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Abstract

In eukaryotes, protein kinases catalyze the transfer of a gamma-phosphate from ATP (or GTP) to specific amino acids in
protein targets. In plants, protein kinases have been shown to participate in signaling cascades driving responses to
environmental stimuli and developmental processes. Plant meristems are undifferentiated tissues that provide the major
source of cells that will form organs throughout development. However, non-dividing specialized cells can also
dedifferentiate and re-initiate cell division if exposed to appropriate conditions. Mps1 (Monopolar spindle) is a dual-
specificity protein kinase that plays a critical role in monitoring the accuracy of chromosome segregation in the mitotic
checkpoint mechanism. Although Mps1 functions have been clearly demonstrated in animals and fungi, its role in plants is
so far unclear. Here, using structural and biochemical analyses here we show that Mps1 has highly similar homologs in many
plant genomes across distinct lineages (e.g. AtMps1 in Arabidopsis thaliana). Several structural features (i.e. catalytic site,
DFG motif and threonine triad) are clearly conserved in plant Mps1 kinases. Structural and sequence analysis also suggest
that AtMps1 interact with other cell cycle proteins, such as Mad2 and MAPK1. By using a very specific Mps1 inhibitor
(SP600125) we show that compromised AtMps1 activity hampers the development of A. thaliana seedlings in a dose-
dependent manner, especially in secondary roots. Moreover, concomitant administration of the auxin IAA neutralizes the
AtMps1 inhibition phenotype, allowing secondary root development. These observations let us to hypothesize that AtMps1
might be a downstream regulator of IAA signaling in the formation of secondary roots. Our results indicate that Mps1 might
be a universal component of the Spindle Assembly Checkpoint machinery across very distant lineages of eukaryotes.
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Introduction

Protein phosphorylation and dephosphorylation are among the

most prominent and widespread post-translational modifications,

being an essential part of most regulatory signaling cascades in

eukaryotes and prokaryotes [1]. Eukaryotic protein kinases (EPKs)

catalyze the transfer of a c-phosphate from ATP (or GTP) to a

specific amino acid in the protein substrate (typically serine,

threonine and/or tyrosine) [1,2]. EPKs have evolved from simpler

eukaryotic-like kinases that are widespread, although not well-

characterized, in prokaryotes [2,3]. Some lines of evidence suggest

a positive correlation between the number of protein kinases and

complexity (i.e. multicellularity) in prokaryotes [4,5]. Although in

eukaryotes there is no such correlation, eukaryotic genomes

typically harbor highly expanded protein kinase repertoires when

compared to their prokaryotic counterparts [4,6].

In plants, EPKs have been implicated in signaling cascades that

mediate responses to environmental stimuli and developmental

processes [7–10]. Many of these signaling pathways can directly

affect cell cycle regulation [11–13], such as the MAPK pathway –

a major regulator of development, immunity and stress responses

in plants [14]. Plant and animal cell cycle biochemistry share

several common regulators, such as the cyclins, cyclin-dependent

kinases (CDKs) and CDK inhibitors [15–20]. It has been recently

shown that the premature interaction between NACK1 and

NPK1 (MAPKKK) is prevented by CDK-mediated phosphoryla-

tion, a critical step for regulating the timing of cytokinesis [21].

Several retinoblastoma-related proteins are also phosphorylated by

cyclin-CDK complexes during specific cell cycle stages [22].

Dozens of yeast CDK targets have been identified and most of

them participate in the cell cycle progress (e.g. DNA replication

and chromosome segregation) [23]. Although the complexity of
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the cyclin family is arguably higher in plants than in animals, plant

CDK targets remain elusive [24]. Conversely to the many

similarities discussed above, there are also remarkable differences

between the animal and plant cell cycle, especially with regard to

the metaphase plate formation and microtubule arrangement

during cytokinesis [25].

