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Introduction: Data-driven omics approaches have rapidly advanced our

understanding of the molecular heterogeneity of Alzheimer’s disease (AD).

However, limited by the unavailability of brain tissue, there is an urgent need for

a non-invasive tool to detect alterations in the AD brain. Cell-free RNA (cfRNA),

which crosses the blood-brain barrier, could reflect AD brain pathology and

serve as a diagnostic biomarker.

Methods: Here, we integrated plasma-derived cfRNA-seq data from 337

samples (172 AD patients and 165 age-matched controls) with brain-

derived single cell RNA-seq (scRNA-seq) data from 88 samples (46 AD

patients and 42 controls) to explore the potential of cfRNA profiling for

AD diagnosis. A systematic comparative analysis of cfRNA and brain scRNA-

seq datasets was conducted to identify dysregulated genes linked to AD

pathology. Machine learning models—including support vector machine,

random forest, and logistic regression—were trained using cfRNA expression

patterns of the identified gene set to predict AD diagnosis and classify

disease progression stages. Model performance was rigorously evaluated

using area under the receiver operating characteristic curve (AUC), with

robustness assessed through cross-validation and independent validation

cohorts.

Results: Notably, we identified 34 dysregulated genes with consistent expression

changes in both cfRNA and scRNA-seq. Machine learning models based on

the cfRNA expression patterns of these 34 genes can accurately predict

AD patients (the highest AUC = 89%) and effectively distinguish patients at

early stage of AD. Furthermore, classifiers developed based on the expression

of 34 genes in brain transcriptome data demonstrated robust predictive

performance for assessing the risk of AD in the population (the highest AUC

= 94%).

Discussion: This multi-omics approach overcomes limitations of invasive brain

biomarkers and noisy blood-based signatures. The 34-gene panel provides

non-invasive molecular insights into AD pathogenesis and early screening.
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While cfRNA stability challenges clinical translation, our framework highlights

the potential for precision diagnostics and personalized therapeutic monitoring

in AD.

KEYWORDS

Alzheimer’s disease, cell-free RNA, single-cell RNA-seq, machine learning, non-invasive
early screening

Introduction

As the most prevalent cause of dementia, Alzheimer’s disease
(AD) is a progressive neurodegenerative disorder characterized by
memory loss, cognitive decline and behavioral impairments. The
pathology of AD included synaptic loss (DeKosky and Scheff, 1990;
Masliah et al., 1991; Terry et al., 1991), neuroinflammation (Leng
and Edison, 2021), oxidative stress (Tönnies and Trushina, 2017),
misfolded proteins (de Calignon et al., 2012; Moreno-Gonzalez
and Soto, 2011), and mitochondrial dysfunction (Swerdlow et al.,
2014), culminating in neuronal death and brain dysfunction
(Horwich, 2002). Currently, no effective treatment strategies have
been established to prevent or slow down the progression of AD
(Cummings et al., 2023; Peng et al., 2023). Given the absence of
effective diagnostic methods for the aforementioned etiologies in
clinical practice, resulting in the majority of AD patients being
diagnosed at advanced stages of the condition. However, traditional
diagnostic methods, such as neuroimaging and cerebrospinal fluid
(CSF) analysis, can be invasive and costly (Boerwinkle et al., 2021;
Henjum et al., 2022; Karikari et al., 2021; Shaw et al., 2009).
CSF analysis for AD diagnosis primarily relies on measuring
biomarkers, including amyloid-beta (Aβ), total tau (t-Tau), and
phosphorylated tau (p-Tau) (Olsson et al., 2016; Paterson et al.,
2018; Shaw et al., 2009). Studies suggest that CSF biomarkers
can serve as an early diagnostic tool for AD before cognitive
impairment becomes apparent, by detecting Aβ42 and p-Tau
in the CSF, AD can be identified at an earlier stage (de Leon
et al., 2004; Papaliagkas et al., 2023). However, the methods,
reagents, and reference ranges for CSF biomarker testing are not
yet standardized, leading to variations in diagnostic performance
(Hansson et al., 2018; Molinuevo et al., 2014). In parallel, a
variety of precise and robust analytical techniques, including mass
spectrometry and automated ultrasensitive immunoassays, have
been established for quantifying plasma concentrations of AD-
related biomarkers (Cai et al., 2023; Stockmann et al., 2020;
Teunissen et al., 2022), such as Aβ (West et al., 2021), t-Tau,
p-Tau (Karikari et al., 2020; Mielke et al., 2018; O’Connor
et al., 2021; Palmqvist et al., 2020; Thijssen et al., 2020; Thijssen
et al., 2021), neurofilament light chain (NfL) (Olsson et al.,
2016). Numerous studies have demonstrated its clinical value and
accuracy in detecting pathological changes in AD by measuring
plasma amyloid-β42:40 ratio and the levels of p-Tau 181 and
p-Tau 217 in clinically defined patients (Mielke and Fowler, 2024).
However, the correlation between plasma biomarkers and CSF
biomarkers still needs further research to ensure their accuracy
(Ashton et al., 2023; Wojdała et al., 2023).

A potential breakthrough in this area may come from
the recent advancements in blood-based biomarkers (BBMs),
which could provide a valuable resource for studying molecular
changes with non-invasive procedures, avoiding traditional surgical
risks and discomfort. BBMs allow for sequential sampling,
enabling the monitoring of disease progression and prediction
of pharmacological responses. In cancer detection, BBMs broadly
include circulating tumor cells (CTCs) (Haber and Velculescu,
2014; Habli et al., 2020; Lin et al., 2021), circulating tumor DNA
(ctDNA) (Haber and Velculescu, 2014; Li and Sun, 2024), tumor-
derived exosome and cell free DNA or RNA (Larson et al., 2021),
which facilitate real-time tracking of tumor dynamics, addressing
heterogeneity and supporting the development of personalized
treatment strategies (Ho et al., 2024; Onidani et al., 2019; Passaro
et al., 2024). However, the presence of the blood-brain barrier
poses a significant challenge in developing BBMs for neurological
diseases, slowing progress in this area compared to cancer research.
The development of BBMs for neurodegenerative disorders like
AD remains more complex and challenging. A few studies suggest
that blood-derived Aβ and tau serve as cost-effective alternative
to traditional CSF-based markers for AD diagnosis. Evidence
indicates that blood Aβ42/Aβ40 ratios may reflect Aβ pathology
earlier than CSF markers (Cai et al., 2024). In addition, the levels of
miRNAs from peripheral blood can accurately predict p-Tau/Aβ42
ratio in CSF, indicating potential for a non-invasive protocol for
early screening and diagnosis of AD (Campbell et al., 2021; Jia
et al., 2021; Wang J. et al., 2018). However, measuring levels such
as Aβ and Tau protein is not sensitive and straightforward enough
for accurate diagnosis of incipient AD. There is an urgent need
for novel BBMs that originate directly from brain lesions and
accurately reflect the underlying mechanisms of the lesions.

Cell-free RNA (cfRNA), known as extracellular RNA, consists
of RNA fragments originating from both healthy and diseased cells
across various tissues and can be found circulating freely in the
blood. CfRNA detected in blood offers a non-invasive method to
directly assess the status of multiple tissues. Current applications of
cfRNA span various fields such as cancer detection (Larson et al.,
2021; Roskams-Hieter et al., 2022; Tao et al., 2023), bone marrow
transplantation (Loy et al., 2024; Toden et al., 2020), obstetrics
(Moufarrej et al., 2022; Rasmussen et al., 2022), neurodegeneration
(Wen et al., 2021), tuberculosis (Chang et al., 2024), and liver
disease (Chen et al., 2017; Mann et al., 2018; Zhou et al.,
2019). CfRNA markers effectively track cancer progression, predict
patient survival outcomes, and reveal tissue- and subtype-specific
biomarkers for cancer (Larson et al., 2021). Certainly, cfRNA also
reflect brain characteristics of neurological disorders. A recent
investigation using blood messenger cfRNA identified genes
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associated with dementia severity. These genes are significantly
enriched in biological processes linked to AD pathology, such
as abnormal synaptic function, mitochondrial dysfunction, and
inflammatory responses (Toden et al., 2020). Importantly, cfRNA
has been demonstrated to accurately distinguish AD patients from
healthy control, with dysregulated genes clustering in patterns
closely associated with AD progression. It has been reported that
blood cf-miRNAs biomarkers associated with AD are concordance
with neuropsychological and neuroimaging assessments (Cheng
et al., 2015). Furthermore, research has confirmed that the
expression levels of cf-miRNAs in the blood can distinguish
between cognitively normal individuals and patients with mild
cognitive impairment as well as AD patients (Sheinerman and
Umansky, 2013; Sheinerman et al., 2012). Such growing evidence
supports the notion that RNA molecules can traverse the blood-
brain barrier, with brain-derived cfRNAs detected in blood serving
as promising biomarkers for non-invasive molecular profiling of
neurological disorders such as AD.

