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Abstract

Epigenomics and transcriptomics data from high-throughput sequencing techniques such as RNA-seq and ChIP-seq have
been successfully applied in predicting gene transcript expression. However, the locations of chromatin loops in the genome
identified by techniques such as Chromatin Interaction Analysis with Paired End Tag sequencing (ChIA-PET) have never
been used for prediction tasks. Here, we developed machine learning models to investigate if ChIA-PET could contribute to
transcript and exon usage prediction. In doing so, we used a large set of transcription factors as well as ChIA-PET data. We
developed different Gradient Boosting Trees models according to the different tasks with the integrated datasets from three
cell lines, including GM12878, HeLaS3 and K562. We validated the models via 10-fold cross validation, chromosome-split
validation and cross-cell validation. Our results show that both transcript and splicing-derived exon usage can be effectively
predicted with at least 0.7512 and 0.7459 of accuracy, respectively, on all cell lines from all kinds of validations. Examining
the predictive features, we found that RNA Polymerase II ChIA-PET was one of the most important features in both
transcript and exon usage prediction, suggesting that chromatin loop anchors are predictive of both transcript and exon
usage.
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Introduction
Transcription is the synthesis of RNA from DNA. An exon is
any part of a gene that will encode a part of the final mature
RNA produced by that gene after introns have been removed
during pre-messenger RNA splicing (Figure 1A). Differential exon
usage via alternative splicing can add greatly to the diversity
of gene products encoded by the genome [1]. More specifically,
the usage of exons has the potential to affect the stability,
localization or translation of RNAs, as well as the specificity,
efficiency, localization or life cycle of proteins [2]. Dysregula-
tion in gene transcription and exon usage is related to dis-
ease [3–6]. For example, certain isoforms of PKM2 and MAP2
gene have higher expression in later stage of neuroblastoma
compared with other isoforms [5]. This preference of certain
isoforms may be a result of tumorigenesis, and therefore, exon
usage in cancer can reveal more information about cancer path-
ways.

RNA sequencing (RNA-seq) plays an important role in
revealing the expression levels of genetic features such as
genes, transcripts or exons between samples [7]. RNA-Seq can
be used to identify exon usage, meaning the number of reads
that fall within a particular exon. Additionally, RNA-seq data
can be used to quantify alternative splicing events by using
the junction reads of RNA-Seq data. For example, Kakaradov
et al. [8] presented several probabilistic models of position-
specific read counts with increasing complexity to estimate
the percent inclusion of alternatively spliced junctions from
RNA-seq data.

Depending on the nature of the question studied, exon usage
or percent inclusion of alternatively spliced junctions can be
used to interrogate the question of alternative splicing in RNA-
Seq. Papers that used percent inclusion included Goldstein et al.
and Zhang et al. Goldstein et al. [9] assembled the splice junctions
and exons in terms of mapped reads into a genome-wide splice
graph and identify the splice events from the graph. Zhang
et al. [10] developed a bayesian hypothesis testing statistical
model to infer the differential alternative splicing by integrating
empirical evidence in a specific RNA-seq dataset with prior
probability of differential alternative splicing. In contrast, Lee
et al. used exon usage. Specifically, Lee et al. [11] measured the
splicing events according to exonic expression level represented
by fragment per kilobase per million reads mapped FPKM from
RNA-seq.

Chromatin Immunoprecipitation Sequencing (ChIP-Seq)
facilitates the identification of whole-genome localization
of protein–DNA binding sites [12]. ChIP-Seq produces data
for transcription factors (TFs) on gene expression. Histone
modification (HM) is one set of critical chemical reactions
at the chromatin that plays a crucial role in regulating gene
expression by altering chromatin structure or recruiting histone
modifiers [13]. ChIP-seq peaks for TFs and transcriptome data
are used individually or in a combinatorial manner for gene
regulation and expression analysis or prediction. For example,
BETA combined ChIP-seq and transcriptome data to unravel the
regulation of gene expression [14], and DeepDiff interprets how
dependencies among HMs control the differential patterns of

gene regulation [13]. Different kinds of TF synthetic indexes
extracted from ChIP-seq data are used to predict the gene
expression level [15] and predict TF binding [16]. Moreover,
some studies use the combination of the ChIP-Seq and RNA-
Seq data to reveal the association between specific HMs and
various aspects of differential splicing. For example, Hu et al. [17]
developed computational approaches to model the association
between alternative splicing and histone posttranslational
modifications in mammalian brain.

