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Multicenter longitudinal neuroimaging has great potential to provide efficient and

consistent biomarkers for research of neurodegenerative diseases and aging. In rare

disease studies it is of primary importance to have a reliable tool that performs

consistently for data from many different collection sites to increase study power. A

multi-atlas labeling algorithm is a powerful brain image segmentation approach that is

becoming increasingly popular in image processing. The present study examined the

performance of multi-atlas labeling tools for subcortical identification using two types

of in-vivo image database: Traveling Human Phantom (THP) and PREDICT-HD. We

compared the accuracy (Dice Similarity Coefficient; DSC and intraclass correlation; ICC),

multicenter reliability (Coefficient of Variance; CV), and longitudinal reliability (volume

trajectory smoothness and Akaike Information Criterion; AIC) of three automated

segmentation approaches: two multi-atlas labeling tools, MABMIS and MALF, and

a machine-learning-based tool, BRAINSCut. In general, MALF showed the best

performance (higher DSC, ICC, lower CV, AIC, and smoother trajectory) with a couple of

exceptions. First, the results of accumben, where BRAINSCut showed higher reliability,

were still premature to discuss their reliability levels since their validity is still in doubt (DSC

< 0.7, ICC < 0.7). For caudate, BRAINSCut presented slightly better accuracy while

MALF showed significantly smoother longitudinal trajectory. We discuss advantages and

limitations of these performance variations and conclude that improved segmentation

quality can be achieved using multi-atlas labeling methods. While multi-atlas labeling

methods are likely to help improve overall segmentation quality, caution has to be taken

when one chooses an approach, as our results suggest that segmentation outcome can

vary depending on research interest.

Keywords: brain MRI, longitudinal data analysis, multicenter study, machine learning, multi-atlas label fusion,
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Introduction

Brain MRI analysis from longitudinal multicenter studies has
become increasingly important in clinical studies of normal
aging as well as in neurodegenerative disorders, such as
Huntington (HD), Alzheimer’s, and Parkinson’s disease. Precise
assessment of longitudinal changes of brain structures may
provide a non-invasive means to monitor treatment effects of
clinical intervention. During the last decade, many large-scale
multicenter longitudinal studies have collected series of imaging
data (Jack et al., 2008; Paulsen et al., 2008; Tabrizi et al., 2014)
to understand how the human brain changes in the course of
aging and disease progression. These studies of structural brain
changes have provided a key insight into healthy development
(Sullivan et al., 2011; Treit et al., 2013; Herting et al., 2014),
normal aging (Tang et al., 2001; Resnick et al., 2003; Scahill et al.,
2003; Mungas et al., 2005; Risacher et al., 2010), and disease
progression (Ahdidan et al., 2011; Tabrizi et al., 2012; Takahashi
et al., 2012; Weiner et al., 2012).

We have utilized two independent data sets to compare
performance of automated segmentation methods in human
MRI. The PREDICT-HD database provides multi-center
longitudinal data collected for pre-symptomatic gene-positive
HD (Pre-HD) individuals over a 10-year period (Paulsen et al.,
2006). Traveling Human Phantom (THP) data was collected
for the multicenter reliability study and includes repeated
multi-modal MRIs (T1-weighted and T2-weighted) from same
five healthy subjects at eight different sites that had either a
Siemens 3T TIM Trio scanner or a Philips 3T Achieva scanner
(Magnotta et al., 2012). The THP data provides valuable
reproducibility insights since the same five individuals traveled
to the eight different sites in a month, where no brain change was
expected. In this study, PREDICT-HD data was used to compare
segmentation accuracy and longitudinal reliability; and THP
was used to investigate intra-subject multicenter reliability. We
further limited our attention to subcortical structures, which are
the main regions of interest in HD. The subcortical structures
of interest include the accumben nucleus, caudate nucleus,
putamen, globus pallidus, thalamus, and hippocampus. Volume
changes in the basal ganglia have been repeatedly reported in
several studies in Pre-HD subjects (Paulsen et al., 2014a,b) and
HD patients (Rosas et al., 2011; Tabrizi et al., 2013) and are
primarily considered part of the hypothesized main brain target
region in HD pathology (Phillips et al., 2014).