There is a need for a more detailed understanding of
physiological origins of cfRNA at the cellular resolution. The
advent of single-cell technology offers a high-resolution approach
to investigate the brain pathology in AD patients. Recent studies
utilized single-cell transcriptome techniques to reveal the molecular
changes in excitatory neurons and oligodendrocytes in AD (Mathys
et al., 2023). Transcriptional changes in astrocytes and microglia
in AD involve upregulation of neuroprotective genes that regulate
cell homeostasis, phagocytosis, and clearance of Aβ and p-Tau
(Smith et al., 2022). Analysis of a rare cortical biopsy cohort
also revealed significant enrichment of early cortical amyloid
responses in neurons, as well as heightened neuroinflammatory
responses in microglia and upregulated β-amyloid gene expression
in oligodendrocytes (Gazestani et al., 2023). Notably, the APOE4
gene variant has been found to increase the risk of AD by disrupting
cholesterol homeostasis in oligodendrocytes and affecting myelin
formation (Blanchard et al., 2022), and APOE4 carriers may exhibit
an accelerated breakdown of the blood-brain barrier before the
onset of cognitive impairment (Montagne et al., 2020). Despite
significant advances in single-cell technology in AD studies, there
is currently no literature directly linking cfRNA to biopsies of AD
for non-invasive monitoring of disease progression and therapeutic
efficacy.

In this study, we collected blood-derived cfRNA sequencing
data from a cohort of 337 samples, comprising 172 AD samples
and 165 age-matched control (Toden et al., 2020). Total of 431
up-regulated and 2,658 down-regulated genes were identified
in AD patients. These dysregulated genes are enriched in
proinflammatory biological processes and impaired nervous system
function, suggest that blood cfRNA may detect the pathological
features characteristic of AD. However, the classifier models based
on cfRNA dysregulated genes lack the robustness and accuracy
to distinguish AD patients effectively. To explore the potential
of cfRNA profiling in detecting AD brain lesions, we integrated
cfRNA-seq data with brain-derived single cell RNA-seq (scRNA-
seq) data from 88 samples. Systematic profiling of cfRNA has
revealed its potential to non-invasively detect alterations in cell-
type-specific signatures within the AD brain, as inferred from
scRNA-seq analysis. Finally, we identified a total of 34 key
biomarker genes that exhibited the highest importance scores in
our feature selection algorithm and were differentially expressed

in both cfRNA and scRNA datasets. Machine learning models
based on the cfRNA expression patterns of these 34 genes can
accurately predict AD patients (the highest AUC=̃ 89%). Moreover,
classifiers developed based on the expression of 34 genes in
brain transcriptome data also demonstrated robust predictive
performance for assessing the risk of AD in the population (the
highest AUC = 94%). These models were capable of effectively
identifying patients in the early stages of AD, which is critical for
initiating timely therapeutic interventions. These findings highlight
the potential of these 34 genes as biomarkers for early non-invasive
screening of AD, paving the way for enhanced diagnostic accuracy
and patient stratification in AD research and clinical practice.

Materials and methods

cfRNA data preprocessing

We downloaded the cfRNA raw Sequence Read Archive (SRA)
data from public repositories (PRJNA574438) and utilized the
fastq-dump (version 3.0.2) pipeline to convert it into FASTQ files.
The data then was processed by quality control using fastp (Chen
et al., 2018) (version 0.23.2), followed by gene expression counting
with featureCounts (Liao et al., 2014) (version 2.0.3). Based on
the metadata information, 172 AD patients and 165 age-matched
control were obtained (Supplementary Table 1).

Identification of differentially expressed
genes (DEGs) of cfRNA data

Subsequent differential expression analysis was conducted
using DESeq2 (Love et al., 2014) Bioconductor package (version
1.44.0). Briefly, raw count data were imported into a DESeqDataSet
object via the DESeqDataSetFromMatrix function. To account for
technical variability, the analysis incorporated batch correction
based on sample collection sources (multiple medical centers),
while normalizing for sequencing depth. Variance-stabilizing
transformation (VST) was applied using the vst function, and
normalized expression values were extracted via the assay method.
Differential expression testing between AD patients and control
was performed using the default Wald test within the DESeq
workflow, with results extracted via the results function. To
address multiple hypothesis testing, we applied the Benjamini-
Hochberg procedure to control the false discovery rate (FDR)
at a threshold of 0.05. This stringent filtering identified 2,658
significantly downregulated genes [adjusted p-value (padj) ≤ 0.05
and log2 fold change (log2FC) < 0] and 431 up-regulated genes
(padj ≤ 0.05 and log2FC > 0) in AD patients relative to age-matched
control (Supplementary Table 2).

Integrating and quality controlling
single-cell RNA data

We downloaded the scRNA-seq data from 88 brain samples,
comprising 46 AD patients and 42 age-matched control. These
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samples originated from four distinct regions (Supplementary
Table 3): hippocampus (HIP: GSE185553, GSE185277, GSE198323,
GSE163577), frontal prefrontal cortex (FPC: GSE163577,
GSE157827, GSE174367), frontal cortex (FC: GSE222494,
GSE163577) and entorhinal cortex (EC: GSE138852) and processed
the data using both R and Python environments. Scanpy (Wolf
et al., 2018) package (version 1.9.3) was used to perform processing
according to the standard pipeline: Cells with less than 200 Unique
Molecular Identifier (UMI) counts, over than 7,500 genes, or over
seven mitochondrial RNA counts were filtered out, and genes
expressed in less than three cells were removed as well. The filtered
expression matrix was normalized and log2-transformed. Finally,
the filtered matrix contains 603,636 cells, 1,287 genes and 2,704
counts per cell, on average.

Batch effect correction

Single cell RNA sequencing (scRNA-seq) and single nuclei
RNA sequencing (snRNA-seq) datasets derived from multiple
independent studies were integrated into a unified expression
matrix using the sc.concatenate function in Scanpy. Highly variable
genes (HVGs) were identified through variance stabilization of
the normalized data using Scanpy’s sc.pp.highly_variable_genes.
Principal component analysis (PCA) was subsequently applied to
the HVGs’ expression matrices with sc.tl.pca. A k-nearest neighbor
graph was constructed using sc.pp.neighbors, followed by Uniform
Manifold Approximation and Projection (UMAP) visualization
with sc.tl.umap to reveal cellular clusters in two-dimensional
space, all with default parameters. Then, we systematically
assessed potential batch effects across biological covariates: data
source (different published studies), sequencing platform (scRNA-
seq vs. snRNA-seq), diagnostic groups (AD vs. control), and
neuroanatomical regions (four distinct areas).

In our dataset, before batch correction, cells primarily
clustered by data source samples failing to integrate effectively.
To address batch effects arising from heterogeneous data sources,
we implemented batch effect correction for each data source
using the bbknn (Polański et al., 2019) package (v1.6.0) through
sc.external.pp.bbknn (adata, batch_key = “sources”). Subsequently,
we applied UMAP analysis with 30 nearest neighbors via sc.tl.umap
to visualize the bbknn-harmonized data and identify cell clusters
within the UMAP embedding space. Additionally, using classical
markers, we performed cell annotation. Finally, to facilitate
visualization, we transformed the data into the Seurat (Butler et al.,
2018) (version 4.3.0) format and utilized ggplot2 (version 3.4.21) for
data visualization and esthetic refinement.

Pseudo-bulk analysis of single-cell RNA

Due to the intrinsic sparsity of single-cell sequencing data,
we have utilized the pseudo-bulk method to standardize gene
abundance levels in both the single-cell data and cfRNA data. In
detail, for each cell type, we employed a non-replacement random

1 https://ggplot2.tidyverse.org

sampling method separately between the AD and the normal aging
groups, selecting 4,000 cells to constitute the first pseudo-sample.
Subsequent sampling was performed to form additional pseudo-
samples, and this process was repeated until all cells had been
fully sampled. The final sample for each group included any cells
that had not been included in the previous rounds. Thereafter,
differential expression analysis was conducted between the AD and
control groups using the DESeq2 package, with genes filtered for
further analysis if they had a padj ≤ 0.05 and |log2FC| ≥ 0.25. The
pseudo-bulk results can be found in Supplementary Table 4.

Enrichment analysis

To assess the distinct biological functions of AD in contrast to
the normal aging process, the R package clusterProfiler (Wu et al.,
2021) (version 4.1.1) was employed, using its enrichR function for
conducting Kyoto Encyclopedia of Genes and Genomes (KEGG)
and Gene Ontology (GO) pathway enrichment analyses. The
criteria for selecting significant pathways for visualization were
padj ≤ 0.05 and count ≥ 3. Additionally, any KEGG pathways
associated with “cancer” were excluded from this analysis.

Quantification of group enrichment
analysis

To determine the group-specific enrichment of distinct cell
types within the single-cell landscape of AD and normal aging, we
performed statistical analyses using the Ro/e (Ratio of Observed to
Expected) approach for various cell types, following the protocol
described by Zhang et al. (2018). For any specific cell cluster, an
Ro/e value greater than 1 indicates a significant enrichment within
a particular group, while a value less than 1 indicates a notable
depletion within that group.

Overview of AD diagnostic classifier
model training

To optimize classifier performance evaluation and reduce
potential bias and overfitting, we utilized AD and normal aging
control from UCSD and BioIVT as the validation cohort, while
samples from all other sources served as the training cohort. It is
important to note that samples within the validation cohort were
not utilized in any form during the model training process. After
feature selection process (the following description), we applied
the sklearn Recursive Feature Elimination with Cross-Validation
(RFECV) algorithm to meticulously select 47 genes from the cfRNA
data and 34 genes (Supplementary Table 5) from the merged cfRNA
and scRNA datasets. These genes were then, respectively input
into the downstream classifier algorithms for further analysis. The
expression levels (standardized counts data) of those genes were
then used in the subsequent training of the classifiers using the
Python (version 3.7.16) library scikit-learn.2 We have applied three

2 https://scikit-learn.org/1.0/
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distinct classification algorithms—Support Vector Machine (SVM),
Random Forest (RF), and Logistic Regression (LR)—to carry out
our classification tasks. Each algorithm was subjected to a 10-fold
cross-validation on both the training and validation cohorts. As a
result, we were able to generate Receiver Operating Characteristic
(ROC) curves and determine the corresponding Area Under the
Curve (AUC) values for each classification model.