Recently, machine learning has gained widespread attention
and has been successfully applied to predict splicing using RNA-
seq data, ChIP-seq data or DNA sequences. Leung et al. [18]
presented a model inferred from mouse RNA-Seq data to predict
splicing events in individual tissues and differences across tis-
sues, Jha et al. [19] proposed a modeling framework that leverages
transfer learning to incorporate CLIP-Seq, knockdown and over
expression experiments in mouse tissues and a computational
framework named DARTS was developed to infer differential
alternative splicing between biological samples by integrating
deep learning-based predictions with empirical RNA-seq evi-
dence [10].

Studies such as Epigenome-based Splicing Prediction using a
Recurrent Neural Network (ESPRNN) also considered other types
of data such as DNase-seq, eCLIP, methylation and MNase-seq
[11]. However, ESPRNN only used adjacent epigenetic signals
around the splice sites, but not across the entire gene. Besides,
none of these methods considered any chromatin interaction
related data, i.e. Chromatin Interaction Analysis by Paired-End
Tag Sequencing (ChIA-PET) data.

ChIA-PET is a technique that incorporates sonication-
based chromatin fragmentation, chromatin ChIP-based enrich-
ment, chromatin proximity ligation and Paired-End Tag high-
throughput sequencing to determine genome-wide de novo
long-range chromatin interactions [20]. Chromatin interac-
tions can regulate gene transcription [21]. Oncogenes and
remote regulatory elements can be brought into close spatial
proximity through chromatin interactions [22], which may
serve structural basis for protein binding and thus lead to
transcription regulation. Chromatin organization has been
shown to be correlated with alternative splicing [23]. A recent
study showed that the degradation of RNA polymerases
can affect local chromatin architectures and these local
regions include high RNA polymerases binding sites and
active promoters [24]. However, no other studies report on
whether chromatin interactions have any ability to predict exon
usage.

Based on the evidence discussed above, we hypothesized
that in addition to ChIP-seq and RNA-seq data, ChIA-PET data
indicating chromatin loop anchors might also be of predictive
value, but it has not been tested in transcript and exon usage
prediction. Hence, here, we asked the question: can we apply
ChIA-PET data to transcript and exon usage prediction and will
such data contribute to the prediction? What are the chromatin
factors that can predict transcript and exon usage, if any? There-
fore, in this work, we aimed to use machine learning method, i.e.
gradient boosting trees (GB), to predict the transcript and exon
usage using the ChIA-PET data as well as TF data.
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Figure 1. (A) The relationship between transcript and exon. (B) An illustration of the difference between our method and other prediction methods. Other methods

mainly predict the splicing level with more than two exons (left), our method focuses on one exon to predict its usage regardless of the splicing event it included (right).

As opposed to previous splicing event prediction methods
which use the level of splicing calculated from the exonic
expression level involved in that splicing event, we predicted
exon usage independently (Figure 1B) and quantified transcripts
directly. Previous prediction methods mainly predict alternate
usages of cassette exons (inclusion or exclusion of exons), which
is the most common type of alternative splicing; hence, they only
detect one type of alternative splicing event. But we should note
that there are other events (for example stand-alone expression
of a single exon) that will affect exon usage. Our exon usage
measurements include cassette exons, 5′ and 3′ terminal exons,
mutually exclusive exons and even single-exon (intronless)
transcripts. According to the best of our knowledge, no previous
methods had used machine learning model to predict the usage
level for single exon transcripts.

Another difference between previous methods and ours is
that previous methods such as ESPRNN use DNA sequences and
epigenomic signals adjacent to splice sites, whereas we are use
epigenomic signals present throughout the gene, not just at
splice sites. A comparison between our method and other pre-
diction methods was listed as Supplementary Table S1, see Sup-
plementary Data available online at http://bib.oxfordjournals.org/.
We collected and integrated the RNA-seq, ChIP-seq, ChIA-
PET and DNase-seq data of GM12878, HeLaS3 and K562
cell lines from different sources. Then, we developed GB
models to see if we can apply these data successfully to
different prediction tasks, including predicting the verified
transcripts and transcript abundance, and predicting exon
usage. The workflow to conduct this study is illustrated in
Figure 2.

