 = 1.4 × 10−6ms−1

‍ 
and ‍τCa = 48ms‍ for curve b; ‍∆G‡ = 20kBT ‍, ‍n

‡
Ca = 4‍, ‍k0 = 4 × 10−8ms−1

‍ and ‍τCa = 48ms‍ for curve c. 
For all three curves, ‍T = 3ms‍, ‍ntot1 = 1000‍, ‍τRRP = 40ms‍, ‍[Ca2+]0 = 50nM ‍ and ‍ICa = 10µM ‍.

In Appendix 2—figure 1, the fit yields the height and width of the activation barrier and 
the rate constant for the SNARE conformational change at ‍[Ca2+]0,‍ ‍n

‡
Ca = 3.48 ± 0.01‍ and 

‍k0 = (1.88 ± 0.07) × 10−7ms−1
‍. The fitting parameters accurately recover the input parameters of 

the simulations: ‍∆G‡ = 18.4kBT ‍, ‍n
‡
Ca = 3.54‍ and ‍k0 = 1.67 × 10−7ms−1

‍.

https://doi.org/10.7554/eLife.73585
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Fitting algorithms for extracting microscopic parameters from 
experimental data
Data on temporal profiles of release rate and cumulative release (Figure 3A, C) can be used to 
extract the sizes of the vesicle pools, ‍ntot1‍ and ‍ntot2‍, the number of independent SNARE assemblies 
required for fusion, ‍N ‍, and the rate constants, k1 and k2. Suppose there are ‍m‍ measured data 
points for the release rate or for cumulative release as a function of time: ‍{(ti, yi)}m

i=1‍, where ti is the 
time and yi is the release rate at time ti or cumulative release up to time ti.

For the release rate, the target function used in the least-squares fit is Equation 1:

	﻿‍ y(t) = a1(1 − e−k1t)N−1e−k1t + a2
∑N−1

j=0 (−1)j(N−1
j
) e−k2 t−e−(j+1)k1 t

(j+1)k1−k2
,‍� (56)

where the coefficients ‍(a1, a2, k1, k2, N)‍ will be determined by minimizing the squared error 

‍
∑m

i=1 |yi − y(ti)|2‍. The minimization can be realized by the following code in Mathematica 
(alternatively, any similar program can be used):

data = {{‍t1, y1‍},{‍t2, y2‍},{‍t3, y3‍}...,{‍tm, ym‍}};
‍N ‍= ‍N0‍; 
 

rate =
Function[{‍a1‍,‍a2‍,‍k1‍,‍k2‍,t},
Piecewise[{{‍a1‍ PDF[HypoexponentialDistribution[Table[i‍k1‍,{i,1,‍N ‍}]],t]
+‍a2‍ PDF[HypoexponentialDistribution[Join[Table[i‍k1‍,{i,1,‍N ‍}],{‍k2‍}]],t]
                                                                                                                                                                                                                                               ,t ≥ 0}},0]];
fit = NonlinearModelFit[data,rate[‍a1‍,‍a2‍,‍k1‍,‍k2‍,t],
                                  {{‍a1‍,‍a10‍},{‍a2‍,‍a20‍},{‍k1‍,‍k10‍},{‍k2‍,‍k20‍}},t,Method -> "NMinimize"];
fit["ParameterTable"]
Mean[Map[Abs, fit["FitResiduals"]]]

where ‍a10, a20, k10, k20‍ are the initial guess values for the parameters. The code will yield the least 
squared error and thus the best-fit values for ‍(a1, a2, k1, k2)‍ at ‍N = N0‍. The code should be run for 
different values of N0. The set of parameters that corresponds to the minimal least squared error 
is then chosen (see Appendix 3—table 1). The sizes of the two vesicle pools can be calculated as 

‍ntot1 = a1
Nk1 ‍ and ‍ntot2 = a2

Nk1k2 ‍.
For the cumulative release, the target function used in the least-squares fit is Equation 2:

	﻿‍ y(t) = b1(1 − e−k1t)N + b2
∑N

j=1
(N

j
)
(−1)j−1(1 − jk1e−k2 t−k2e−jk1 t

jk1−k2
).‍� (57)

Similarly, the coefficients ‍(b1, b2, k1, k2, N)‍ are determined by minimizing the squared error 

‍
∑m

i=1 |yi − y(ti)|2‍. The corresponding Mathematica code is the same as the one above with two 
modifications: (‍a1, a2‍) should be replaced with (‍b1, b2‍) and PDF should be changed to CDF.

Data for peak release rate vs. intracellular calcium concentration (Figure 2) can be used 
to extract the parameters listed in Appendix 3—table 2: the activation barrier of SNARE 
conformational transition at reference calcium level, ‍∆G‡‍; the average number of calcium 
ions bound to a SNARE assembly at the transition state, ‍n

‡
Ca‍; and the parameter combination 

‍

(
1 − 1

N

)N−1
ntot1k0‍

, which measures the release rate at the reference calcium level. If k1 and ‍N ‍ 

are extracted independently from the temporal profile of the release rate or cumulative release 
as discussed above, then k0 can be calculated from these parameters. Rather than directly using 
Equations 3 and 4 for the least squares fit, we write the logarithmic version of Equation 4 as 
follows

	﻿‍
R(x) = A + 1

2 ln
(

1 − 2
3 Bx

)
+ C

(
1 −

(
1 − 2

3 Bx
) 3

2
)

,
‍� (58)

where ‍R‍ is the logarithm of peak release rate and ‍x‍ is the logarithm of the normalized intracellular 

calcium level, ‍ln
[Ca2+]
[Ca2+]0 ‍. The coefficients ‍A, B,‍ and ‍C‍ can be determined by minimizing the squared 

error. Suppose the measured data points are ‍{xi, Ri}m
i=1‍, where xi is the logarithm of the normalized 

intracellular calcium level and ri is the peak release rate for xi. Then the following Mathematica 
code can be used for the least squares fit with Equation 58:

https://doi.org/10.7554/eLife.73585
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data = {{‍x1, R1‍},{‍x2, R2‍},{‍x3, R3‍}...,{‍xm, Rm‍}};
loglog = Function[{x,y},{Log[x/‍[Ca2+]0‍],Log[y]}];
datalog = Apply[loglog, data, {1}]; 
 

peakr = Function[{‍A, B, C, x‍},Piecewise[{{‍A‍+(1/2)*Log[1-(2/3)*‍Bx‍]
                                                                                                     + ‍C‍*(1-(1-(2/3)*‍Bx‍)^(3/2), ‍x‍<3/2/‍B‍, Infinity}}]]; 
 

 
fit = NonlinearModelFit[datalog, {peakr[‍A, B, C, x‍],{‍A > 0, B > 0, C > 0‍}},
                                                          {{‍A, A0‍},{‍B, B0‍},{‍C, C0‍}},x,Method -> NMinimize];
fit["ParameterTable"]

where ‍[Ca2+]0‍ is the reference calcium level (‍50µM ‍ in Figure 2) and ‍A0, B0, C0‍ are the initial guess 
values for the parameters. The code will yield the best-fit values for ‍A, B,‍ and ‍C‍. The parameters for 
SNAREs can now be obtained as follows:

	﻿‍
∆G‡

kBT = C, n‡Ca = BC,
(

1 − 1
N

)N−1
ntot1k0 = A.

‍� (59)

https://doi.org/10.7554/eLife.73585
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