Training-validation splitting of
multi-source cfRNA-seq cohorts

The cfRNA-seq datasets comprised AD and normal aging
control samples collected across multiple medical centers, with the
following sample distribution: BioIVT - 0 AD, 30 control; GEMs
(Indiana) - 2 AD, 45 control; UCSD - 80 AD, 0 control; University
of Kentucky - 90 AD, 41 control; Washington University in St.
Louis - 0 AD, 49 control. To ensure robust model evaluation, we
stratified the data into independent validation and training/test
cohorts: 40 AD samples (randomly subsampled from UCSD,
correction: samples previously misattributed to GEMs were in fact
from UCSD) and 30 control samples (from BioIVT) were allocated
as the validation set, while the remaining samples (UCSD: 40 AD;
GEMs: 2 AD, 45 control; University of Kentucky: 90 AD, 41 control;
Washington University: 49 control) were used for model training
and testing. For detailed cohort composition and stratification
criteria, refer to Supplementary Table 1.

Feature selection and model training in
cfRNA-based genes (47 genes)

Initial analysis of cfRNA-seq data applied Benjamini-Hochberg
FDR correction (padj ≤ 0.05), identifying 2,658 down-regulated
and 431 up-regulated genes. To identify high-confidence biomarker
candidates, a stricter filter log2FC ≥ 1 and padj ≤ 0.05, for
up-regulated (38 genes); log2FC ≤ −3 and padj ≤ 0.05, for
down-regulated (69 genes) yielded 107 high-confidence biomarker
candidates. For predictive modeling, we employed Python’s
scikit-learn package using RFECV to optimize feature selection.
This algorithm iteratively removes the least important features
based on classifier weights while monitoring cross-validation
accuracy. Through RFECV-optimized feature selection (10-fold
cross-validation with random forest classifier), we identified 47
key genes can achieve best predictive accuracy. These key genes
demonstrated good classification performance across three models
in independent validation cohorts (RF: test AUC = 0.87/valid
AUC = 0.66; SVM: test AUC = 0.84/valid AUC = 0.61; LR: test
AUC = 0.80/valid AUC = 0.59).

Feature selection and model training in
genes from integrated cfRNA and scRNA
datasets (34 genes)

Pseudo-bulk analysis of scRNA datasets revealed 15,209 up-
regulated and 18,096 down-regulated genes under Benjamini-
Hochberg FDR-adjusted criteria (padj ≤ 0.05, |log2FC| ≥ 0.25).

Integration of DEGs revealed 112 co-upregulated genes conserved
across both scRNA and cfRNA, which were prioritized for
downstream biomarker discovery. In feature selection, RFECV
ultimately identifying 34 optimal biomarkers, these biomarkers
demonstrated best classification performance across three models
in independent validation cohorts (RF: test AUC = 0.89/valid
AUC = 0.82; SVM: test AUC = 0.81/valid AUC = 0.78; LR: test
AUC = 0.80/valid AUC = 0.84).

The progress of brain-derived bulk
RNA-seq data cohorts

The brain-derived bulk RNA-seq data from both AD
and normal aging samples, were used to evaluate the
performance of our cfRNA-based module in AD assessment:
Religious Orders Study and Memory and Aging Project
(ROSMAP3) (Mostafavi et al., 2018), Mayo Clinic Alzheimer’s
Disease Genetics Studies (Mayo4) (Bennett et al., 2018), and
Mount Sinai Brain Bank (MSBB) (Wang M. et al., 2018).
These three independent datasets underwent systematic
data harmonization and annotation through the following
procedures:

Data integration and classification for
ROSMAP cohorts

The bulk RNA-seq expression matrix
(ROSMAP_RNAseq_FPKM_gene.tsv) was integrated with
metadata from two sources: ROSMAP_biospecimen_metadata.csv:
Specimen-level technical annotations (e.g., brain region
dissection, postmortem interval, RNA extraction protocols).
ROSMAP_clinical.csv: Longitudinal clinical and neuropathological
data (e.g., antemortem cognitive assessments, CERAD neuritic
plaque scores, Braak staging). Samples were classified into AD,
Mild Cognitive Impairment (MCI), or control groups based on
standardized dementia severity criteria outlined in the ROSMAP
clinical-pathological protocol. Following quality control, the final
cohort comprised 254 neuropathologically confirmed AD cases
and 200 cognitively normal control from postmortem brain tissues,
which were subsequently used for model training.

Data integration and classification for
Mayo cohorts

Raw bulk RNA-seq expression matrices from two Mayo
cohorts:

MayoRNAseq_RNAseq_CER_geneCounts-278.tsv (cerebellar
cortex),

MayoRNAseq_RNAseq_TCX_geneCounts-278.tsv
(temporal cortex).

3 https://doi.org/10.7303/syn3219045

4 https://doi.org/10.7303/syn5550404
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These datasets were merged into a unified
expression matrix and annotated with metadata from
two sources: MayoRNAseq_biospecimen_metadata.csv:
Specimen-level technical details (e.g., brain region
dissection protocols, RNA integrity numbers).
MayoRNAseq_individual_metadata_031422.csv: Donor-level
clinical and neuropathological variables (e.g., Braak staging,
Thal amyloid phase, APOE genotype). Sample classification
into AD or control groups was determined by board-certified
neuropathologists based on postmortem histopathological
evaluations (e.g., amyloid-β plaques, neurofibrillary tangles).
Following rigorous quality filtering, the final cohort comprised
166 neuropathologically confirmed AD cases and 156 control
from postmortem brain tissues, which were subsequently used for
machine learning model training.

Data integration and classification for
MSBB cohorts

Raw bulk RNA-seq expression matrices from four MSBB
cohorts:

AMP-AD_MSBB_MSSM_BM_10.raw_counts.tsv,
AMP-AD_MSBB_MSSM_BM_22.raw_counts.tsv,
AMP-AD_MSBB_MSSM_BM_36.raw_counts.tsv,
AMP-AD_MSBB_MSSM_BM_44.raw_counts.tsv.
The four MSBB cohorts were merged into a unified

expression dataset and annotated with metadata from two
sources: MSBB_biospecimen_metadata.csv (specimen-level
technical details, e.g., brain region, RNA quality metrics)
and MSBB_individual_metadata.csv (donor-level clinical and
demographic variables, e.g., age, sex, neuropathological diagnoses).
Based on dementia severity scores defined in the MSBB clinical
protocol, samples were classified into AD, MCI, or control
groups. Following rigorous quality filtering, the final cohort
comprised 346 postmortem AD cases and 242 neuropathologically
confirmed control, which were subsequently used for machine
learning model training.

Model training on 34 genes in
brain-derived bulk RNA-seq cohort

Following data preprocessing, we obtained three brain-
derived bulk RNA-seq cohorts (ROSMAP: 254 AD vs. 200
control; Mayo: 166 AD vs. 156 control; MSBB: 346 AD vs.
242 control), where 30% of samples from both AD and
control groups were allocated as validation sets and 70% as
training sets. Using 34 biomarkers co-identified through cfRNA-
scRNA datasets integration, model training achieved strong
performance. In the training sets: Mayo (RF: AUC = 0.82, SVM:
AUC = 0.94, LR: AUC = 0.94), MSBB (RF: AUC = 0.75, SVM:
AUC = 0.67, LR: AUC = 0.66), ROSMAP (RF: AUC = 0.69,
SVM: AUC = 0.73, LR: AUC = 0.72); and in independent
validation sets: Mayo (RF: AUC = 0.86, SVM: AUC = 0.89, LR:
AUC = 0.88), MSBB (RF: AUC = 0.69, SVM: AUC = 0.70, LR:
AUC = 0.68), ROSMAP (RF: AUC = 0.62, SVM: AUC = 0.63,
LR: AUC = 0.58).

Results

Blood cell-free RNA facilitates the
non-invasive detection of pathological
features of AD

Previous blood-derived transcriptome studies have
demonstrated the potential to determine the tissue origin of
diseases using cfRNA (Vorperian et al., 2022). Despite the presence
of a blood-brain barrier between the brain and peripheral blood,
astrocyte-specific changes in AD pathology are non-invasively
measurable from blood-derived cfRNA (Liddelow et al., 2017;
Vorperian et al., 2022). To establish AD-specific cfRNA signatures
that could serve as non-invasive biomarkers for the diagnosis of
AD, we collected the sequencing data of blood cf-mRNA from 126
AD patients and 116 age-matched healthy control (Toden et al.,
2020; Supplementary Figure 1A). We identified 431 up-regulated
and 2,658 down-regulated genes in AD patients (Figure 1A).
The up-regulated genes were enriched in pathways linked to
Parkinson’s disease, Alzheimer’s disease, antigen processing and
presentation, and cytokine production. This enrichment result
aligns with the pathological perspective that AD patients exhibit
a proinflammatory state and are prone to disease progression
(Figure 1B). The down-regulated genes showed significant
enrichment in pathways crucial for nervous system development,
including synaptic organization, axonogenesis, synaptic assembly,
neuronal development, and glutamate synapses (Figure 1B).
Dysregulation of these pathways, which are essential for normal
nervous system function, reflects a loss of functional mechanisms
in degenerative diseases. These findings suggest that blood cfRNA
may detect the pathological features characteristic of AD.