We evaluated our models via 10-fold cross validation, as
well as the chromosome split and cross cell validations, which
could break the dependencies between training and test data.
Results show that our model realizes accuracy larger than 0.7707
(average), 0.7755 and 0.7512 for verified transcripts prediction
and 0.7700 (average), 0.7459 and 0.7463 for exon usage prediction,

respectively, regarding to the above three validation methods in
different cell lines.

The validation results here illustrate the model’s effec-
tiveness and robustness, as well as the plausibility to predict
the transcript and exon usage. Interestingly, we noticed that
the ChIA-PET and chromatin-related TF binding motif related
features could play more significant roles than some of the
most frequently used ChIP-seq features in both the transcription
and exon usage prediction. Our results suggested that there
may be a connection between chromatin factors and exon
usage.

Material and methods
Data collection and definition

We collected all the publicly available datasets from cell lines
from the ENCODE consortium [25], which have both high-quality
HM ChIP-Seq as well as high-quality ChIA-PET information.
GENCODE hg19 GTF file was used as the reference annota-
tion for transcripts and exons. The scrambled GTF was gen-
erated by randomly shuffling the coordinates and accession
ID in the reference GTF file. This scrambled GTF was used
to generate a negative dataset for transcript and exon matri-
ces.

After that, we generated the feature matrix of transcript and
exon for both positive and negative datasets.

Transcript prediction feature matrix

• Transcript abundance. Nucleus longPolyA RNA-seq data of
K562, GM12878 and HeLaS3 cells were downloaded from
GEO (GSM765387) and quantified using kallisto (0.45.1). We
built two kallisto indexes using positive and negative GTF
file. This resulted in a correctly quantified transcript abun-
dance and a scrambled negative transcript abundance. We

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab254#supplementary-data
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Figure 2. The workflow to conduct the study.

further quantiled the transcript abundance into four cate-
gories: not_transcribed, lowly_transcribed, transcribed and
highly_transcribed according to the TPM (Transcripts Per
Million). TPM is a normalization method for RNA-seq, it is
calculated following the steps of: (i) divide the read counts
by the length of each gene in kilobases, (ii) count up all
the reads per kilobase (RPK) values in a sample and divide
this number by 1 000 000 and (iii) divide the RPK values by
the ‘per million’ scaling factor. In each cell line, we sorted
the TPM values from smallest to largest; then, we found
the first quartile (Q1), the second quartile (Q2) (median)
and the third quartile (Q3) correspondingly. We defined the
transcription with TPM value range from smallest to Q1 as
not_transcribed, Q1 to Q2 as lowly_transcribed, Q2 to Q3
as transcribed and Q3 to largest as highly_transcribed. The
value of Q1, Q2 and Q3 for three cell lines was recorded in
Supplementary Table S2, see Supplementary Data available
online at http://bib.oxfordjournals.org/.

• TF and HM binding. ChIP-seq peaks of different TFs and
HMs were downloaded from UCSC and overlapped with the
transcript in the matrix. ChIP-seq peaks are the genomic
regions with significantly more enrichment for proteins
or HMs compared with genomic background, which are
normally several hundreds to several kb long.

• DNase binding sites. DNase binding sites were downloaded
from UCSC and overlapped with the transcript in the matrix.

• Chromatin interaction abundance. RNA Polymerase II
(Pol2A) (GM12878 and K562) or CTCF (GM12878 and HeLaS3)
ChIA-PET data were downloaded from ENCODE and
overlapped with transcripts in the matrix. The number of
ChIA-PET interactions that have either end overlapping

with the transcript was used as the feature of chromatin
interaction abundance.

We performed two prediction tasks using the data collected
in this part. The first one is to predict verified transcripts as
a two classes classification problem, and the other one is to
predict the transcript abundance as a four classes classifica-
tion problem. The corresponding number of positive and neg-
ative samples in each class for three cell lines was recorded
in Supplementary Table S3, see Supplementary Data available
online at http://bib.oxfordjournals.org/.

Exon usage prediction feature matrix

Similarly, exon feature matrices were prepared following the
process of transcript feature matrices.

• Exon usage coefficient. We first used STAR (2.7.3a) to map
the RNA-seq reads using the true hg19 fasta and GTF file.
The alignment results of the RNA-seq data were further
prepared and counted for the number of reads mapped to
different exons using DEXseq helping scripts. Then, DEXseq
(1.28.0) was used to infer coefficient of the exon usage in
K562, GM12878 and HeLaS3 cells, where the relative usage
of an exon is defined as number of transcripts from the gene
that contain this exon divided by number of all transcripts
from the gene.