Mps1 (Monopolar spindle) kinase family members are charac-

terized by a C-terminal, dual-specificity protein kinase domains

[26]. They typically have divergent N-terminal regions, lacking

clear unifying motifs [26]. Mps1 was initially characterized as a

critical player in centrosome (spindle-pole) duplication and proper

formation of the spindle pole body [27–29]. Curiously, this role

has proven controversial and not unambiguously demonstrated

outside budding yeast [30,31]. Other studies consistently demon-

strated, across several eukaryotes, that Mps1 participate in the

mitotic checkpoint, which monitors the accuracy of chromosome

segregation [32–36]. Structural and functional studies showed that

the human Mps1 (hMps1) is phosphorylated at multiple amino

acids by several distinct kinases, such as Cdk1, MAPK, Plk1 and

hMps1 itself, revealing a complex regulatory landscape [37–39].

Due to this prominent role in controlling the cell cycle, Mps1 has

been considered a potential target for antineoplastic drugs and

novel Mps1 inhibitors have been tested over the past decade [40–

45].

Plants typically keep sets of undifferentiated cells (i.e. meri-

stems), which are the most important source of cells that will

constitute organs throughout development. However, it has been

long demonstrated that non-dividing specialized cells can dedif-

ferentiate and re-initiate cell division; not only in normal

developmental stages (e.g. lateral root formation), but also during

regeneration from injury or exposure to growth regulators [20,46].

The shift from differentiated to dedifferentiated phenotypes is very

complex and not totally understood, although some works support

pervasive chromatin modification and drastic change in the

transcriptional landscape preceding the cell cycle entry [46,47].

While the primary root develops during embryogenesis, the

secondary roots start from asymmetric divisions of the cells in the

pericycle [48,49], in a process that is induced by the auxin IAA

[46,50,51]. Although some important studies shed light on several

aspects of lateral root formation [50–53], the molecular steps to

reactivate the cell cycle at the pericycle is not totally understood.

In the present work we use biochemical, structural and

computational analyses to show that the protein kinase encoded

by the gene At1G77720 is a plant ortholog of Mps1 with critical

roles in the cell cycle regulation, suggesting the universality of

Mps1 as a critical cell cycle checkpoint protein.

Results and Discussion

Conservation and Evolution of Mps1 Homologs in Plants
We searched the A. thaliana genome for Mps1 homologs using

the amino acid sequence of Homo sapiens Mps1 (hMps1;

gi:23271249) as BLAST query (see methods for details). The

protein kinase AT1G77720 was found as the best hit and used for

screening a selected group of genomes including green algae, basal

(non-vascular) plants, monocots and eudicots (see methods for a

complete list of species). We retained close plant Mps1 homologs

by using query and hit (subject) 30% coverage thresholds. To

ensure higher quality and reduced redundancy, only sequences

from the RefSeq database were used for phylogenetic analysis. We

found 156 plant Mps1 homologs that, along with the hMps1, were

submitted to multiple sequence alignment and the conserved

region (which includes the kinase domain) used for phylogenetic

reconstructions.

The reconstructed phylogenetic tree comprises proteins from

major protein kinase kinase clades (e.g. CDKs and MAPKs)

(Figure 1). The clade containing hMps1 has only one A. thaliana

gene product, AT1G77720, supporting the result obtained from

pairwise comparisons (i.e. BLAST), which showed this gene as the

A. thaliana best blast hit of hMps1. In this work, AT1G77720 is

henceforth called AtMps1. Interestingly, this clade is free of recent

duplications in the flowering plants (i.e. angiosperms), which might

be a result of conserved functionality and susceptibility to

increased gene dosage coming from duplication events. Converse-

ly, there are a series of independent duplication events, including

duplications predating the origin of angiosperms and specific

duplications after the split of monocots and eudicots (Figure 1).

Remarkably, there are several independent lineage-specific

duplications of Mps1 members in the moss genome, suggesting

an increased functional diversification of the family in non-

vascular plants (i.e. mosses) after the split of the vascular plant

lineage.

Structural Analysis of AtMps1
AtMps1 is encoded by the gene At1G77720, which is located at

chromosome 1 and harbors 6 exons. Its protein product has a total

of 777 amino acids with a canonical N-terminal protein kinase

domain composed of 293 amino acids [1]. The kinase domain has

5 five antiparallel N-terminal b-sheets and 6 C-terminal a-helices.