When we compared the differential expression patterns of
cfRNA to the reported gene sets, we found that cfRNA in blood does
indeed reflect the characteristics of neurodegenerative diseases.
Specifically, there was a significant overlap with gene sets associated
with Vascular Dementia (VaD) (Guo et al., 2024; Mega Vascular
Cognitive Impairment and Dementia (Megavcid) consortium,
2024), All-Cause Dementia (ACD) (Guo et al., 2024; Mega Vascular
Cognitive Impairment and Dementia (Megavcid) consortium,
2024), genome-wide association studies (GWAS) geneset for AD
(Hahn et al., 2023), and cognitive function proteins (Wingo
et al., 2019; Figure 1C). To further validate this finding, we also
conducted association analyses comparing differential expression
patterns in AD patients with those in health aging control, utilizing
brain-derived RNA-seq data from three databases: Religious Orders
Study and Memory and Aging Project (ROSMAP3) (Mostafavi
et al., 2018), Mayo Clinic Alzheimer’s Disease Genetics Studies
(Mayo4) (Bennett et al., 2018), and Mount Sinai Brain Bank
(MSBB) (Wang M. et al., 2018; Figure 1C). The analysis revealed
that a significant number of detected genes exhibiting differential
expression in cfRNA were also found to be altered in AD brain
lesions. This suggests that cfRNA could be derived from the brain,
capable of crossing the blood-brain barrier into the bloodstream,
thereby providing a theoretical foundation for the use of cfRNA in
non-invasive diagnostic approaches.

To investigate the potential of cfRNA as diagnostic biomarkers
for AD, we have deployed a comprehensive machine learning
model to evaluate its predictive performance. Specifically, the data
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FIGURE 1

Transcriptomics analysis of cell-free RNA (cfRNA) reveals regulation of Alzheimer’s disease (AD)-associated gene expression changes. (A) Volcano
plot shows differentially expressed genes (DEGs) in cfRNA-seq between AD (n = 172) and age-matched control (n = 165). Padj ≤ 0.05 was used as the
cutoff criteria. The bar chart represents the number of up- regulated (red) and down-regulated (blue) genes. Genes with padj ≤ 0.05 (Wilcoxon
rank-sum) were defined as DEGs. (B) Barplot shows the representative significantly (padj ≤ 0.05 and count ≥ 3) enriched Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) terms associated with up- and down-regulated DEGs in the cfRNA dataset. (C) Venn diagrams
illustrate the overlap of DEGs of cfRNA with genes related to Vascular Dementia (VaD) (Guo et al., 2024; Mega Vascular Cognitive Impairment and
Dementia (Megavcid) consortium, 2024), All-Cause Dementia (ACD) (Guo et al., 2024; Mega Vascular Cognitive Impairment and Dementia
(Megavcid) consortium, 2024), genome-wide association studies (GWAS) geneset for AD (Hahn et al., 2023), and cognitive function -related proteins
(CS proteins) (Wingo et al., 2019), brain-derived DEGs in AD from the Religious Orders Study and Memory and Aging Project (ROSMAP) (Mostafavi
et al., 2018), Mayo (Bennett et al., 2018), or Mount Sinai Brain Bank (MSBB) geneset (Wang M. et al., 2018). (D) Lollipop plot shows the top 47
representative genes, ranked by their importance based on importance in feature selection algorithms. (E) The Receiver Operating Characteristic
(ROC) curves for the diagnosis of AD patients in the test (blue) and validation (red) set across three models.

were split into training (70%), testing (20%), and validation (10%)
sets from the cfRNA cohort with 126 AD patients and 116 age-
matched healthy control (Supplementary Figures 1A, D). Three
different classifiers were trained including Support Vector Machine
(SVM), Random Forest (RF), and Logistic Regression (LR).
Utilizing a feature selection RFECV algorithm, we identified 47
key genes for the classification task (Figure 1D and Supplementary
Figure 1E). Relatively good classification performance was achieved
in the three models, with an AUC ≥ 0.8 (RF: AUC = 0.87, SVM:
AUC = 0.84, LR: AUC = 0.80) (Figure 1E). However, in the
independent validation cohort, the performance of all three models
was suboptimal, with the RF model achieving the highest AUC of
only 66%, indicating that cfRNA-based biomarkers may contribute
to a higher false positive rate in AD diagnosis. We suspect that
the reason for the poor prediction outcome is due to the fact

that cfRNA, originating from diverse tissues, contains substantial
biological noise and lacks the specificity to accurately distinguish
individuals at risk for AD from healthy control. Consequently, we
proceeded to utilize brain single-cell RNA-sequencing (scRNA-seq)
data to establish a direct link between cfRNA and genes associated
with AD brain lesions.

Non-invasive detection of
cell-type-specific signatures in AD brains
through blood cfRNA profiling

To investigate the molecular links between blood cfRNA
and brain-specific changes in AD patients, we have integrated
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cfRNA data with scRNA-seq from AD brains tissues, and age-
matched control. This integration includes scRNA-seq data from
four distinct brain regions: hippocampus (HIP: GSE185553,
GSE185277, GSE198323, GSE163577), frontal prefrontal cortex
(FPC: GSE163577, GSE157827, GSE174367), frontal cortex
(FC: GSE222494, GSE163577) and entorhinal cortex (EC:
GSE138852). For detailed descriptions, refer to the Supplementary
Table 1. After rigorous data quality control, integration, and
batch correction steps, we obtained the single-cell and single-
nucleus transcriptomes of 603,636 high-quality cells from
88 samples (46 AD patients and 42 control) (Supplementary
Figures 2A–D) for further analysis. Eight major cell types in
brains were annotated based on respective canonical marker
genes. Visualization in Uniform Manifold Approximation and
Projection (UMAP) space separated the clusters into astrocyte,
endothelial, microglia, mature oligodendrocyte (mOli), neuron,
oligodendrocyte precursor cell (OPC), pericyte, and perivascular
fibroblasts (PVFs) (Figures 2A, B). All cell types were detected
in the four brain regions: HIP, 277,586 cells; FC, 112,489 cells;
PFC, 200,839 cells; and EC, 12,722 cells (Figure 2C). Microglia,
mOli, and astrocyte cells showed comparable enrichment in AD
patients (Figures 2D, E), consistent with findings from prior
research (Lau et al., 2020; Yang et al., 2022). The activation of
glial cells, particularly microglia and astrocytes, constitutes a
significant pathological hallmark of AD and plays a key role in
pathological states and participate in inflammatory responses
(Deng et al., 2024; Kaur et al., 2019; Leng and Edison, 2021;
Vandenbark et al., 2021). Specifically, this increase trend in the
number of mOli and microglia cells was observed across various
brain regions in AD (Figures 2F, G). The mOli population showed
significant enrichment in the oligodendrocyte differentiation
pathway, whereas microglia demonstrated upregulation of
cytokine production, cytokine secretion, and inflammation-related
pathways (Figure 2H). In contrast, PVFs, pericyte, and endothelial
cells were more prevalent in aging control, while OPC and
neuron remained relatively stable across both groups (Figures 2D,
E).

Our analysis showed that the majority of signature genes (above
90%) of various brain cell types were detectable in cfRNA data
(Supplementary Figure 3B), indicating that brain-derived RNAs
can cross the blood-brain barrier and enter the bloodstream.
Quantification of the expression levels of these signature genes
in cfRNA data indicated up-regulation of microglia and mOli
markers in AD (Figure 2I). Furthermore, the application of
the BayesPrism deconvolution method (Chu et al., 2022) to
estimate cell type proportions in cfRNA data revealed significant
increases in microglia in AD (Figure 2K and Supplementary
Figure 3E). In contrast, the signature genes expression scores
for endothelial, neuron, OPC, pericyte, and PVFs cells were
depleted in AD (Figure 2I), aligning with observed changes in
cell proportions from single-cell data (Figures 2D, E). Reports
indicate that astrocytes and microglia play a crucial role in
regulating cell homeostasis, phagocytosis, and the clearance of
Aβ and p-Tau, which significantly impacts the progression of
AD. The observed downward trend in signature gene expression
under AD conditions (Figure 2J) suggests a potential loss of
normal cellular function, a phenomenon that warrants further
investigation.

Genetic concordance in blood and brain
transcriptome linked to AD’s progression

While AD-associated transcriptomic alterations have been
investigated in the brain regions (Grubman et al., 2019; Lau
et al., 2020; Morabito et al., 2021; Yang et al., 2022; Zhou et al.,
2022) or blood cfRNA data (Toden et al., 2020) separately,
studies integrating single-cell transcriptomics from the brain
with blood cfRNA transcriptomics to reveal consistent changes
has yet to be reported. In this study, we aim to decipher
and identify the consistent changes that indicate AD brain
pathology, as detectable through non-invasive blood-based cfRNA
data. To pinpoint the specific cell types underlying brain
changes in AD within cfRNA, we conducted an integrated
analysis of scRNA and cfRNA datasets. Due to the inherent
sparsity of scRNA-seq data, we conducted differential expression
analysis using the pseudo-bulk approach. We identified numerous
genes with shared expression patterns in both cfRNA and
scRNA datasets that exhibited a down-regulated trend in AD.
Neuron, mOli, astrocyte, endothelial, microglia and pericyte
were the primary contributors to dysregulated genes, whereas
OPC and PVFs contributed the lowest (Figure 3A). Using
scRNA-seq data, we identified genes that were dysregulated in
AD brain tissue for each cell type, and a majority of these
genes were also found to be dysregulated in blood cfRNA
(Figures 3B, C and Supplementary Figure 3D). MTATP6P1, a
mitochondrial ATP synthase pseudogene (Zhao et al., 2018),
was up-regulated in both scRNA and cfRNA datasets and
may influence cellular processes through regulatory mechanisms.
SLC6A7, a member of the gamma-aminobutyric acid (GABA)
neurotransmitter gene family, has been observed to be down-
regulated, reflecting changes within the nervous system (Reid et al.,
2022).