The interpretation of volumetric change is greatly affected by
the quality of the segmentation approach under consideration.
It is easily agreeable that large-scale longitudinal data are
potentiallymore powerful but alsomore prone tomethodological
bias. Therefore, volume measures for longitudinally collected
MRIs are required to accurately capture how individual
differences are related to brain structural changes over time.
While the large-scale multicenter longitudinal design is
increasingly popular, one main factor that limits the sensitivity
of multicenter longitudinal studies is data variation. Variation
in MRI-driven volumetric measures may result from biological
differences between subjects as well as from image characteristic
differences, such as intensity profiles, which depend on scanner

types, acquisition protocols, field strength, and subject placement
in the scanner. The challenge remains in providing segmentation
techniques that work in all cases, regardless of type of scanner,
progression of disease, or MRI protocol to identify biomarkers
which model disease progression and to predict clinical
outcomes.

A desire to attain precise and sensitive measurements of
MRI-driven volume changes has spurred the creation of several
MRI segmentation methods (Balafar et al., 2010). This continual
development effort achieved reasonable cross sectional brain
anatomy segmentation by adopting a single atlas-based labeling
method (Cabezas et al., 2011), which identifies regions of interests
by propagating atlas information to a target subject using an
image registration technique. This single atlas-based approach
requires that the brain morphology presented in the image be
very similar between the target subject and the atlas MRI. The
single atlas-driven approach becomes vulnerable when inter-
image (subject) differences are too large to be captured by
any given registration method. The issue becomes increasingly
problematic for large-scale data or analysis, where data variation
is inherently large while the method solely relies on one atlas.

To overcome the above-mentioned issues of a single atlas-
based approach, a multi-atlas labeling approach has been
proposed (Rohlfing and Maurer, 2004). The multi-atlas labeling
method employs several different atlases to cover a variety
of MR data characteristics. Utilization of multiple atlases
in a segmentation method takes account for image profile
differences and large intersubject anatomical variation that
naturally occurs in the human brain (Cabezas et al., 2011).
There is also increasing evidence that multi-atlas labeling
improves segmentation accuracy in several studies (Wang et al.,
2012; Chakravarty et al., 2013; Sjoberg and Ahnesjo, 2013),
and consequently, this approach is rapidly gaining popularity
(Sabuncu et al., 2010; Zhang et al., 2011a; Jimenez del Toro and
Muller, 2014).

The present study was designed to systematically contrast
three methods for subcortical segmentation on identical data
sets. Three publicly available open-source segmentation tools are
utilized in this comparative study: BRAINSCut (Kim et al., 2014),
ANTs MALF (Wang et al., 2012), and 3DSlicer’s MABMIS (Jia
et al., 2012) (Also see Table 1). We are specifically interested
in how tools perform on in-vivo human MRI studies with
respect to at least three aspects: segmentation accuracy, multi-
center reliability, and longitudinal reliability. To capitalize on our
knowledge and experience in automated segmentation tools, we
have evaluated our in-house tool, BRAINSCut, in addition to
two distinct techniques that are based on the multi-atlas labeling
approach: MABMIS and MALF.

BRAINSCut is an open-source machine-learning-based
segmentation software targeted for processing of multicenter
large-scale MRI. The core of the segmentation algorithm
implements a machine-learning technique called random-forest
to delineate target structures. BRAINSCut excels in processing
large-scale multicenter data reliably and efficiently, and has been
used extensively by the PREDICT-HD (Paulsen et al., 2013)
and TRACK-ON (Tabrizi et al., 2009) research teams. The latest
version of BRAINSCut was evaluated using both PREDICT-HD
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TABLE 1 | A brief summary of three automated segmentation tools

investigated in this study: MALF (Wang and Yushkevich, 2013), MABMIS

(Jia et al., 2012), and BRAINS Cut (Kim et al., 2014).

Tool General approach Remark

MALF Multi-atlas labeling based Joint fusion algorithm with

Advanced SyN-based

registration (Avants et al., 2008)

MABMIS Multi-atlas labeling based Expedite multiple registrations

using a tree-based group-wise

registration method and naïve

label voting

BRAINS Cut Machine-learning based Machine-learning, specifically a

Random-forest-based method,

which outperformed other

classification methods in

multicenter large-scale MRI

processing in terms of

segmentation accuracy and

generalizability of large scale data

and TRACK-ON data to assess its accuracy and multi-center
reliability (Kim et al., 2014).