This structure is highly similar to the experimentally derived

hMps1 kinase structure (Figure 2) [54]. AtMps1 has several major

protein kinase features such as the DFG motif (D568, F569,

G570), which is important for the catalytic loop structural

conformation (Figure 2). The glycine of the DFG motif confers

flexibility to hMps1, a critical requirement for the formation of the

catalytic loop [54]. D664 (D568 in AtMps1) coordinates a

magnesium ion required for ATP hydrolysis [55]. In the loop

between the N- and C-terminal lobes, E499 and G501 form a

hinge that is structurally similar to that formed by E603 and G605

in hMps1, implying that the articulation structure of the N- and C-

terminal lobes is also conserved between hMps1 and AtMps1

(Figure 2). Three threonine residues are critical for autophospho-

rylation at hMps1 activation loop: T675, T676 and T686. All

these three residues conserved in AtMps1 (T579, T580 and T590)

(Figure 2), suggesting that that autophosphorylation is also

conserved and important for the regulation of AtMps1.

Phosphorylation of several specific residues has been shown to

play a major role in Mps1 regulation in yeast and Xenopus [56,57].

In humans, hMps1 phosphorylation is intimately correlated with

APC/C mediated ubiquitination and proteasomal degradation

[58]. We used three different methods to predict the phosphor-

ylation sites of plant Mps1 homologs [59–61]. We found 141

predicted phosphorylation sites in AtMps1, from which 50 are

conserved in hMps1 (Table S1). Moreover, several of these

residues had their phosphorylation status experimentally demon-

strated in hMps1 (e.g. S321 in hMps1; S289 in AtMps1) [37,62].

Notably, the N-terminal domain of Mps1 has a high density of

phosphorylation sites, suggesting an increased regulatory potential

(Table S1).

In hMps1, the amino acid T676 (T580 in AtMps1) is a

phosphorylation site with regulatory implications concerning the

recruitment of Bubr1 to the kinetochore [34,38,63,64]. The

interaction and co-localization of Bubr1 and Mps1 at the

kinetochore has been demonstrated in several eukaryotes

[34,65–67] and our structural analyses indicate that this interac-

tion is preserved in the plant lineage. The residue T686 (T590 in

AtMps1) is important for structural integrity, autophosphorylation

and transphosphorylation of hMps1 [38,39,54]. AtMps1 has been

Characterization of Mps1 in Arabidopsis thaliana
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Figure 1. Phylogenetic reconstruction of the plant Mps1 homologs. The tree was computed using the maximum-likelihood method. Internal
nodes were labeled with bootstrap support values. Colors: red (monocots), orange (eudicots), blue (moss), green (green algae), purple (basal vascular

Characterization of Mps1 in Arabidopsis thaliana

PLOS ONE | www.plosone.org 3 September 2012 | Volume 7 | Issue 9 | e45707



plant). Proteins are identified by GI numbers following abbreviated species names. Species list: Arabidopsis thaliana (Atha), Vitis vinifera (Vvin), Zea
mays (Zmay), Oryza sativa (Osat), Chlamydomonas reinhardtii (Crei), Physcomitrella patens (Ppat), Selaginella moellendorffii (Smoe), Volvox carteri (Vcar).
doi:10.1371/journal.pone.0045707.g001

Figure 2. Major structural features of AtMps1. A) Linear representation of AtMps1 domains along the full length sequence (777 amino acid
residues) (gray). The kinase domain is composed of a small lobe (yellow) and a big lobe (blue) separated by a glycine (G501); B) Tridimensional
modeling and structural comparison of AtMps1 (gi 28416703) and hMps1 (in gray) (gi 23271249). Protein structures were retrieved from PDB; C)
Detailed representation of the DFG motif; D) Hinge between the N- and C-terminal regions. The critical amino acid residues are E499/G501 in AtMps1
and E603/G605 in hMps1 (shown in gray); E) Threonine triad probably involved in autophosphorylation; F) Multiple sequence alignment of the
catalytic (red) and activation (green) sites from several monocots, eudicots and hMps1. Red arrows mark conserved threonine residues in the catalytic
site. Protein GI numbers: hMps1 (Homo sapiens; 23271249); AtMps1 (A. thaliana; 28416703); PtMps1 (Populus trichocarpa; 224063138); RcMps1 (Ricinus
communis; 255545510); OsMps1 (Oryza sativa Indica Group; 125545426); SbMps1 (Sorghum bicolor; 242038411).
doi:10.1371/journal.pone.0045707.g002
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recently shown to autophosphorylate in vitro [68], implying that the

auto-regulatory step is also retained in plants. Overall, the

conservation in A. thaliana of all the major structural features

responsible for Mps1 functions in yeast and human strongly

suggest that its prominent biochemical functions are preserved in

the plant lineage and might have been present in early eukaryotic

organisms.