Interestingly, we discovered that a subset of genes exhibited
dysregulated expression across multiple cell types in AD, and
these genes were detectable in both blood cfRNA and brain
tissues. For instance, BCL2, known for its role in inhibiting
apoptosis in neurons (Eguchi et al., 1992; Yin et al., 1994),
was found to be up-regulated in three cell types (Figure 3D).
Conversely, MTUS2 (Figure 3E), which encodes a microtubule-
associated scaffold protein playing a crucial role in late-onset
Alzheimer’s disease (LOAD) (Xicota et al., 2024), exhibited
decreased expression across seven distinct cell types. Overall,
our analysis of the intersection of scRNA and cfRNA data
revealed 23 up-regulated (Figure 3D) and 81 down-regulated
(Figure 3E) genes. The down-regulated pathways, such as axon
guidance, synaptic vesicle cycle, glutamatergic synapse, chemical
synaptic transmission, neurotransmitter secretion, and nervous
system development, are characteristic of neurodegenerative
diseases, while the up-regulated pathways, closely associated
with neuroinflammation, such as the T cell receptor signaling
pathway, B cell differentiation, and cytokine-mediated signaling
pathways, suggest an enhanced neuroinflammation in AD
(Figures 3F, G). By integrating cfRNA and scRNA datasets,
we offer a comprehensive depiction of AD’s progression in
both the brain and blood, encompassing neuronal death and
neuroinflammation, which are key pathological hallmarks of the
disease.
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FIGURE 2

Unraveling cell-type-specific signatures in Alzheimer’s disease (AD) brains though non-invasive cell-free RNA (cfRNA) profiling. (A) Uniform Manifold
Approximation and Projection (UMAP) plot shows the distribution of major cell types in brain tissues from AD and control patients, with cells colored
by different cell types. The dataset includes a total of 603,636 single cells or nuclei. The pie chart shows the ratio of cells in AD and control groups.
(B) Dot plot shows canonical marker genes in each cell type in panel (A). Dot size indicates the proportion of expressing cells, colored by the
average standardized expression levels. (C) Quantification of each cell types in the brain tissue at four different regions (HIP: hippocampus, FPC,
frontal prefrontal cortex, FC, frontal cortex, EC, entorhinal cortex). (D) Dot plot shows the group preference for each cell type, measured by the ratio
of observed to expected cell numbers (Ro/e). The dot color represents the Ro/e value, while the dot size indicates the percentage of this cell
population within the group. (E) Barplot shows the percentage of cells in AD and control samples from the single-cell data, with each bar colored
according to the major cell types. (F,G) Box plot shows the proportions of Microglia and mOli in AD and control groups from single cells datasets (46
AD samples and 42 control samples). Similar analyses of cell proportion differences were also calculated in various brain regions. (G) P-values were
calculated by the Wilcoxon rank-sum test. *for padj ≤ 0.05, **for padj ≤ 0.01, ***for padj ≤ 0.001, and ****for padj ≤ 0.0001. (H) Dot plot illustrates
the representative Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms significantly (padj ≤ 0.05) enriched in up- and
down-regulated DEGs in mOli and microgila cells, comparing AD samples with control samples. The dot color represents the -log10 padj, while the
dot size represents the number of genes associated with each terms. (I) Violin plot shows the score of the top 100 signature genes for each cell type
in the cfRNA-seq dataset. The Wilcoxon rank-sum test was used to quantify the differences in score between the AD and control groups, with the
following significance levels: *for padj ≤ 0.05, **for padj ≤ 0.01, ***for padj ≤ 0.001, and ****for padj ≤ 0.0001. (J) Barplot shows the number of
upregulated or downregulated genes among the top 100 signature genes of each cell type in the cfRNA dataset, comparing 172 AD samples and 165
age-matched controls. (K) Box plot shows the Microglia and mOli cell proportions in AD and control groups by the BayesPrism deconvolution
method in cfRNA dataset.
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FIGURE 3

Identification of genes exhibiting consistent changes across blood and brain transcriptome data. (A) Barplot shows the number of up- regulated
(red) and down-regulated (blue) differentially expressed genes (DEGs) in each cell types across single cell RNA sequencing (scRNA-seq) and
cfRNA-seq datasets. (B) Barplot shows the number of overlapped up- and down-regulated DEGs in both scRNA-seq and cfRNA-seq datasets.
(C) Scatter plots showing the log 2-fold change (log2FC) of intersecting DEGs between scRNA-seq and cfRNA-seq datasets. The x-axis represents
the log2FC of DEGs from the scRNA-seq data, while the y-axis shows the log2FC of DEGs from the cfRNA-seq data, with each cell type displayed
separately. Red indicates genes that are commonly up-regulated, blue indicates genes that are commonly down-regulated, and gray indicates
genes with opposing trends. (padj ≤ 0.05 was used as the cutoff criteria for cfRNA-seq data; p ≤ 0.0adj5 and |log2FC| ≥ 0.25 was used as the cutoff
criteria for scRNA-seq data). (D) Circle plot displays up-regulated DEGs shared by at least three cell types. The color key indicates different cell types,
as in Figure 1A. (E) Circle plot displays down-regulated DEGs shared by at least three cell types. The color key indicates different cell types, as in
Figure 1A. (F,G) Dot plots show the representative significantly Kyoto Encyclopedia of Genes and Genomes (KEGG) (F) and Gene Ontology (GO) (G)
terms associated with the up-regulated and down-regulated DEGs from panel (D,E).

Establishment and verification of a
multi-cfRNA-based classifier for AD
diagnosis

The above results have indicated that cfRNA-based biomarkers
lack the specificity necessary to accurately differentiate individuals
at risk for AD from healthy control, resulting in an elevated false
positive rate in AD diagnosis (Figure 1E). However, our research
indicates that integrating cfRNA and scRNA data can more
accurately reflect AD characteristics, offering a comprehensive view
of the disease’s progression in both brain and blood. Consequently,
we aim to develop AD classifiers by leveraging the intersection
of biomarkers common to both cfRNA and scRNA datasets. This
integrated approach is expected to capture a more comprehensive

profile of AD, potentially enhancing the accuracy and reliability of
our classifiers.

Upon conducting a coparative differential expression analysis
between AD patients and age-matched control, we identified a
total of 112 genes that were differentially expressed in both cfRNA
and scRNA datasets (Supplementary Figure 4). To evaluate the
generalizability of the models, the cfRNA cohort was partitioned
into training (70%), test (20%), and validation (10%) sets for cross-
validation (Figure 4A). Through feature selection with RFECV
algorithm, 34 key biomarker genes were used to develop machine
learning predictive models (Figures 4B, C). We established three
distinct classifiers - SVM, RF, and LR. The RF model, which
incorporated the cfRNA expression data of the 34 biomarker genes,
achieved the highest AUC of 89% (Supplementary Figure 4). Both
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FIGURE 4

Performance of classifiers based on biomarker expression for Alzheimer’s disease (AD) diagnosis. (A) Schematics diagram illustrates the
establishment of the classifiers in cfRNA-seq dataset. The training and independent validation sets included samples from different hospital sources.
(B) Plot shows the cross-validated accuracy score versus the number of features, calculated by sklearn’s feature selection algorithms. (C) Lollipop
plot shows the feature importance of top 34 representative biomarker genes by sklearn’s feature selection algorithms. (D) Heatmap shows the
expression of 34 representative biomarker genes in single cell RNA-seq (scRNA-seq) dataset for each cell type. (E) The Receiver Operating
Characteristic (ROC) curve and Area Under the Curve (AUC) value for the 34 biomarkers in the diagnosis of AD patients across three models in the
cfRNA-seq datasets. Red represents the testing mean ROC curves, while blue represents the validation mean ROC curves. (F) The protein-protein
interaction (PPI) network for the 34 biomarkers. Blue concentric circles represent the biomarkers, blue squares represent diseases, and yellow circles
represent the intermediate genes. (G) The lollipop plot displays the log2FC values of the 34 biomarkers in each cell type from the scRNA-seq
dataset. The color key indicates different cell types, as in Figure 1A. (H) Boxplot shows the score of the 34 biomarkers across AD and control groups,
by cell types from scRNA-seq data. P- values were calulated by the Wilcoxon rank-sum test: **** for padj ≤ 0.0001. (I) Boxplots represent the
expression of biomarkers genes across various tissues. Transcriptome data of tissues were obtained from the GTEx database. Red bars indicate the
brain, while gray bars represent other tissues.
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the SVM and LR classifiers also demonstrated high predictive
performance (SVM: AUC = 0.81, LR: AUC = 0.80), and
maintained this performance in the independent validation set (RF:
AUC = 0.82, SVM: AUC = 0.78, LR: AUC = 0.84) (Figure 4E).
These results indicates that combining single-cell transcriptomic
data from the brain with blood-drived cfRNA analysis allows for
a more precise capture of molecular alterations within the brain
(Figure 4D). This integration enhances the predictive accuracy of
cfRNA-based biomarkers in diagnosing AD.