Multi-atlas based multi-image segmentation (MABMIS)
(Jia et al., 2012) proposes an efficient way to expedite
multiple registrations between target and atlases. MABMIS
aims to address the bottleneck of multi-atlas labeling methods:
computationally expensive registrations from multiple atlases
to a target image. MABMIS reduces registration time by
constructing a hierarchical registration tree between the atlas and
target images.

Finally, multi-atlas based label fusion (MALF) provides
a great implementation of the multi-atlas labeling approach
in conjunction with the advanced normalization tools
(ANTs) development framework. The MALF algorithm
advances segmentation accuracy via weighted voting, assuming
conditional independence between atlases. The approach utilizes
ANTs symmetric image normalization (SyN)-based registration
(Avants et al., 2008), endowing it with great potential to be
a powerful tool in the field. The parameter profiles of MALF
are well explained in Wang and Yushkevich (2013) and its
performance is formally reported in Yushkevich et al. (2012).

This paper aims to provide validation for several aspects
regarding assessment of automated segmentation performance,
potentially leading to more powerful tool development in
the future. Although we believe that key indicators of the
quality of automated segmentation outcomes are their accuracy
and reliability, only a few studies address both accuracy and
reliability, and their assessment is often limited to short-term
period data (Babalola et al., 2009; Wonderlick et al., 2009).
Segmentation accuracy warrants the validity of the identified
structures to be used for brain research as their definition
corresponds to the research intent. On the other hand, reliability
means the extent of measurement stability, e.g., across sites
(multicenter reliability) or across time (longitudinal reliability),
so that outcomes can be used to detect differences between

groups or over time. Validity requires that the measurement
is reliable, but the measurement can be reliable without being
valid (Kimberlin and Winterstein, 2008). Therefore, we sought
to investigate both aspects of segmentation quality, accuracy and
reliability, in order to compare the three different approaches.

Finally, a sample size analysis was carried out to establish
the minimum sample size necessary for detecting changes at the
caudate nucleus and putamen level presented in PREDICT-HD
MRI data with 80% power. These regions were used because they
are established as the most prominent candidates for measuring
longitudinal change in HD (Paulsen et al., 2014a). This sample
size estimation provides crucial information to give one an idea
of what to expect with the current tools available in the field as
well as to guide future direction of tool development and study
design.

Thus, the goal of this technical report is to provide insight into
performance of different brain MRI segmentation approaches,
including two emerging multi-atlas labeling techniques, focusing
on in-vivo longitudinal multicenter MRI data. With the
growing demand for a reliable segmentation technique and
with attention to multi-atlas labeling methods spreading, this
technical report investigated how multi-atlas labeling works
on a multicenter longitudinal MRI data set. By utilizing
the multicenter longitudinal data, we present quantitative
and qualitative assessments of how individual trajectories of
subcortical volume relate to the choice of methodology. Although
this study utilized the PREDICT-HD data set, the outcomes of
this study are generalizable to other study domains involving
longitudinal and/or multicenter MRI studies. We hope that
the validation and results in this paper will draw attention
to the behavior of techniques as a useful reference to future
neuroimaging studies where appropriate.

Materials and Methods

The data set used in this study is described, followed by a
description of the MR image pre-processing that we applied to
all our experiments. Finally, we calculate evaluation criteria used
to contrast performance of MALF, MABMIS, and BRAINSCut.