• TF and HM binding. ChIP-seq peaks of different TFs and
HMs were downloaded from UCSC and overlapped with the
transcript in the matrix.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab254#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab254#supplementary-data
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• DNase binding sites. DNase binding sites were downloaded
from UCSC and overlapped with the exon in the matrix.

• Chromatin interaction abundance. Pol2A or CTCF ChIA-
PET data were downloaded from ENCODE and overlapped
with transcripts in the matrix. The number of ChIA-PET
interactions that have either end overlapping with the tran-
script was used as the feature of chromatin interaction
abundance.

The corresponding data amounts in each class for three
cell lines in predicting the exon usage were recorded in
Supplementary Table S4, see Supplementary Data available
online at http://bib.oxfordjournals.org/, and the features used in
each cell line for both transcription and exon usage prediction
were listed in Supplementary Table S5, see Supplementary Data
available online at http://bib.oxfordjournals.org/.

Model construction

We used GB trees to build the prediction model. GB is an
ensemble method that combining weak learners such as
Decision Trees to a strong learner. GB fits new trees to
minimize the loss or error, and it would assign more weights
to observations that are hard to classify. Therefore, GB works
great with categorical and numerical values and hence is
suitable to be used on our datasets. We trained the model
using ChIP-seq, DNase-seq and ChIA-PET data on three cell
lines for transcription and exon usage prediction, respectively,
including GM12878, K562 and HeLaS3. The model parameters
for each prediction task were determined using Python
function ‘sklearn.model_selection.GridSearchCV’ with cv = 5 and
score = ‘accuracy’ on the corresponding datasets. The candidate
parameters and the parameters chosen to train the model
for transcription and exon usage prediction were recorded in
Supplementary Tables S6 and S7 separately, see Supplementary
Data available online at http://bib.oxfordjournals.org/.

Validation methods

We implemented three types of experiments for each cell line
to validate the effectiveness of the model. Firstly, we adopted
the stratified 10-fold cross validation. The usage of stratified
cross validation could help to keep the same proportions of
class labels in each fold. In each validation, one-fold would be
used as validation data and the reaming folds would be used as
training data. Such practice generally reflects the robustness of
the model.

The second type of validation method is the chromosome
split validation. We adopted the same chromosome-split strat-
egy from work of [26] to split samples. Under such strategy, all
samples on the same chromosome were either all in the training
or all in the test set. The chromosome used in training and test
dataset was listed in Supplementary Table S8, see Supplemen-
tary Data available online at http://bib.oxfordjournals.org/.

We also adopted the cross cell line validation to evaluate the
model. We used all samples from one cell line to train the model
but validate the model on all samples from different cell lines. It
should be noted that we used the shared features when imple-
menting cross cell line validation. Both the chromosome split
validation and the cross cell validation enabled us to exclude the
data similarity between samples in training and test datasets,
hence could give us a fair implication about the robustness and
effectiveness of the model.

Evaluation metrics

We used the criteria of accuracy, sensitivity, specificity, Area
Under Receiver Operating Characteristic curve (AUROC) and Area
Under Precision-Recall Curves (AUPRC) to evaluate the model
performances on different datasets in each classification task.
The accuracy, sensitivity and specificity were calculated as

Accuracy = TP + TN
TP + FN + TN + FP

(1)

Sensitivity = TP
TP + FN

(2)

Specificity = TN
TN + FP

, (3)

where TP, FN, TN and FP denote the numbers of true positive,
false negative, true negative and false positive, respectively.

Due to the imbalanced datasets in exon usage prediction, we
also calculated the random guess values for fair comparisons.
The random guess values for AUROC and AUPRC were obtained
as the average results by shuffling the true prediction scores 10
times, and the random guess value for accuracy was obtained as
the average results by shuffling the true label 10 times.

Besides, we used the XGBoost to obtain the feature impor-
tance, where the importance score for each feature was
obtained as the average across all the decision trees within
the GB model according to the amount that each attribute
split point improves the performance measure. We applied
function ‘xgboost.XGBClassifier’ in Python with parameters
determined in section of Material and Methods–Model con-
struction using all data for each task to build the trees; then,
the feature importance scores were extracted using function
of ‘feature_importances_’ from the XGBoost model for each
dataset.