To investigate the potential of our identified 34 biomarker
genes to capture additional characteristics of AD, we performed
the futher analysis on cfRNA and scRNA datasets, respectively.
A total of 88 samples were clustered into AD patients and aging-
matched healthy control based on these 34 genes expression
profiling in scRNA-seq data (Figure 4D). An associative analysis
with known disease databases identified BCL2 as the most
significant hub gene, associated with a variety of diseases, such
as bipolar disorder, memory disorder, learning disorder, AD,
and major depressive disorder. Additionally, PTPN6, STIP1,
ANPEP, and TSPYL1 were found to be correlated with major
depressive disorder. Protein-Protein Interaction (PPI) analysis
further highlighted BCL2, BCL6, HSPA8, and EZR as important
hub genes (Figure 4F). Studies suggest that inhibiting BCL6 and
BCL2 expression may serve as a therapeutic target for central
nervous system cancer (Gourisankar et al., 2023). The HSPA8 gene
functions as a molecular chaperone, mediating autophagy and
affecting the hydrolysis of misfolded proteins (Stricher et al.,
2013). Single-cell expression profiling revealed that the expression
patterns of these 34 biomarker genes varied significantly across
different cell types affected by AD. Most of the genes showed
the greatest changes in microglia, followed by neuron, astrocyte,
and oligodendrocyte (Figures 4G, H). Analysis of tissue-specific
expression patterns from GTEx RNA-seq data revealed that the
expression levels of several biomarker genes, including APLNR,
MTATP6P1, MTRNR2L12, RAB11FIP4, SNX30, TSPYL1, and
ZBTB18, were significantly higher in the brain compared to
other tissues (Figure 4I). These findings raise the possibility that
cfRNA profiles are influenced by underlying cell-type-specific
transcriptional changes in the brain during AD progression,
and may serve as an indirect window into disease-related
pathological processes. While this aligns with potential pathological
characterization, further validation is required to establish a
direct causal link between cfRNA profiles and disease-specific
mechanisms. Finally, we found that the 47 genes are associated
with metabolic pathways such as mitochondria and ATP, as well as
neurodegenerative diseases. In contrast, the 34 biomarker genes are
more closely related to immunity (Supplementary Figures 3F, G).
This comprehensive strategy paves the way for providing a novel
perspective for early AD screening in clinical applications.

Independent validation of the
multi-cfRNA classifier in brain tissue
RNA-seq cohorts

By integrating scRNA-seq data derived from the AD brain
tissues, we successfully identified 34 key biomarker genes that
can serve as biomarkers for screening individuals at risk of AD

using blood-derived cfRNA-seq. To ascertain the applicability of
these biomarker genes in constructing classifiers from brain tissue
RNA-seq, we collected transcriptome data from three databases,
ROSMAP, Mayo, and MSBB, which encompassed brain tissue
samples from both AD patients and healthy control. The results
showed that LR and SVM -based classifiers achieved the highest
AUC of 94% in Mayo dataset based on the expression of 34
biomarker genes (Figure 5A). These genes also showed robust
performance in the independent validation set, with AUC values
consistently above 86% in three classifiers (Figure 5A). Moreover,
these biomarker genes consistently achieved good predictive
performance in both MSBB and ROSMAP datasets, demonstrating
the predictive stability of the biomarker-based classifiers across
different datasets (Figures 5B, C). In the training set, Mayo (RF:
AUC = 0.82, SVM: AUC = 0.94, LR: AUC = 0. 94), MSBB (RF:
AUC = 0.75, SVM: AUC = 0.67, LR: AUC = 0.66), ROSMAP
(RF: AUC = 0.69, SVM: AUC = 0.73, LR: AUC = 0.72), and in
the independent validation sets Mayo (RF: AUC = 0.86, SVM:
AUC = 0.89, LR: AUC = 0.88), MSBB (RF: AUC = 0.69, SVM:
AUC = 0.70, LR: AUC = 0.68), ROSMAP (RF: AUC = 0.62, SVM:
AUC = 0.63, LR: AUC = 0.58) (Figures 5B, C). Consistently, no
significant differences were observed in the expression levels of
these 34 marker genes between the AD and control groups across
the MSBB, Mayo, and ROSMAP datasets (Figures 5D–F).

Alzheimer’s disease is a slow and irreversible progressive
neurodegenerative disease. Due to the lack of effective early
detection methods, the disease is diagnosed at an advanced stage.
Therefore, identifying the risk population at the early stages of is a
major challenge in the field. To assess the potential of our identified
biomarkers for early-stage screening, we have compiled RNA-seq
data from brain tissues of AD patients spanning various disease
stages.We applied Non-negative Matrix Factorization algorithm on
the MSBB dataset to stratify AD samples into two distinct groups
based on the expression of biomarker genes (Figure 5G). Group 1
is characterized by a higher mean plaque load (plaqueMean) and
a shorter time to death (Figure 5H). Patients within this group
exhibited elevated Braak stages and more pronounced Clinical
Dementia Rating (CDR) scores, suggesting a more advanced stage
of disease progression. Conversely, group 2 is marked by reduced
mean plaque load, extended survival times, lower Braak stage and
CDR scores. Patients within group 2 presented with mild symptoms
and were classified as being in the early stage of AD (Figures 5I, J).
Significantly, the 34 biomarker genes demonstrate a high capacity
to distinguish early-stage AD patients. These results substantiate
the utility of 34 biomarker genes in screening AD patients and
underscore their potential for the early detection of AD.

Discussion

In this study, we integrated high-throughput cfRNA-seq and
scRNA-seq dataset from AD patients and age-matched control
in multiple cohorts from blood or brain regions. Our results
highlight the utility of integrating scRNA-seq data from brain
tissues can better capture signatures from blood-derived cfRNA
profiling that discriminate molecular variations in AD. Systematic
profiling of cfRNA even non-invasively detect alterations in cell-
type-specific signatures within the AD brain. We identified a
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FIGURE 5

Independent validation of the multi-cfRNA classifier in brain tissue RNA-seq cohorts. (A–C) The Receiver Operating Characteristic (ROC) curves and
Area Under the Curve (AUC) values for classifiers based on the expression of 34 biomarker genes in the diagnosis of AD patients in the Mayo
(A) Religious Orders Study and Memory and Aging Project (ROSMAP) (B) and Mount Sinai Brain Bank (MSBB) (C) datasets. (D–F) Heatmaps showing
the expression of 34 biomarker genes in Mayo/ROSMAP/MSBB data. (G) Heatmap shows unsupervised NMF clustering for MSBB AD samples based
on the expression of 34 biomarkers. Two sample cluster subtypes are highlighted in color. (H) Density plot shows the plaque load values (top) and
the age at death (bottom) in two AD groups AD samples. The Wilcoxon rank-sum test was then used to quantify the differences in scores, with the
following significance levels: **for padj ≤ 0.01 and ns. for not significant. (I) Dot plot shows the Braaks preference for each NMF group, measured by
the ratio of observed to expected cell numbers (Ro/e). The dot color represents the Ro/e value, while the dot size indicates the percentage. (J) Dot
plot shows the d Clinical Dementia Rating (CDR) score preference for each NMF group.
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total of 34 signature genes that were differentially expressed in
both cfRNA and scRNA datasets. Machine learning algorithms
(SVM, RF, and LR-based models) that utilize the cfRNA expression
data from these 34 genes are capable of precisely distinguish
patients with AD from healthy control (the highest AUC = 89%).
Futhermore, classifiers developed based on the expression of
34 genes in brain transcriptome data also demonstrated robust
predictive performance for assessing the risk of AD in the
population (the highest AUC = 94%). The differential expression
of 34 biomarker genes enable the identification of early-stage
AD patients, which implying the potential application of these
biomarkers in early AD screening, enabling the timely delivery of
interventional treatments to high-risk individuals and potentially
preventing disease progression. These results underscore the utility
of the 34 identified genes as biomarkers for early, non-invasive AD
screening, which could significantly improve diagnostic precision
for AD.

Current treatments for AD, such as cholinesterase inhibitors,
NMDA receptor antagonists (Liu et al., 2019), and therapies
targeting Aβ and tau proteins (Congdon and Sigurdsson, 2018),
primarily alleviate symptoms by modulating neurotransmitter
levels. These treatments offer temporary relief or slow disease
progression but do not stop disease advancement or provide
a cure. To improve therapeutic outcomes, there is a need for
biomarkers that can stratify AD patients and identify those likely
to benefit from specific treatments. Therefore, non-invasive tools,
more accurate than imaging or tissue biopsy, are needed to
assess molecular profiles and drug response. Such tools could
provide a foundation for clinical adjustments in treatment. Our
findings show that cfRNA profiling can distinguish AD patients
with different disease progressions, suggesting that the expression
patterns of cfRNA reflect the heterogeneity of AD patients. CfRNA-
based biomarkers may help develop indicators for drug response
monitoring, supporting personalized treatment plans for AD
patients.

Cell-free transcriptomes, characterized by their non-invasive
nature, are emerging as valuable screening biomarkers for a
variety of major diseases (Larson et al., 2021). Currently, exosomes
and non-coding single-stranded RNAs (such as miRNAs) have
demonstrated substantial promise in the field of cancer screening
(Galvão-Lima et al., 2021; Kim and Croce, 2023), while their
application in the diagnosis of neurodegenerative diseases remains
in the exploratory phase. Additionally, the instability of RNA,
which is prone to degradation, presents a major challenge in
promoting the clinical use of cfRNA as biomarkers. Beyond
transcriptomics, circulating cell-free DNA (cfDNA) and DNA
methylation-based biomarkers also offer considerable clinical
value. cfDNA is easily accessible and allows for repeated sampling,
enabling real-time dynamic monitoring of disease status, making
it particularly useful in applications like drug resistance testing.
It exhibits high sensitivity in early cancer detection and is
widely utilized in clinical settings (Bronkhorst et al., 2019)
However, detecting cfDNA mutations often requires extremely
deep sequencing, which introduces challenges such as false
positives and increased costs, and is limited in scope and unable
to trace tissue origins. DNA methylation-based biomarkers play a
crucial role in chromatin transcription regulation, epigenetic gene
expression, genomic stability, DNA repair, and replication, and
are commercially available for testing (Levenson, 2010). Despite
this, our AD diagnostic research has not yet incorporated these

biomarkers due to a lack of blood-based cfDNA and methylation
data. We intend to collect further data with the goal of identifying
more precise and clinically relevant early AD screening biomarkers
through integrated omics analyses.