Data Description
Three subsets were investigated to assess different aspects of
segmentation quality resulting from MALF, MABMIS, and
BRAINSCut methods: two from PREDICT-HD (Paulsen et al.,
2008), and one fromTHP data (Magnotta et al., 2012). PREDICT-
HD collected T1-weighted (and T2-weighted) MRI data at 24
sites. The sites involved in PREDICT-HD had Siemens, GE, or
Phillips scanners, and some sites upgraded their scanners from
1.5 to 3.0 T during the study period. For each of the data used in
this study, a summary of data is given in Table 2 and the detailed
image acquisition protocol is described elsewhere (Paulsen et al.,
2008; Magnotta et al., 2012). A subset of 35 scans with manual
traces (PHD35), THP multicenter data (THP), and 13 subjects
of a longitudinal (L-PHD13) data set were used to assess
segmentation quality in terms of accuracy, multicenter reliability,
and longitudinal consistency, respectively (see Table 2).
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TABLE 2 | Image profile for three subsets used in this study is presented.

n Notes Scanner type

each scan

TE (ms, T1 w) TE (ms, T2 w) Field strength

PHD35 35 1 scan/subject GE (2) 2.804, 2.82 88.919, 79.97 3.0 T

Siemens (28) 1.93∼3.09 430,433

Phillips (5) 3.5 182.566∼185.971

THP 5 Repeated scans at 8 sites per

subject

Siemens (5) (Magnotta et al., 2012) 3.0 T

Phillips (3)

L-PHD13 13 8∼10 longitudinal scans per

subject

GE (49) 3, 5 28∼98 1.5 T/3.0 T

Siemens (175) 2.87∼4.75 430∼4800

Phillips (5) 2.925∼3 NA

The detailed image acquisition protocol is described elsewhere (PHD: Paulsen et al., 2008; THP: Magnotta et al., 2012).

PHD35

The 35-scan set of PREDICT-HD was selected to assess
segmentation accuracy against manual traces. Thirty-five scans
were selected by varying acquisition site as well as tissue ratio,
which is generally thought to correlate with brain atrophy.
Their MRI scans were manually delineated for all 12 structures
of interest: the accumben nucleus, caudate nucleus, globus
palladium, putamen, thalamus, and hippocampus in the left and
right hemispheres.

THP

THP data from a multicenter reliability study (Magnotta et al.,
2012) was incorporated into this study to compute measurement
variation from MRI-driven volumetric measurements with
multicenter data collection from the same subjects. The THP
data provides a series of repeated scans of fives subjects at eight
different sites over a short time period where biological changes
would be negligible.

L-PHD13

Longitudinal reliability within subjects utilizes 13 PREDICT-HD
subjects that repeatedly collected MR data for more than three
time points. The subjects were also selected to include various
disease burden statuses [CAG-Age Project or CAP score (Zhang
et al., 2011b)], which are generally known to have different brain
atrophy levels.

Image Processing
MR images were pre-processed using tools from BRAINSTools
suite. Preprocessing of MR images consists of AC-PC spatial
alignment (Lu, 2010; Ghayoor et al., 2013), co-registration
between T1-weighted (T1-w) and T2-weighted (T2-w) images,
and multimodal bias-field correction (Kim and Johnson, 2013).

The segmentation was performed on the bias-field corrected
T1-w and T2-w images. The automatic segmentation tools used
in this study are all publicly available and their characteristics are
summarized in Table 1.

Evaluation
To evaluate the performance of the subcortical segmentation
results, we analyzed their accuracy, multicenter reliability, and
longitudinal reliability using three sets of in-vivoMRI data.

Segmentation accuracy in this study is a measure of
how similar automated segmentation is compared to manual
segmentation (the de facto gold standard). Using a 10-fold
cross-validation approach, Dice Similarity Coefficient (DSC),
and intraclass correlation (ICC) were computed by contrasting
automated segmentation against manual traces. For 10-fold
cross-validation, 35 subjects are roughly subdivided into 10
subsets (three or four subjects per set) and cross-validation
is conducted to estimate accurate segmentation performance
(more details available in the Supplemental Materials). DSC is
a measure of how much two segmentations overlap in volume,
and a higher DSC indicates a better correspondence in volume
between two raters. ICC measures a correlation between two
independent approaches on a series of data, and the approaches
are generally accepted as equivalent if the ICC is higher than
0.75 (Shrout and Fleiss, 1979). A higher DSC and ICC together
indicate better segmentation accuracy when compared to the
gold standard.

To assess multicenter reliability, the coefficient of variation
(CV) was calculated as: CV% = (SD volume/Mean volume)
∗ 100. The CV was calculated from these THP scans. Note
that the CV does not measure the correctness of segmentation,
only the variability of segmentation algorithm across sites
within subjects. CV compares the variability of a measurement
to it’s mean, which gives a much better idea of the signal
than assessing each alone (large variability along with a large
mean is not as worrisome as large variability with a small
mean).