Linear Amino Acid Motifs Provide Important Clues on
AtMps1 Functions

Linear motifs are short amino acid modules that are frequently

part of regulatory proteins, providing interaction interfaces in

protein structures. We searched for such motifs in several plant

Mps1 orthologs using the ELM database [69] (Figure 3). We found

motifs that could potentially mediate interactions with cyclins,

MAD2, APC/C and MAPK – cell cycle regulators that are

present in all the investigated plants. It has been recently shown

that hMps1 is important for Mad2 recruitment to the kinetochore

[43]. Mad2 is a critical component of the Spindle Assembly

Checkpoint (SAC), which prevents anaphase onset until all

chromosomes are properly attached to the spindle [70]. Mad1

and Mad2 homologs have been characterized in plants and were

shown to interact with the nuclear pore complex [71]. The motif

LIG_MAPK_1 was also found in all the analyzed plant Mps1

orthologs. Previous studies showed that Mps1 is phosphorylated by

MAPK and this modification could be responsible for the

interaction between Mps1 and the kinetochore [57]. In addition,

AtMps1 harbors a LIG_CYCLIN_1 motif, suggesting that it might

be also phosphorylated by cdc28/CDK1, as previously demon-

strated in yeast [56]. The presence of the LIG_APCC_Dbox_1

motif in AtMps1 indicates that it could be among the many cell

cycle proteins ubiquitinated by the APC/C complex and degraded

by the proteasome system [20,72].

In addition to the protein interaction motifs, AtMps1 have sub-

cellular localization modules (i.e. TRG_NES_CRM1_1,

TRG_NLS_MonoExtC_3 and TRG_NLS_MonoExtN_4) that

corroborate the nucelocytoplasmic functions discussed above.

Interestingly, the TRG_NLS_MonoExtN_4 motif can be revers-

ibly inactivated, allowing the protein to operate in the cytoplasm.

This domain has been associated with subcellular localization of

CDKs in plants [73]. We hypothesize that the presence of such

motifs in AtMps1 is directly related to its translocation between

cytoplasmic and nucleus, allowing the phosphorylation of specific

targets in either cellular component at specific cell cycle phases.

AtMps1 Activity is Critical for the Development of
A. thaliana Seedlings

AtMps1 is highly transcribed in 7-day A. thaliana seedlings,

notably in apical shoot and root meristems, where the cell cycle is

highly active to generate new plant aerial and underground tissues

(Figure S1) [74,75]. Conversely, AtMps1 transcription clearly

decreases in most differentiated tissues. Moreover, AtMps1 is

highly transcribed in the pericycle – a parenchymal layer of cells

responsible for lateral root development [76]. Using A. thaliana cell

suspension cultures Menges et al. showed that AtMps1

(At1G77720) is transcribed at the G2 phase [77]. G2 transcription

of Mps1 was also demonstrated in other eukaryotes [36,66,78,79],

underscoring the importance of Mps1 in the G2/M transition in

distantly related species. Using genome-wide datasets we were able

to find that the transcriptional levels of Mps1 homologs in other

plants (eudicots and monocots) (i.e. Glycine max, Populus trichocarpa,

Medicago truncatula, Oryza sativa) are also over-expressed in many

instances where there is intense cell cycle activity [80,81].

Prediction of sub-cellular localization and nuclear export motifs

indicate that AtMps1 operates mainly in the nucleus, but can also

localize to the cytoplasm, as observed in human HeLa cells [32].

