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ABSTRACT

Objective: Case–control study designs are commonly used in retrospective analyses of real-world evidence

(RWE). Due to the increasingly wide availability of RWE, it can be difficult to determine whether findings are ro-

bust or the result of testing multiple hypotheses.

Materials and Methods: We investigate the potential effects of modifying cohort definitions in a case–control

association study between depression and type 2 diabetes mellitus. We used a large (>75 million individuals)

de-identified administrative claims database to observe the effects of minor changes to the requirements of glu-

cose and hemoglobin A1c tests in the control group.

Results: We found that small permutations to the criteria used to define the control population result in signifi-

cant shifts in both the demographic structure of the identified cohort as well as the odds ratio of association.

These differences remain present when testing against age- and sex-matched controls.

Discussion: Analyses of RWE need to be carefully designed to avoid issues of multiple testing. Minor changes

to control cohorts can lead to significantly different results and have the potential to alter even prospective stud-

ies through selection bias.

Conclusion: We believe this work offers strong support for the need for robust guidelines, best practices, and

regulations around the use of observational RWE for clinical or regulatory decision-making.
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BACKGROUND AND SIGNIFICANCE

The FDA has shown a strong interest in the utilization of real-world

evidence (RWE) to enhance or replace aspects of the regulatory pro-

cess.1,2 Recently, the FDA increased their participation in a partner-

ship in RWE for oncology3 and the pace of accelerated approvals

has increased substantially from 2012.4,5 These actions have been

met with mixed reactions,6 especially regarding attempts to replace

traditional randomized controlled trials (RCTs) with RWE-based

comparative effectiveness analyses.7 The important aspects of the

utilization of RWE in the regulatory process we consider in this

article are (1) lack of pre-registration, (2) protection against inten-

tional or unintentional multiple testing, and (3) the potential for fi-

nancial incentives to drive the strategic selection of a cohort given

prior testing of retrospective data.

The digitization of medical records and administrative data have

made research using RWE increasingly prevalent, and RWE has the

potential to be an incredible resource to the research community.8,9

RWE has already enabled the study of patient-level health outcomes

at an unprecedented scale, with innovative study designs that ad-

dress questions such as (1) genetic heritability of different
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phenotypes with large scale twin studies10 and (2) prescribing pat-

terns in the opioid epidemic.11

Due to the fact that RWE is easily available, with numerous

datasets that can be purchased from commercial vendors (eg, IBM

Marketscan,12 Optum,13 Premier Healthcare Database14) it is diffi-

cult to enforce traditional pre-registration that typically accompa-

nies active enrollment comparative effectiveness studies (eg, RCTs).

Because of this lack of pre-registration, it is more difficult and po-

tentially impossible to determine if multiple groups have tested the

same hypothesis especially given the publication bias toward posi-

tive results.15 When the inability to detect multiple testing is com-

bined with the financial incentives inherent to the regulatory process

for both new therapies and post-approval surveillance, there exists a

possibility for bad actors to exploit the ability to intentionally multi-

ple test or “p-hack”.16 Evidence to the potential for actions of this

nature can be seen in recent events such as the data manipulation

that occurred during the approval of Zolgensma.17,18 It is important

to note that current RCTs are not immune to selection bias as dem-

onstrated by the fact that they commonly include younger19 health-

ier participants.20 This leads to generalizability concerns for RCTs

but at least in this case, due to randomization, there is no ability to

pre-select the case or control groups.

OBJECTIVE

In this work, we demonstrate the ability to profoundly affect the

odds ratio (OR) for an association between depression and type 2 di-

abetes mellitus (T2D) by making minor alterations to the control

definition using published T2D phenotyping algorithms from

eMERGE.21 These algorithms were originally designed to overcome

the challenges in identifying patient cohorts in electronic health

records.22 We hypothesized that the requirement for a glucose test

in the eMERGE may select for controls that are less healthy on aver-

age than the overall potential control population. The requirement

for a glucose test can be compared to complete case analyses which

can unintentionally create biases.23,24 In this case, this requirement

may rule out a portion of the youngest, healthiest population where

a physician does not believe a glucose test is necessary. If the pres-

ence of a value is not missing completely at random, its absence may

be informative about the actual value.25 For example, the presence

of a glucose test may indicate a higher prior for having an abnormal

blood glucose level because a physician was concerned enough to or-

der the lab test.