We attempted to quantify the longitudinal reliability using
Akaike Information Criterion (AIC) from the restricted
maximum likelihood (REML) approach assuming linear
changes in subcortical volumes, if they exist, in the course of
disease progression. As mentioned in DeShon et al. (1998),
longitudinal data present many challenges for analyses and,
in particular, the estimation of reliability. Thus, we also
reviewed a visualization of the trajectory of each volume to
ensure that the AIC, as a longitudinal reliability estimate, does
not bias the interpretation of our results in any undesirable
direction; the AIC can only be considered as a measure of the
longitudinal reliability of the tool when the approach presents
valid segmentation (higher DSC and ICC) and smooth trajectory
on the plot.
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Results

Segmentation Accuracy
The three methods explored differed for segmentation accuracy
as measured by DSC (Figure 1) and ICC (Figure 2) against
manual segmentation. For all subcortical structures, BRAINSCut
and MALF presented higher DSC and ICC than MABMIS.
Furthermore, MALF had generally higher DSC and ICC than
BRAINSCut.

Reliability Across Centers
The multicenter reliability investigation is summarized in
Figure 3. Segmentations from BRANSCut and MALF had
lower CV values than those obtained from MABMIS in all
subcortical structures (Figure 3). This clearly indicated higher
reliability for BRAINSCut and MALF. BRAINSCut presented
lower CV values for hippocampus segmentation, while for
all other regions, MALF presented lower CV values than
BRAINSCut. An examination of CV revealed a significant

improvement of multicenter reliability when using MALF rather
than BRAINSCut or MABMIS.

Longitudinal Reliability within Subjects across
Disease Burden
Longitudinal segmentation reliability is contrasted and
summarized in Figure 4 and Table 3. MALF showed a
significantly smoother trajectory (Figure 4) and the smallest AIC
(Table 3) (The smaller AIC, the better fit of the model) compared
to BRAINSCut and MABMIS in Pre-HD subjects. Except for
the accumben nucleus and hippocampus, MALF presented very
stable trajectories, as shown in Figure 4 and a Supplemental
Figure.

For the caudate and putamen, which are of foremost
importance in HD study (Paulsen et al., 2014a), a sample size

analysis was conducted in order to determine the minimum
sample size necessary for detecting (with 80% power) slopes
equal in magnitude to those observed in the pilot data, L-
PHd13, at the 0.05 significance level. The analysis was conducted
only for MALF and BRAINSCut, because estimated annual

FIGURE 1 | Comparison of the Dice Similarity Coefficient (DSC)

of three methods to the manual traces. A higher DSC indicates

better accuracy. For all six subcortical stuctures, BRAINSCut, and

MALF presented higher DSC values than MABMIS. Other than

accumbens and caudates, MALF had higher DSC values than

BRAINSCut.
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FIGURE 2 | Comparison of the intraclass correlation (ICC) of three

methods to the manual traces. A higher ICC means better

correspondence with the manaul traces and, therefore, improved

accuracy. ICC = 0.75 (blue line) was a suggested bound by Shrout et al.

(Shrout and Fleiss, 1979) for two independent measruements to be

equivalent.

FIGURE 3 | A comparison of the Coefficient of Variation (CV)

for the segmentation approaches from traveling human

phantom (THP) data. MALF presented the lowest CV, the

better reliability across centers, in general. BRAINSCut (bcut)

outperformed only for hippocampus in terms of multicenter

reliability measured in CV.

change from MABMIS was positive in the pilot data. This
highly suspicious result implied that volumes of putamen
and caudate increased over time, which contradicted previous
findings and underlying scientific consensus regarding HD. In
addition, the low segmentation accuracy (Result Segmentation
Accuracy) and multicenter reliability (Result Reliability across
Centers) of MABMIS indicate that its segmentation outcomes
are less valid for further analysis, when compared to MALF and
BRAINSCut.