The use of small bioactive molecules to study the cell cycle in

plants has been proposed as a powerful method to untangle the

functions of different signaling components [82–84]. It has been

previously shown that the inhibitor SP600125 specifically inhibit

Figure 3. Eukaryotic linear motifs of several Mps1 plant orthologs. Color codes: LIG_APCC_Dbox_1 (light green); Cyclin recognition site
LIG_CYCLIN_1 (cyan); MAD2 binding motif LIG_MAD2 (orange); MAPK docking motif LIG_MAPK_1 (blue), NES Nuclear Export Signal
TRG_NES_CRM1_1 (red), NLS classical Nuclear Localization Signals (green). AtMps1 (A. thaliana; 28416703); PtMps1 (P. trichocarpa; 224063138);
RcMps1 (R. communis; 255545510); OsMps1 (O. sativa Indica Group; 125545426); SbMps1 (S. bicolor; 242038411).
doi:10.1371/journal.pone.0045707.g003
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hMps1 in a dose-dependent fashion [55]. Considering the high

sequence and structural similarity between AtMps1 and hMps1,

we tested the effects of SP600125 in A. thaliana seedlings, especially

on the root system architecture [85]. SP600125 hampers the

primary and secondary root growth, implying that AtMps1 activity

is important for proper development of these tissues (Figure 4 and

5). Moreover, the effect of SP600125 is clearly stronger in

secondary than in primary root growth (Figure 4 and 5). This

might be due to either a higher accessibility of pericycle cells to the

inhibitor or to a higher transcription of AtMps1 in the internal

tissue layers, requiring more SP600125 to neutralize AtMps1

activity. Secondary roots originate from pericycle cells arrested at

G2 [48], the same cell cycle phase in which AtMps1 is

preferentially expressed [77]. Hence, our results indicate that

SP600125 blocks the G2-M transition by specifically inhibiting

AtMps1 activity and compromising the G2-M transition.

Phytohormones regulate and integrate various signaling cas-

cades involved in endogenous (e.g. development) and environ-

mental processes (e.g. predation, water stress) [86,87]. Auxins,

gibberellins and brassinosteroids control cellular elongation and

proliferation [88]. The auxin IAA has been classically shown to

activate the formation of secondary roots [48,50,51]. Here we

show that IAA administration can reverse the AtMps1 inhibition

phenotype (Figure 4 and 5), suggesting that this gene might be a

cell-cycle regulator acting downstream to the IAA-signaling

pathway. Interestingly, IAA regulation of lateral root formation

is particularly important when young leaf primordia form and are

able to synthesize the hormone, enabling the balance between

Figure 4. Effect of AtMps1 inhibition on 7-day A. thaliana seedlings germinated in MS medium with the Mps1 inhibitor SP600125. A)
Seedlings without exogenous IAA; B) Seedlings incubated for 24 hours with 5 mM of IAA. In both panels, A and B, control seedlings were not exposed
to SP600125 and their growth was compared with increasing concentrations of SP600125Black bar: 0,5 cm.
doi:10.1371/journal.pone.0045707.g004
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carbon and nitrogen metabolism through a coordinated develop-

ment of leaves and roots. The high transcription levels of AtMps1

in the hypocotyl, shoot apical and root meristems further support

the roles of AtMps1 as a downstream effector of auxin signaling in

critical developmental processes requiring precise cell cycle

regulation, probably as a checkpoint protein that prevents

anaphase onset with incorrect chromosomal attachment to the

spindle [70].

Conclusion and Future Perspectives
In the present work we analyzed the structure and function of

the A. thaliana Mps1 ortholog, AtMps1. The high conservation in

plants of all major structural features described in other

eukaryotes, namely the C-terminal kinase domain, the DFG

domain and the threonine triad, responsible for activation by

autophosphorylation. Taken together, these observations imply

that Mps1 functions are deeply preserved in divergent eukaryotes.

Therefore, Mps1 is a cell cycle regulator with major roles in

important developmental processes, as observed in other eukary-

otic lineages, probably operating as a universal component of the

‘‘Spindle Assembly Checkpoint’’ machinery. Although AtMps1

phosphorylation targets remain to be identified, we hypothesize it

is a downstream player of auxin signaling, working as a critical cell

cycle regulator during aerial and underground tissue development.