We considered a previously published association between de-

pression and T2D and evaluate how the association changes with

small permutations to the control population for T2D. Comorbidity

between T2D and depression is well documented.26–28 The causal

relationship between these diseases is best characterized as complex,

and evidence exists to support both that depression elevates the risk

of T2D and vice versa, as well as the hypothesis that both diseases

share common etiology.27 This experiment demonstrates a need to

show that findings derived from RWE are robust to small permuta-

tions in the included population.

Existing literature on case–control methodology has focused on

confounding due to lack of randomization as well as biases in study

design.6,7,29 Confounding due to unmeasured variables is a major

concern, and makes it difficult to determine causal relationships

from observational data.25 Other pitfalls include the nonrandom as-

signment of exposures26 and the nonrandom selection of partici-

pants.29 Control selection has been identified as a crucial

component of case–control study design, although best-practice rec-

ommendations are centered around matching techniques to control

for confounding effects.30,31 Multiplicity is discussed in the context

of multiple hypothesis testing in genetic association studies,32 but

we were unable to find existing work studying permutations in study

design. Previous work has shown that the modeled effect size of

mortality risk factors can be profoundly sensitive to model selec-

tion,33 suggesting to us that association results may also be sensitive

to permutation in study design.

MATERIALS AND METHODS

We performed all analyses using a large de-identified administrative

claims dataset including more than 75 million individuals for the

timeframe from January 1, 2008, through August 31, 2019. This

database does not include any race or ethnicity data and its usage

has been deemed to be de-identified non-human subjects research by

the Harvard Medical School Institutional Review Board, therefore

waiving the requirement for approval. The database includes mem-

ber age, biological sex, and enrollment data, records of all covered

diagnoses and procedures as well as medication and laboratory

results for a substantial subset of the covered population. ICD-10-

CM codes present in the dataset were mapped to ICD-9-CM

(Supplementary Table S1) for compatibility with eMERGE pheno-

type definitions.

An overview of the study design is shown in Figure 1. To match

cohorts on coverage status, members were required to have at least

LAY SUMMARY

Real-world evidence (RWE) refers to healthcare data generated in the course of routine clinical practice, including electronic

health records and claims from health insurers. Compared to clinical trials, which often enroll curated cohorts and follow

stringent protocols, RWE can capture broader and generalized patient characteristics and care practices. For this reason,

there is growing interest in using RWE to evaluate the effectiveness of therapeutic interventions. Given the readily available
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we make small variations to the cohort definitions and find this alters the size and significance of the measured association

as a result. These variations could be the result of multiple groups asking similar questions of the data, an individual asking

the same question in different ways or a bad actor seeking to achieve a specific result for professional or financial motives.

In light of our results, we make several recommendations to the scientific community regarding study robustness and

reporting transparency.
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Figure 1. Overview of study design to evaluate the effect of alternate control groups on the association between depression and type 2 diabetes mellitus.

Figure 2. Control algorithms for type 2 diabetes mellitus. (A) Baseline controls as defined by eMERGE. (B) Controls where the glucose lab value is ignored. (C)

Controls where whether the member has had a glucose lab or not is ignored. (D) Controls where the member has not had a glucose test.
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4 years of continuous enrollment to qualify, and only the first 4

years were considered when defining phenotypes. Case and control

populations were generated by applying various definitions (Figure

2) to the first 4 years of claims. Case and control cohorts were sam-

pled from populations of various sample sizes (n¼1000, 2000,

5000, 10 000) to test for association between depression and T2D

status. Association testing was performed using the Fisher’s exact

test to calculate the OR and associated P-value. Each test was

resampled 200 times using the bootstrap method to obtain a sam-

pling distribution for the OR. Tests were performed with and with-

out age and sex matching and the results compared.

T2D case status was determined using an adaptation of the

eMERGE T2D phenotyping algorithms31 for claims data. Each dis-

tinct claim was considered a separate visit for the determination of

visit count. Diagnoses and medications were determined from medical

and pharmacy claims, respectively. Ingredient-level RxNorm codes

were mapped to NDC codes using the RxNorm API.34 In the absence

of clinical notes or structured questionnaires, family history was de-

termined using ICD code V18.0 in medical claims. This is a known

limitation of using claims data with comprehensive medical histories.