For each region/method of interest, the simulation proceeded
as follows: intercepts and slopes (change over time) were

estimated for each region/method using linear mixed models
(LMMs). LMMs were used because subjects had multiple
measurements, leading to correlated data within subjects. The
estimated intercepts and slopes were then used to generate a data
set with a fixed sample size while assuming the data follow a
linear mixed model (Psioda, 2012). This means that we used the
pilot study estimates as population parameters, and is analogous
to sample size analyses utilized in simpler settings, i.e., assessing
differences in means at one observation time, where pilot data are
used to infer a value for the variance (σ2). Next, an approximate
Z-test was employed in order to test the null hypothesis HO:
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FIGURE 4 | The longitudinal trajectories of caudate and

putamen volumes in left hemisphere according to Low

(Circle), Medium (Triangle), and High (Square) CAP groups.

Each line segment represents one of 13 longitudinal subjects. The

results of all six subcortical structures are also provided in the

Supplemental Figure.

TABLE 3 | The table presents comparisons of the Akaike Information Criterion (AIC) and log-likelihoods for the longitudinal model using three different

methods.

ROI (hemisphere) AIC Log Likelihood

BRAINSCut MALF MABMIS BRAINSCut MALF MABMIS

Accumben (L) 2320.20 *2204.82 2542.02 −1151.10 −1093.41 −1262.01

(R) *2124.47 2180.40 2535.45 −1053.24 −1081.20 −1258.73

Caudate (L) 3297.80 *2863.82 3336.75 −1639.90 −1422.91 −1659.38

(R) 3252.29 *2867.40 3251.63 −1617.15 −1424.70 −1616.81

Globus (L) 2958.17 *2634.54 3134.22 −1470.08 −1308.27 −1558.11

(R) 2806.80 *2614.14 2992.29 −1394.40 −1298.07 −1487.14

Hippocampus (L) 2837.26 2798.11 *2756.88 −1409.63 −1390.05 −1369.44

(R) 2769.51 *2646.68 2786.49 −1375.75 −1314.34 −1384.25

Putamen (L) 3195.97 *2982.74 3453.81 −1588.99 −1482.37 −1717.90

(R) 3123.95 *2945.32 3451.46 −1552.97 −1463.66 −1716.73

Thalamus (L) 3152.77 *3100.40 3383.60 −1567.38 −1541.20 −1682.80

(R) 3122.50 *3055.30 3481.18 −1552.25 −1518.65 −1731.59

The minimum AICattained by the preferred model, was achieved for the structure by the approach marked with*.

slope equals zero. This process was repeatedM times, and the
percentage of cases for which the null hypothesis was rejected
was calculated, i.e., R/M, where R was the number of simulated
samples for which the null was rejected. The numberM used
for all analyses was 1000, and this process was repeated for a

sequence of sample sizes that increased in magnitude, i.e., 10,
20, 30, etc. In order to adjust for missing data, the minimum
sample size with adequate power was inflated, assuming 10%
missing data as shown in Tables 4, 5. In specific, the final sample
size necessary was N1 = 1

0.9N0, where N0 was the minimum
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TABLE 4 | Estimated intercept and slope for the power analysis and

sample size estimation for caudate and putamen in left and right

hemisphere.

Method Side Structure Intercept

[Vp=VROI/ICV (%)]

Slope [Vp/Year]

MALF Left Putamen 0.2748 −0.0026

Caudate 0.1989 −0.0014

Right Putamen 0.2672 −0.0023

Caudate 0.1992 −0.0014

BRAINSCut Left Putamen 0.2894 −0.0038

Caudate 0.2123 −0.0029

Right Putamen 0.2767 −0.0031

Caudate 0.2204 −0.0041

The power and sample size analysis performed on data expressed as a percent of total

intercranial volume along years offollow-up. Note that slope magnitude from BRAINSCut

is larger than that estimated by MALF. These slopes and intercepts were utilized as

population parameters in the sample size estimation with 80% power. (Vp, Percent volume

of total ICV; VROI, Volume of region of interest; ICV, intercranial volume).

TABLE 5 | Sample size estimation to attain 80% power for caudate and

putamen is reported.

Required sample size N Putamen Caudate

Left Right Left Right

MALF 45 56 62 84

BRAINSCut 45 62 123 62

The slope and intercept from Table 4 were used. Numbers are inflated from the minimum

required sample size found in thepower analysis that is reported in the supplement.

uninflated sample size with adequate power, and N1 was the
sample size adjusted for missing data.