Materials and Methods

Databases and Sequence Analysis
Mps1 homologs were detected using BLAST [89], with a

minimum coverage threshold of 30% (query and hit). The

genomes used in our work were the following: Chlamydomonas

reinhardtii and Volvox carteri (green algae), Physcomitrella patens (moss;

Bryophyta), Selaginella moellendorffii (ancient vascular plant; lyco-

phyte), Zea mays and Oryza sativa (monocots) and A. thaliana and Vitis

vinifera (eudicots). Multiple sequence alignments were computed

using MUSCLE and visualized using Jalview [90]. Phylogenetic

reconstructions were performed using RAxML [91].

Linear protein interaction motifs were detected using the

Eukaryotic Linear Motif Database (http://elm.eu.org/) [69].

Phosphorylation sites were predicted using were predicted using

three distinct methods: PlantPhos, a tool developed to predict

phosphorylation sites in plant proteins [61]; MUSITE, which also

have some parameters that can be adjusted to analyze plant

proteins [59]; and DISPHOS, a method that explicitly uses

‘‘intrinsically disordered regions’’ information to aid the prediction

of phosphorylation sites [60]. The non-redundant union of the

results obtained using these three independent methods were

considered our set of predicted phosphorylation sites. In addition,

two independent methods were used to predict kinase families

potentially regulating AtMps1 [92,93]. Subcellular localization

was predicted using MultiLoc [94], PSORT [95] and CELLO

[96]. Gene expression data for AtMps1 were obtained from the

Electronic Fluorescence Pictograph Browser [97] (http://bar.

utoronto.ca/efp/cgi-bin/efpWeb.cgi).

Structural Analysis
The 3D homology model of AtMps was constructed using the

amino acid sequence obtained from public databases

(AT1G77720). Sequence similarity searches were conducted using

BLAST [89]. Based on BLAST scores and structure resolution

(2.88 Å), the crystal structure of human Mps1 catalytic domain

(T686A mutant) in complex with SP600125 inhibitor (PDB

accession 2ZMD) [55,98] was chosen as template. The 3D

homology model was constructed with the First Approach Mode

of the Swiss-Model server [99] which includes ProModII model

generation and energy minimization with GROMOS96 [100].

The structural analysis was carried out with the Ramanchandran

Plot on Swiss-PDB Viewer software [101] version 4.0.1 and

Procheck version 3.5.4 on the Structural Analysis and Verification

Server (http://nihserver.mbi.ucla.edu/SAVES/). Molecular visu-

Figure 5. Effect of different concentrations of the Mps1 inhibitor SP600125 on A. thaliana root growth. A) Primary root length with no
IAA preincubation; B) Number of visible lateral root primordia with no IAA preincubation; C) Primary root length after 24-hour preincubation with
5 mM IAA; D) Number of visible lateral root primordia after 24-hour preincubation with 5 mM IAA.
doi:10.1371/journal.pone.0045707.g005

Characterization of Mps1 in Arabidopsis thaliana
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alization was performed with PyMOL v. 0.99 (http://www.pymol.

org).

Induction and Inhibition of Secondary Roots
A. thaliana (Columbia-0) seeds were sterilized using a 2.5%

sodium hypochlorite for 10 min. Seeds were washed 5 times with

sterilized water and stored at 4uC in the dark for 48 hours. Seeds

were transferred to MS medium supplemented with 0.5 g/L MES

and kept at 22uC, 60–70% humidity and 12/12 photoperiod for 7

days. To assess the dose-dependency of the secondary root

inhibition we used different concentrations of the synthetic

inhibitor SP600125 (0.01; 0.1; 1.0 and 5 mM). The inhibitory

effects of SP600125 were also assessed in 7-day seedlings pre-

incubated with 5 mM IAA for 24 hours. Germination and initial

post-germination morphological development were monitored by

optical microscopy.

Supporting Information

Figure S1 Transcriptional profile of AtMps1 across
several tissues. Data was obtained from the Arabidopsis

thaliana eFP Browser (http://bar.utoronto.ca/efp/cgi-bin/

efpWeb.cgi).

(TIF)

Table S1 Prediction of AtMps1 phosphorylation sites
and comparison with hMps1. Green: conserved in other

plant species; red: experimentally characterized hMps1phosphor-

ylation sites; yellow: protein kinase candidate; CT: C-terminal;

PlantPhos [61] and DISPHOS [60] (Default predictor); MUSITE

[59] (50% specificity).

(TIF)
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