In summary, we have demonstrated the capability of integrating
single-cell transcriptomic data from the brain with cell-free
transcriptomic data from blood, and their advantages over
single-omics analyses in biomarker discovery. Brain data-derived
biomarkers, while valuable, are not suitable for non-invasive
clinical applications due to their invasive nature. Blood cell-free
biomarkers suffer from high background noise that impedes the
accurate reflection of brain pathologies. Therefore, the biomarkers
identified in this study provide a significant resource, offering
molecular insights into the pathogenesis of AD and facilitating the
screening of early-stage AD patients. Ultimately, this strategy aims
to achieve non-invasive early screening and precision medicine.
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SUPPLEMENTARY FIGURE 1

Cell-free RNA-sequence (cfRNA-seq) data processing. (A) Barplot shows
cfRNA-seq data sample information, with colors indicating different
hospitals from which the cfRNA was sourced. (B) Principal component
analysis (PCA) plot shows the batch effect present in the cfRNA-seq

datasets. (C) PCA plot shows the batch correction by different hospitals. (D)
Schematics diagram of cfRNA classifier establishment. The top side is the
training set, and the bottom side is the independent validation set,
separated according to the samples from different hospital sources.
(E) Plot shows the cross-validated accuracy score versus the
number of features, calculated using feature selection algorithms from
sklearn. Ultimately, this process identified 47 biomarkers based on
cfRNA-seq data. (F) Heatmap shows the expression levels
of 47 biomarkers.

SUPPLEMENTARY FIGURE 2

Single-cell RNA-sequencing (scRNA-seq) data processing. (A) Barplot
shows scRNA-seq data sample information, with colors indicating whether
the samples are from the Alzheimer’s disease (AD) group or the control
group. (B) Vlnplot shows the quality control information of scRNA-seq data,
categorized according to the article sourced. (C) Uniform Manifold
Approximation and Projection (UMAP) plot shows the batch effect
originating from the article’s data sources. (D) The UMAP plot shows the
results of batch correction applied to the data sourced from the article’s
data sources. (E) Heatmap shows the Pearson correlation between cell
types annotated in the scRNA-seq data with the following significance
levels: ∗for padj ≤ 0.05, ∗∗for padj ≤ 0.01, ∗∗∗for padj ≤ 0.001, and ∗∗∗∗for
padj ≤ 0.0001. (F) Barplot shows the cells number for each cell type,
grouped by AD and control samples.

SUPPLEMENTARY FIGURE 3

Integrating single cell RNA-seq (scRNA-seq) and cfRNA-seq Data for
biomarker identification and functional insights. (A) Scatter plots show the
Spearman correlation between scRNA-seq data and cfRNA-seq data after
log2 transformation of expression levels. (B) Barplot shows the detection
rate of the scRNA-seq data top 100 signature genes in cfRNA-seq data,
grouped by cell type. (C) The circle plot shows the up- and down-regulated
genes that are shared between cfRNA-seq and scRNA-seq data. (D) Plot
shows the up- and down-regulated genes number that are shared between
cfRNA-seq and scRNA-seq data. (E) Barplot shows the cell proportions
across Alzheimer’s disease (AD) and control groups, as determined by the
BayesPrism deconvolution method in cfRNA data, with each bar
representing a sample. (F) Barplot shows the representative significantly
(padj ≤ 0.05) enriched Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) terms associated with 47 biomarkers. (G)
Barplot shows the representative significantly enriched GO terms
associated with 34 biomarkers.

SUPPLEMENTARY FIGURE 4

Schematic workflow for feature selection, model training, and
independent validation.
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Polański, K., Young, M., Miao, Z., Meyer, K., Teichmann, S., and Park, J. E.
(2019). BBKNN: Fast batch alignment of single cell transcriptomes. Bioinformatics 36,
964–965. doi: 10.1093/bioinformatics/btz625

Rasmussen, M., Reddy, M., Nolan, R., Camunas-Soler, J., Khodursky, A., Scheller,
N., et al. (2022). RNA profiles reveal signatures of future health and disease in
pregnancy. Nature 601, 422–427. doi: 10.1038/s41586-021-04249-w

Reid, K., Spaull, R., Salian, S., Barwick, K., Meyer, E., Zhen, J., et al. (2022). MED27,
SLC6A7, and MPPE1 variants in a complex neurodevelopmental disorder with severe
dystonia. Mov. Disord. 37, 2139–2146. doi: 10.1002/mds.29147

Roskams-Hieter, B., Kim, H., Anur, P., Wagner, J., Callahan, R., Spiliotopoulos,
E., et al. (2022). Plasma cell-free RNA profiling distinguishes cancers from pre-
malignant conditions in solid and hematologic malignancies. NPJ Precis. Oncol. 6:28.
doi: 10.1038/s41698-022-00270-y

Shaw, L., Vanderstichele, H., Knapik-Czajka, M., Clark, C., Aisen, P., Petersen,
R., et al. (2009). Cerebrospinal fluid biomarker signature in Alzheimer’s disease
neuroimaging initiative subjects. Ann. Neurol. 65, 403–413. doi: 10.1002/ana.
21610

Sheinerman, K., and Umansky, S. (2013). Circulating cell-free microRNA as
biomarkers for screening, diagnosis and monitoring of neurodegenerative diseases
and other neurologic pathologies. Front. Cell. Neurosci. 7:150. doi: 10.3389/fncel.2013.
00150

Sheinerman, K., Tsivinsky, V., Crawford, F., Mullan, M., Abdullah, L., and Umansky,
S. (2012). Plasma microRNA biomarkers for detection of mild cognitive impairment.
Aging 4, 590–605. doi: 10.18632/aging.100486

Smith, A., Davey, K., Tsartsalis, S., Khozoie, C., Fancy, N., Tang, S., et al.
(2022). Diverse human astrocyte and microglial transcriptional responses to
Alzheimer’s pathology. Acta Neuropathol. 143, 75–91. doi: 10.1007/s00401-021-
02372-6

Stockmann, J., Verberk, I., Timmesfeld, N., Denz, R., Budde, B., Lange-Leifhelm,
J., et al. (2020). Amyloid-β misfolding as a plasma biomarker indicates risk for future
clinical Alzheimer’s disease in individuals with subjective cognitive decline. Alzheimers
Res. Ther. 12:169. doi: 10.1186/s13195-020-00738-8

Stricher, F., Macri, C., Ruff, M., and Muller, S. (2013). HSPA8/HSC70 chaperone
protein: Structure, function, and chemical targeting. Autophagy 9, 1937–1954. doi:
10.4161/auto.26448

Swerdlow, R., Burns, J., and Khan, S. (2014). The Alzheimer’s disease mitochondrial
cascade hypothesis: Progress and perspectives. Biochim. Biophys. Acta 1842, 1219–
1231. doi: 10.1016/j.bbadis.2013.09.010

Tao, Y., Xing, S., Zuo, S., Bao, P., Jin, Y., Li, Y., et al. (2023). Cell-free multi-omics
analysis reveals potential biomarkers in gastrointestinal cancer patients’ blood. Cell.
Rep. Med. 4:101281. doi: 10.1016/j.xcrm.2023.101281

Terry, R., Masliah, E., Salmon, D., Butters, N., DeTeresa, R., Hill, R., et al. (1991).
Physical basis of cognitive alterations in Alzheimer’s disease: Synapse loss is the
major correlate of cognitive impairment. Ann. Neurol. 30, 572–580. doi: 10.1002/ana.
410300410

Teunissen, C., Verberk, I., Thijssen, E., Vermunt, L., Hansson, O., Zetterberg,
H., et al. (2022). Blood-based biomarkers for Alzheimer’s disease: Towards clinical
implementation. Lancet Neurol. 21, 66–77. doi: 10.1016/S1474-4422(21)00361-6

Thijssen, E., La Joie, R., Wolf, A., Strom, A., Wang, P., Iaccarino, L., et al.
(2020). Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and
frontotemporal lobar degeneration. Nat. Med. 26, 387–397. doi: 10.1038/s41591-020-
0762-2

Thijssen, E., Verberk, I., Vanbrabant, J., Koelewijn, A., Heijst, H., Scheltens, P.,
et al. (2021). Highly specific and ultrasensitive plasma test detects Abeta(1-42) and
Abeta(1-40) in Alzheimer’s disease. Sci. Rep. 11:9736. doi: 10.1038/s41598-021-89004-
x

Toden, S., Zhuang, J., Acosta, A., Karns, A., Salathia, N., Brewer, J., et al. (2020).
Noninvasive characterization of Alzheimer’s disease by circulating, cell-free messenger
RNA next-generation sequencing. Sci. Adv. 6:eabb1654. doi: 10.1126/sciadv.abb
1654

Tönnies, E., and Trushina, E. (2017). Oxidative stress, synaptic dysfunction,
and Alzheimer’s disease. J. Alzheimers Dis. 57, 1105–1121. doi: 10.3233/JAD-
161088