The left and right hemispheres were analyzed separately,
under both the MALF and BRAINSCut segmentation methods.
The following table summarizes the necessary sample size for
detecting differences observed in the pilot data with at least 80%
power.

Discussion

We sought to characterize the performance of three different
automated segmentation tools using in-vivo MRI data focusing
on the potential of multi-atlas labeling approaches for use
in large-scale multicenter longitudinal studies. Segmentation
accuracy, multicenter reliability, and longitudinal reliability were
investigated. Several major findings emerged: (1) multi-atlas
labeling methods can improve the segmentation outcome in
general when considering segmentation accuracy, multicenter
reliability, and longitudinal reliability; (2) among the three
methods, MALF performed the best for most structures, followed
by BRAINSCut and then MABMIS; and (3) the sample size
analysis for detection of a decrease in volume of caudate and
putamen serves as a useful guide for future researchers who
want to assure adequate power for detecting structural volume
changes. It is worth noting that MALF did not outperform the

other methods for all the structures, while our results show
widespread improvement of segmentation quality using MALF.
We suggest that the multi-atlas labeling approach can be one of
the main focuses of future studies.

We found an increase in the DSC and ICC and a decrease
in the CV for most structures when using MALF, indicating
that better segmentation quality can be obtained using MALF as
compared to BRAINSCut or MABMIS. A higher DSC indicates
greater segmentation similarity between the automated and
manual methods (the gold standard) that is usually interpreted
as providing better accuracy. Furthermore, ICC, which is a
measure of how two independent measures resemble each other,
was increased for most subcortical structures of interest by
using MALF. This increase in ICC, which has been known to
be sensitive to intra-method variances as well as inter-method
correlation, also reflected improved measurement accuracy. CV
in this study is a measure of how reliable the tools are across
centers. Reduction in CV indicates better inter-center reliability,
i.e., less variation between multiple measurements on the same
subject acquired at five different sites. In summary, the best
performance in terms of higher DSC and ICC and lower CV
was achieved using MALF; BRAINSCut appeared to be better
in a few cases: higher DSC and ICC for the caudate nucleus
and lower CV for hippocampus. Thus, our data (higher DSC,
ICC, and lower CV with MALF) suggests possible segmentation
superiority of the multi-atlas labeling approach in segmenting
subcortical structures from human brain MRIs.

Our result suggests that MALF benefits the segmentation
outcomes the most, but the choice of methods should depend on
the researchers’ aims since there exists a performance variation.
For example, if one considers caudate for a region of interests, the
choice of methods could depend on the study design. If the study
design does not involve longitudinal data collection, BRAINSCut
would be a better choice because of higher segmentation
accuracy, which will give more sensitive outcomes. If the study
design, however, expects longitudinal data acquisition, it might
be wise to use MALF as it has smoother volumetric trajectory
across years (Figure 4) with accurate segmentation results based
on DSC and ICC (>0.75). For accumben nucleus, however, it
is yet premature to use the data as a volumetric measurements
since the accuracy of segmentation is very low, regardless the
choice of the method (DSC < 0.75 and ICC < 0.7). Please
note accumben is a notoriously small structure to be identified
from our 1.5 or 3 Tesla MRI, ∼480mm3, about a size of a
bean, connecting caudate and putamen. A somewhat similar
argument is valid for hippocampus. Although hippocampus
showed better multicenter reliability with MABMIS (lower CV),
hippocampus from MABMIS may not be valid enough to be
used as measurements (low DSC and low ICC). In summary,
we recommend prioritizing performance criteria to choose a
proper method that best suites ones study design. There is no
one method that is always best. That is, depending on the
purpose of the study, researchers may choose the method gives
better accuracy, multicenter or longitudinal reliability for a given
indication of valid segmentation.

The advantages of multicenter collaboration in observational
studies include increased generalizability of results, a larger
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sample size, and improved efficiency, as discussed in Sprague
et al. (2009) and widely practiced for rare or hard-to-recruit cases,
such as HD (Paulsen et al., 2008; Tabrizi et al., 2009), Parkinson’s
Disease (Spencer et al., 2005), and Alzheimer’s Disease (Jack et al.,
2008). In such multicenter studies, across-scanner variations
might interfere with the detection of disease-specific structural
abnormalities (Bendfeldt et al., 2012), thereby potentially limiting
the use of group analysis collected at several centers. Our data
shows an increase in multicenter reliability for most subcortical
structures when using MALF.