Results
Verified transcripts can be predicted from TFs and
ChIA-PET data

We first investigate if the verified transcripts can be predicted
from TFs as well as ChIA-PET data. A verified transcript indicates
that there is gene expression located at a bona fide gene locus as
indicated by GENCODE hg19 gene annotation. We treat verified
transcription as positive data while treating the unannotated
transcripts as the negative data. Different validation methods
are evaluated on all three cell lines using the corresponding
optimal parameters determined in the section of Material and
Methods–Model construction. The results are demonstrated in
Figure 3.

The accuracies of 10-fold validation range from 0.7638 to
0.7731, 0.7724 to 0.7791 and 0.7688 to 0.7787 for GM12878, HeLaS3
and K562 cell, respectively (Figure 3A). This high accuracy of
the model confirms that transcription could be predicted from
transcriptomics data with TFs and ChIA-PET data. The predic-
tion performance on GM12878 cells is slightly lower than that
of the other two cell lines. The average AUROC and AUPRC
values for GM12878 cell of 10-fold validation is 0.8303 and 0.8436
separately; however, the average AUROC and AUPRC values for
HeLaS3 and K562 cells are 0.8354 and 0.8527 and 0.8364 and
0.8511, respectively. Notably, the small variations from 10-fold
validation for all evaluation matrices on all cell lines, i.e. less
than 0.0148, indicate the model robustness.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab254#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab254#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab254#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab254#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab254#supplementary-data
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Figure 3. The prediction results in verified transcript prediction. Sn (sensitivity) represents the positive prediction accuracy and Sp (specificity) represents the negative

prediction accuracy; y-axis represents the corresponding values for each evaluation criteria; (A) 10-fold validation. The box and whisker plot here shows the spread

and centers of the 10-fold validation results. The five horizon lines from bottom to top represent minimum (the smallest number in the data set), the first quartile, the

median, the third quartile and the maximum (the largest number in the data set), respectively. (B) Cross chromatin split validation. (C) Cross cell line validation.

Using the data from each cell line, we are able to identify
some important features such as H3K4me3, H3K9ac and
H3K36me3 to distinguish the verified transcriptions from those
not verified (Supplementary Figure S1, see Supplementary Data
available online at http://bib.oxfordjournals.org/) in all three
cell lines. The top identified important features show strong
prediction powers. According to the average results of the 10-
fold validation, training with the top 10 important features only
slightly reduces 0.0047–0.0094 on the prediction accuracies and
AUROC values from training with all features; training with
the top 5 important features reduces 0.0083–0.0308 on the
prediction accuracies and AUROC values from training with
all features (Supplementary Figure S2, see Supplementary Data
available online at http://bib.oxfordjournals.org/). Our findings
about the important features are supported by several studies.
First, H3K4me3 is a near-universal chromatin modification at the
transcription start site of active genes in eukaryotes. As reviewed
in Howe et al. [27], H3K4me3 may not be the initiator but the
result of transcription, thus influencing processes such as splic-
ing, transcription termination, memory of previous states and
transcriptional consistency. Second, H3K9ac leads to increased

transcription elongation via functioning in transcription to
recruit the Super-Elongation Complex to chromatin and
facilitate subsequent pol II pause release [28]. Third, H3K36me3
is thought to be a mark that is catalyzed by the SETD2
enzyme concomitantly with RNA polymerase II transcriptional
elongation [29]. Interestingly, we noticed that H3K4me2 plays
a more significant role in GM12878 and K562 cells than in
HeLaS3 cell. Moreover, ChIA-PET Pol2A is also an important
feature in K562 cells, and Pol2 is dominant in HeLaS3 but not
very important in the other two cell lines.

We then evaluate our models on independent test datasets.
The prediction results on chromosome split validation (Figure 3B)
are similar to that of the 10-fold validation. The best accuracy is
achieved on HeLaS3 data and the AUROC and AUPRC values
for GM12878 cell are slightly worse than the other two cell
lines. Interestingly, although the values of accuracy, AUROC
and AUPRC are comparable on all cross cell line validations
(Figure 3C), the model trained on HeLaS3 data leads to much
lower sensitivity but much higher specificity values when
testing on both GM12878 and K562 data. Conversely, the models
trained on GM12878 and K562 data lead to higher sensitivity

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab254#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab254#supplementary-data
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but lower specificity values when testing on HeLaS3 data.
Such phenomenon further indicates the similarity of data
characteristics between GM12878 and K562 cell line and their
diversity from HeLaS3 cell as what we observed from the feature
importance, which might be explained as the fact that the
lymphoblastoid and myeloid cell lines are both suspension cells,
while hela are adherent (monolayer) cells.