Multiple control groups were defined based on the eMERGE

T2D control algorithm with variations on the lab testing require-

ment (Figure 2). The eMERGE algorithm considers tests for fasting

glucose (LOINC 1558-6), random glucose (2339-0, 2345-7), and

hemoglobin A1c (4548-4, 17856-6, 4549-2, 17855-8) with defined

thresholds for abnormal values.

We include these LOINC codes when considering lab values.

Within the claims data, all lab orders (CPT codes) are available but

Table 1. Demographic statistics under different control definitions

Case population Baseline control Ignore lab value Ignore lab No lab

Members 381 412 2 868 491 6 204 015 10 286 072 4 054 244

% Male 51.90 42.90 45.09 47.84 52.10

% Female 48.10 57.10 54.91 52.16 47.89

Age 64.16 (12.47) 48.70 (17.04) 50.74 (19.19) 43.12 (21.99) 31.29 (20.69)

% w/depression 17.51 14.24 14.94 10.70 4.22

Total facts per year 53.54 (55.10) 25.91 (29.86) 29.07 (34.29) 21.99 (29.54) 11.12 (14.64)

(a)

(b)

Figure 3. Potential selection effects from glucose lab testing requirement. (A) Number of glucose tests per member during 2011 by age. (B) Distributions of

HbA1c value from our dataset compared with privately insured individuals from the National Health and Nutrition Examination Survey (NHANES).
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only a subset of lab values are passed back to the private insurer.

This subset is based on contracts with national laboratories to pro-

vide for the flowthrough of lab values. In total, 7 326 083 unique

members have CPT codes for glucose labs with a total of 35 895 150

tests being done. Of these, 4 742 924 unique members have results

available or a total of 19 175 213 tests performed. When only

Figure 4. Age distributions under each different control definition.
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checking to see if a lab test is ordered, we add procedural (CPT

82947, 80047, 80048, 80053, 80069, 83036) codes to determine

the presence of a test.

The groups are defined as follows:

1. eMERGE T2D control (Baseline control).

2. eMERGE T2D control still requiring lab test presence but

without requirement on lab test result (Ignore lab value).

3. eMERGE T2D control without requirement on lab test pres-

ence (Ignore lab).

4. eMERGE T2D control requiring no lab test (No lab).

Exposure status for depression was defined using the Clinical

Classifications Software (CCS) rollup for depressive disorders (sin-

gle-level CCS diagnosis category 6572). Members with a qualifying

enrollment period without a depression diagnosis were defined to be

non-exposed for the purposes of this association with the acknowl-

edgement that this does not rule out a diagnosis prior to enrollment

but indicates that there is not active care being provided for

depression.

All analyses were performed using queries in MicrosoftV
R

SQL

Server 2017 and PythonTM. Statistical calculations were performed

using NumPy and SciPy. Visualizations were created using

Matplotlib and Seaborn. All source code is available in archival

form on Zenodo35 and on Github as a Jupyter notebook https://

github.com/brettbj/association-robustness.

RESULTS

Table 1 summarizes the demographic characteristics of the different

groups. Fact count is determined as the total number of ICD codes

recorded per patient per year in the qualifying 4-year window. Cases

are on average older and have higher fact count than controls.

Furthermore, controls who had lab testing are older still and have

higher fact count than those who did not have lab testing.

Figure 3A shows that members receive more glucose testing as

they age (per member per year). This indicates that requiring a glu-

cose test may cause the control population to be older on average.

Indeed, the control population with glucose testing is on average 16

years older than the control population without. Figure 3B shows

that physician-ordered HbA1c lab values in our dataset tend to be

higher (mean ¼ 6.28, median ¼ 5.8) than in an age- and gender-

matched cohort from a representative population sample in

National Health and Nutrition Examination Survey (mean ¼ 5.64,

median ¼ 5.4). Taken altogether, these indicate that requiring glu-

cose testing as part of the eMERGE control algorithm may select for

a population closer to the case population than the entire potential

control population.

Adjusting the glucose lab requirement in the control definition

results in different age distributions (Figure 4). Matching on age and

sex corrects for these differences but the percentage of cases with de-

pression diagnoses and the total number of diagnoses, or facts,

remains higher in the case population (Table 2 and Supplementary

Tables S2–S4).