Multicenter reliability is also related to the generalizability
of the tool, i.e., how much data the tool can handle, since
utilization of multiple centers almost always decreases the
amount of homogeneity in the data, sometimes considerably. The
“boosting” theory in machine learning can be used to explain
our results regarding superior multicenter reliability when using
MALF. According to this theory, a collection of weak learning
algorithms, which independently perform only slightly better
than random guesses, can be converted into a highly accurate
and generalizable algorithm [a better bounded generalization
error (Mannor and Meir, 2001)]. Thus, our data on multicenter
reliability seems to be in line with the formation of strong learners
based on several weak learners; that is, the multi-atlas labeling
method, where an atlas can be analogous to a weak learner, can
outperform other methods. This finding is also in agreement
with our previous success in subcortical segmentation using the
Random-forest method, which is also a boosting method (Kim
et al., 2014).

Longitudinal reliability of multi-atlas labeling tools has only
been investigated in a few imaging studies (Bernal-Rusiel et al.,
2012; Reuter et al., 2012) and is also limited to short-term
(<2–3 years) data. The superiority of multi-atlas labeling tools
for cross-sectional brain morphology investigation has been
confirmed in a few studies (Wang et al., 2012; Chakravarty et al.,
2013; Wu et al., 2014). The previous studies in the literature on
MRI segmentation quality using the multi-atlas labeling method
generally describe accuracy improvement in terms of similarity
to the manually traced gold standard.We found that a multi-atlas
labeling approach can also improve the longitudinal reliability of
subcortical segmentation.

In the present study, visual inspection showed that MALF
presented a more stable trajectory of subcortical volumes than
other methods in the data collected over 10 years (Figure 4). We
also investigated longitudinal reliability assuming linear changes
of subcortical volume in the course of disease progression in Pre-
HD subjects. MALF also presented the minimum AIC, which is
considered the best model fit, for all subcortical structures except
for the accumben in the right hemisphere and the hippocampus
in the left hemisphere (Table 3). Although our analysis of
longitudinal performance on subcortical structures showed the
excellence of MALF when assuming a linear trajectory, according
to the longitudinal modeling suggestions in the literature
(DeShon et al., 1998), careful attention should be paid as
longitudinal data present many challenges for analysis. However,

our trajectory plot in Figure 4 (and Supplemental Figure)
demonstrates the superior stability of MALF in comparison to
BRAINCut and MABMIS.

It is interesting to note that estimation accuracy and sample
size may seem counter-intuitive at first: MALF requires larger
sample to obtain 80% power at 0.05 significant level for caudate
in right hemisphere (Table 5) even though MALF outperformed
BRAINSCut in with respect to longitudinal reliability. This is
because the power analysis and sample size estimation is based
on segmentation results from pilot (LPH-13) data set. For both
caudate and putamen in each hemisphere, the estimated slopes
from BRAINSCut were larger than those estimated by MALF
(Table 4). This means that the MALF sample size analysis was
powered for detecting a much finer change than that for the
BRAINSCut and thus MALF requires slightly larger sample size
to achieve 80% power.

Before drawing conclusions, some limitations of the present
study must be acknowledged. First, more implementations of the
multi-atlas labelingmethod have to be incorporated to investigate
which is the best method for subcortical segmentation. Second,
the registration technique used in each segmentation tool can be
investigated for better performance. Third, studies using other
psychiatric conditions are required to generalize our findings
beyond HD. This will allow for a better understanding of multi-
atlas labeling approach behavior for the automated processing of
human MRIs.

In conclusion, we have presented evidence that multi-atlas
labeling methods, which fall under an emerging segmentation
approach in the field, can improve segmentation quality
in terms of accuracy and reliability. Other methods can
also be useful, depending on the regions of interest, study
design, and implementation. However, it is likely multi-atlas
labeling helps to improve the overall quality of segmentation
outcomes.
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