Vandenbark, A., Offner, H., Matejuk, S., and Matejuk, A. (2021). Microglia and
astrocyte involvement in neurodegeneration and brain cancer. J. Neuroinflammation
18, 298. doi: 10.1186/s12974-021-02355-0

Vorperian, S., Moufarrej, M., and Quake, S. (2022). Cell types of origin of
the cell-free transcriptome. Nat. Biotechnol. 40, 855–861. doi: 10.1038/s41587-021-
01188-9

Wang, J., Jin, W., Bu, X., Zeng, F., Huang, Z., Li, W., et al. (2018). Physiological
clearance of tau in the periphery and its therapeutic potential for tauopathies. Acta
Neuropathol. 136, 525–536. doi: 10.1007/s00401-018-1891-2

Wang, M., Beckmann, N., Roussos, P., Wang, E., Zhou, X., Wang, Q., et al. (2018).
The Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic data in
Alzheimer’s disease. Sci. Data 5:180185. doi: 10.1038/sdata.2018.185

Wen, G., Zhou, T., and Gu, W. (2021). The potential of using blood circular RNA as
liquid biopsy biomarker for human diseases. Protein Cell. 12, 911–946. doi: 10.1007/
s13238-020-00799-3

West, T., Kirmess, K., Meyer, M., Holubasch, M., Knapik, S., Hu, Y., et al. (2021).
A blood-based diagnostic test incorporating plasma Aβ42/40 ratio, ApoE proteotype,
and age accurately identifies brain amyloid status: Findings from a multi cohort
validity analysis. Mol. Neurodegener. 16:30. doi: 10.1186/s13024-021-00451-6

Wingo, A., Dammer, E., Breen, M., Logsdon, B., Duong, D., Troncosco, J., et al.
(2019). Large-scale proteomic analysis of human brain identifies proteins associated
with cognitive trajectory in advanced age. Nat. Commun. 10:1619. doi: 10.1038/
s41467-019-09613-z

Wojdała, A., Bellomo, G., Gaetani, L., Toja, A., Chipi, E., Shan, D., et al. (2023).
Trajectories of CSF and plasma biomarkers across Alzheimer’s disease continuum:
Disease staging by NF-L, p-tau181, and GFAP. Neurobiol. Dis. 189:106356. doi: 10.
1016/j.nbd.2023.106356

Wolf, F., Angerer, P., and Theis, F. J. (2018). SCANPY large-scale single-cell gene
expression data analysis. Genome Biol. 19:15. doi: 10.1186/s13059-017-1382-0

Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., et al. (2021). clusterProfiler
4.0: A universal enrichment tool for interpreting omics data. Innovation 2:100141.
doi: 10.1016/j.xinn.2021.100141

Xicota, L., Cosentino, S., Vardarajan, B., Mayeux, R., Perls, T., Andersen, S.,
et al. (2024). Whole genome-wide sequence analysis of long-lived families (Long-Life
Family Study) identifies MTUS2 gene associated with late-onset Alzheimer’s disease.
Alzheimers Dement. 20, 2670–2679. doi: 10.1002/alz.13718

Yang, A., Vest, R., Kern, F., Lee, D., Agam, M., Maat, C., et al. (2022). A human
brain vascular atlas reveals diverse mediators of Alzheimer’s risk. Nature 603, 885–892.
doi: 10.1038/s41586-021-04369-3

Yin, X., Oltvai, Z., and Korsmeyer, S. (1994). BH1 and BH2 domains of Bcl-2 are
required for inhibition of apoptosis and heterodimerization with Bax. Nature 369,
321–323. doi: 10.1038/369321a0

Zhang, L., Yu, X., Zheng, L., Zhang, Y., Li, Y., Fang, Q., et al. (2018). Lineage tracking
reveals dynamic relationships of T cells in colorectal cancer. Nature 564, 268–272.
doi: 10.1038/s41586-018-0694-x

Zhao, S., Zhang, Y., Gamini, R., Zhang, B., and von Schack, D. (2018). Evaluation
of two main RNA-seq approaches for gene quantification in clinical RNA sequencing:
Polya+ selection versus rRNA depletion. Sci. Rep. 8:4781. doi: 10.1038/s41598-018-
23226-4

Zhou, Y., Lv, X., Qu, H., Zhao, K., Fu, L., Zhu, L., et al. (2019). Differential expression
of circular RNAs in hepatic tissue in a model of liver fibrosis and functional analysis of
their target genes. Hepatol. Res. 49, 324–334. doi: 10.1111/hepr.13284

Zhou, Y., Su, Y., Li, S., Kennedy, B., Zhang, D., Bond, A., et al. (2022). Molecular
landscapes of human hippocampal immature neurons across lifespan. Nature 607,
527–533. doi: 10.1038/s41586-022-04912-w

Frontiers in Aging Neuroscience 17 frontiersin.org

https://doi.org/10.3389/fnagi.2025.1571783
https://doi.org/10.1038/s41380-020-0838-x
https://doi.org/10.1038/s41380-020-0838-x
https://doi.org/10.1016/S1474-4422(16)00070-3
https://doi.org/10.1016/S1474-4422(16)00070-3
https://doi.org/10.1111/cas.14092
https://doi.org/10.1111/cas.14092
https://doi.org/10.1001/jama.2020.12134
https://doi.org/10.3390/ijms24108976
https://doi.org/10.3390/ijms24108976
https://doi.org/10.1016/j.cell.2024.02.041
https://doi.org/10.1186/s13195-018-0361-3
https://doi.org/10.3389/fnagi.2023.1206572
https://doi.org/10.3389/fnagi.2023.1206572
https://doi.org/10.1093/bioinformatics/btz625
https://doi.org/10.1038/s41586-021-04249-w
https://doi.org/10.1002/mds.29147
https://doi.org/10.1038/s41698-022-00270-y
https://doi.org/10.1002/ana.21610
https://doi.org/10.1002/ana.21610
https://doi.org/10.3389/fncel.2013.00150
https://doi.org/10.3389/fncel.2013.00150
https://doi.org/10.18632/aging.100486
https://doi.org/10.1007/s00401-021-02372-6
https://doi.org/10.1007/s00401-021-02372-6
https://doi.org/10.1186/s13195-020-00738-8
https://doi.org/10.4161/auto.26448
https://doi.org/10.4161/auto.26448
https://doi.org/10.1016/j.bbadis.2013.09.010
https://doi.org/10.1016/j.xcrm.2023.101281
https://doi.org/10.1002/ana.410300410
https://doi.org/10.1002/ana.410300410
https://doi.org/10.1016/S1474-4422(21)00361-6
https://doi.org/10.1038/s41591-020-0762-2
https://doi.org/10.1038/s41591-020-0762-2
https://doi.org/10.1038/s41598-021-89004-x
https://doi.org/10.1038/s41598-021-89004-x
https://doi.org/10.1126/sciadv.abb1654
https://doi.org/10.1126/sciadv.abb1654
https://doi.org/10.3233/JAD-161088
https://doi.org/10.3233/JAD-161088
https://doi.org/10.1186/s12974-021-02355-0
https://doi.org/10.1038/s41587-021-01188-9
https://doi.org/10.1038/s41587-021-01188-9
https://doi.org/10.1007/s00401-018-1891-2
https://doi.org/10.1038/sdata.2018.185
https://doi.org/10.1007/s13238-020-00799-3
https://doi.org/10.1007/s13238-020-00799-3
https://doi.org/10.1186/s13024-021-00451-6
https://doi.org/10.1038/s41467-019-09613-z
https://doi.org/10.1038/s41467-019-09613-z
https://doi.org/10.1016/j.nbd.2023.106356
https://doi.org/10.1016/j.nbd.2023.106356
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1002/alz.13718
https://doi.org/10.1038/s41586-021-04369-3
https://doi.org/10.1038/369321a0
https://doi.org/10.1038/s41586-018-0694-x
https://doi.org/10.1038/s41598-018-23226-4
https://doi.org/10.1038/s41598-018-23226-4
https://doi.org/10.1111/hepr.13284
https://doi.org/10.1038/s41586-022-04912-w
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/

	Integrative single-cell and cell-free plasma RNA transcriptomics identifies biomarkers for early non-invasive AD screening
	Introduction
	Materials and methods
	cfRNA data preprocessing
	Identification of differentially expressed genes (DEGs) of cfRNA data
	Integrating and quality controlling single-cell RNA data
	Batch effect correction
	Pseudo-bulk analysis of single-cell RNA
	Enrichment analysis
	Quantification of group enrichment analysis
	Overview of AD diagnostic classifier model training
	Training-validation splitting of multi-source cfRNA-seq cohorts
	Feature selection and model training in cfRNA-based genes (47 genes)
	Feature selection and model training in genes from integrated cfRNA and scRNA datasets (34 genes)
	The progress of brain-derived bulk RNA-seq data cohorts
	Data integration and classification for ROSMAP cohorts
	Data integration and classification for Mayo cohorts
	Data integration and classification for MSBB cohorts
	Model training on 34 genes in brain-derived bulk RNA-seq cohort

	Results
	Blood cell-free RNA facilitates the non-invasive detection of pathological features of AD
	Non-invasive detection of cell-type-specific signatures in AD brains through blood cfRNA profiling
	Genetic concordance in blood and brain transcriptome linked to AD's progression
	Establishment and verification of a multi-cfRNA-based classifier for AD diagnosis
	Independent validation of the multi-cfRNA classifier in brain tissue RNA-seq cohorts

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References