We also compare our GB model with other baseline models
such as Adaptive Boosting (AdaBoost), Random Forest (RF),
Convolutional Neural Network (CNN) and Forward Neural
Network (NN). The results of the average values for 10-fold
validation and chromosome split validation are shown in
Supplementary Figures S3 and S4 separately, see Supplementary
Data available online at http://bib.oxfordjournals.org/. Although
the average performance of RF model on 10-fold validation is
the highest in all three cell lines, the RF model only achieves
slightly better performances than AdaBoost model in the
chromosome split validation while performs worse than other
models. GB model performs slightly worse than RF model in
10-fold validation but it is the best model in chromosome split
validation, which shows the ability to predict independent data.

Transcription abundance prediction

TPM is used to measure gene or transcript expression level in
RNA-seq. We aim to investigate if epigenomics can be used
to predict expression level, and leverage on transcriptomics to
measure and evaluate the accuracy of the predictions. For this
purpose, we classify the data to four classes according to their
TPM values: not_transcribed, lowly_transcribed, transcribed and
highly_transcribed. More details can be found in the section of
Material and Methods–Data collection and definition. We train
and test the GB model on 10-fold cross validation. During the
training process, we down-sample the classes of the majority
class to the same data amount as the minority class to avoid
prediction bias caused by the imbalanced dataset.

The results for 10-fold validation are shown in
Supplementary Figure S5, see Supplementary Data available
online at http://bib.oxfordjournals.org/. The average accuracies
of the training results are 0.425, 0.426 and 0.444 for GM12878,
HeLaS3 and K562 cells, respectively. These values are higher
when compared with random guess value of 0.25 in the
balanced dataset, indicating that transcription abundance
can be predicted using epigenomic data and transcriptomics
data. Several HMs previously related to transcription are
identified as the most important features in these models
(Supplementary Figure S6, see Supplementary Data available
online at http://bib.oxfordjournals.org/). H3K36me3, an HM
related to RNA Polymerase II passage and transcription fidelity
maintenance [30], is found to be the most predictive across all
three cell lines. This suggests that the levels of H3K36me3 are
closely related to transcription activity. In addition, H3K79me2 is
ranked the second most important feature except in K526 cells.
H3K79me2 is a histone mark is involved in alternative splicing
regulation [31], indicating that the transcription machinery
is closely connected to exon usage. Another transcription
elongation-related HM, H3K9ac, is also identified as one of the
most important features.

Interestingly, DNase Hypersensitive sites (a measure of open
chromatin which is associated with increased ability of the
transcription machinery to access the region) and ChIA-PET loop
anchors are also important in predicting transcription levels.
We think that DNase may be an indicator of the open regions
so that the transcription machinery can access the gene to
produce transcripts. We reason that the presence of ChIA-PET

loop anchors may reflect that the gene is interacting with distal
regulatory elements and these regulatory elements may harbor
TF binding motifs that can recruit TFs or mediators, which
together orchestrate a stable transcription structure for RNA
Polymerase II [32].

The importance of H3K36me3, H3K79me2 and H3K9ac in pre-
dicting gene expression has also been reported in other studies.
Rosa et al. reported that H3K9ac is one of the most important
HMs in predicting the expression of promoter with different CpG
content in human T-cells [33]. In addition, Dong et al. [34] showed
that H3K36me3, H3K79me3 and H3K9ac are predictive of gene
expression from either CAGE or RNA-seq data. Our results are
consistent with the reported correlation between gene expres-
sion and HMs. Taken together, we demonstrate that specific
HMs, chromatin loop anchors and open chromatin are predictive
of transcription abundance.

Again, the top identified important features show strong
prediction powers in transcription abundance prediction
(Supplementary Figure S7, see Supplementary Data available
online at http://bib.oxfordjournals.org/). But the RF performs
best on this classification problem (Supplementary Figures S8
and S9, see Supplementary Data available online at http://bib.
oxfordjournals.org/).