We found a significant association between type 2 diabetes and

depression in most bootstrapped samples. When sampling case/con-

trol cohorts at n¼10 000, only 2 out of 1600 total randomizations

resulted in a non-significant test. Within the matched populations,

requiring that controls have a glucose test ordered but ignoring its

value (median OR, 1.168, 95% confidence interval [CI], 1.085–

1.259) results in a slightly weaker association compared to the base-

line control (median OR, 1.277, 95% CI, 1.183–1.378). This

reinforces the existence of a true association, as this variation may

be inducing some case contamination in the control group. Testing

against the no lab control group (median OR, 2.655, 95% CI,

2.417–2.918) yields a much higher OR compared to baseline.

Testing against the ignore lab control group (median OR, 1.309,

95% CI, 1.213–1.413) results in an OR between the baseline control

and the no lab control group.

At lower sample sizes (n¼2000), the ORs estimates are more

widely distributed (95% CI range is 2.26 times greater for the base-

line group, 2.26 times greater for the ignore lab value group, 2.25

times greater for the ignore lab group, and 2.25 times greater for the

no lab group). In the no lab control setting, reducing cohort size

does not affect the significance of the test, given the margin between

the OR and one. When the OR is closer to one, smaller cohort size

and the less precise estimate may lead to a change in direction for

the OR and tests may lose significance. As many as 111/200 tests in

the ignore lab value setting in Figure 5B tested non-significant.

DISCUSSION

We applied retrospective case–control study design in a large adminis-

trative claims dataset to test for association between depression and

T2D using multiple control group definitions. Taken altogether, the

evidence suggests a true association exists between depression and

T2D, but we do not yet attempt to determine directionality or causal-

ity. We found that permutations to the control definition which we

believe to be reasonable led to changes of results. This was shown

through shifts in the demographic structure of the control population,

as well as differences in the OR of association. With age and sex

matching, these differences are tempered, but still significant.

Increasing the sample size reduces the variance between replicates,

but the OR shift following changes in control definition remains.

These results indicate that it would be possible for bad actors to

manipulate results based on RWE in a manner that is difficult to de-

tect without knowing all experimental parameters used by the bad

actors. It is therefore critical to establish best practices regarding

transparency, neutrality, conflicts of interest, data provenance, pre-

registration, cohort selection, sample sizes, and reporting of results

prior to using RWE as a major component of the regulatory process.

There were several limitations to this study. While we measure

an association between depression and T2D, our study does not at-

tempt to conclude whether depression elevates the risk of developing

T2D or vice versa. Furthermore, it is unclear what biases are being

encoded by the different definitions and how they drive changes in

OR. Moreover, we made several approximations in repurposing the

eMERGE T2D algorithm for claims data which may have affected

its specificity. No one definition of a control definition is likely to be

robust for all purposes and each of the proposed modifications has

potential weaknesses. In addition to the lack of formal determina-

tion of family history, systematic biases may exist in the availability

Table 2. Case and control summary statistics after matching

Case population No labs matched

Members 374 719 374 719

% Male 51.04 51.04

% Female 48.96 48.96

Age 64.00 (12.54) 64.00 (12.54)

% members with depression 17.61 6.61

Total facts per year 53.25 (55.11) 13.50 (18.85)
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of lab test values. Finally, the use of a private insurance dataset

selects against older segments of the population who may qualify for

Medicare, as well as unemployed/lower socio-economic status seg-

ments who cannot afford private insurance.

CONCLUSION

This study demonstrates that effect size in retrospective association stud-

ies may be maximized by cherry-picking a control group. By using rea-

sonable alternate definitions of the control phenotype in tests of

association between T2D and depression, we are able to meaningfully

change the makeup of the comparison group, leading to significant dif-

ferences in the OR of association. We suggest that the ability to strategi-

cally select a control group is not limited to association studies but

extends to most RWE and retrospective studies. To mitigate the risk of

publishing an unsound result, we recommend: (1) RWE-based studies

use and do not modify externally generated and validated pre-defined

eligibility criteria, (2) if not possible RWE-based studies should pre-

register eligibility criteria and protocol prior to obtaining data, (3) re-

port all permutations tested with results for each permutation (poten-

tially through the use of an independent audit system), (4) avoid

subsampling or report all subsamples with a variety of random seeds,

and (5) report a Bayes estimate of the likelihood that the study will rep-

licate.36 Several of our suggestions (eg, 1–4) do not remove the potential

of a bad faith actor and rely on scientific integrity. Given this fact, when

these analyses are used as evidence for decisions with a real-world, pa-

tient safety or financial impact, study designs should be validated, and

results replicated by an independent neutral body.
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