Exon usage prediction

We perform exon usage prediction using exon usage coefficient
as target. The exon usage coefficient indicates the number of
reads at a particular exon present in a particular cell. We treat
the samples whose exon usage coefficient values are non-Nan
(the exon is included in one or more transcripts) as positive
while treating those with Nan (the exon is not included in any
transcripts) value as negative. Because we consider all exons,
and many exons do not have reads, hence, there are much more
negative samples and the dataset is imbalanced. Therefore, we
evaluate the model performances mainly based on the crite-
ria of accuracy, AUROC and AUPRC. Because with a large size
of negative dataset, using AUPRC which is based on precision
(TP/(TP + FP)) and recall (TP/(TP + FN)) makes it possible to assess
the performance of a classifier on the minority class by exclud-
ing the influence of TN (where TP, FN, TN and FP denote the
numbers of true positive, false negative, true negative and false
positive, respectively).

In the 10-fold validation prediction (Figure 4A), the average
accuracy values for GM12878, HeLaS3 and K562 cells are as high
as 0.7700, 0.7893 and 0.8014, respectively. The same tendencies
can also be found from the corresponding AUROC values for
GM12878, HeLaS3 and K562 cells, whose average AUROC values
are 0.6825, 0.6979 and 0.7001, respectively.

H3K36me3 is found to be important in distinguishing exon
usage level in all three cell lines (Supplementary Figure S10, see
Supplementary Data available online at http://bib.
oxfordjournals.org/), which are consistent to the verified
transcription classification. H3K27ac is another important
feature for the exon usage prediction, but it is not a very
important feature in transcription prediction. The observation
that H3K27ac is associated with gene exon usage has not been
made before, and we suggest that perhaps different enhancer
usage (since enhancers associated with H3K27ac) may play
a role in specifying which exons are to be transcribed and
included in the mRNA by splicing. Also, RNA Polymerase II
ChIA-PET chromatin interaction anchors and H3K4me2 are
important features for exon prediction in GM12878 and K562
cells and H3K9ac is an important feature for exon prediction
in GM12878 and HeLaS3 cells. Similarly, the top identified

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab254#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab254#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab254#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab254#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab254#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab254#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab254#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab254#supplementary-data
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Figure 4. The prediction results in exon usage prediction. Sn (sensitivity) represents the positive prediction accuracy and Sp (specificity) represents the negative

prediction accuracy; y-axis represents the corresponding values for each evaluation criteria; (A) 10-fold validation. The box and whisker plot here shows the spread

and centers of the 10-fold validation results. The five horizon lines from bottom to top represent minimum (the smallest number in the data set), the first quartile, the

median, the third quartile and the maximum (the largest number in the data set), respectively. The bottom table represents the random values. (B) Cross chromatin

split validation. The black horizon lines represent the random results. (C) Cross cell line validation. The black horizon lines represent the random results.

important features show strong prediction powers in exon
usage prediction. According to the average results of the 10-
fold validation, training with the first 10 important features
only reduces 0.0126–0.0569 on the prediction accuracies, AUROC
and AUPRC values from training with all features; training with
the first 5 important features reduces 0.0169–0.0929 on the
prediction accuracies, AUROC and AUPRC values from training
with all features (Supplementary Figure S11, see Supplementary
Data available online at http://bib.oxfordjournals.org/).

The performances of chromosome split validation (Figure 4B)
and cross cell validation (Figure 4C) are similar to that of the 10-
fold validation. The prediction results on K562 cell data have
higher accuracy values but lower AUPRC values considering the
data amount ratio. However, compared with the random pre-
diction results, the models work effectively and robustly in pre-
dicting the exon usage on independent test datasets. We show
some exons that have predicted exon usage in GM12878 but not
HelaS3 cell (Supplementary Figure S12, see Supplementary Data
available online at http://bib.oxfordjournals.org/) and in HeLaS3
but not GM12878 cell (Supplementary Figure S13, see Supple-
mentary Data available online at http://bib.oxfordjournals.
org/) trained with K562 cell. The RNA-seq signal of H1hESC,
K562, GM12878 and HeLaS3 cells is shown in RPKM (Reads Per

Kilobase of transcript, per Million mapped reads) to represent
the normalized transcript expression. The results here illustrate
that our prediction is in agreement with the real detected exon
usage.

We also compare our GB model with other baseline
models (AdaBoost, RF, CNN and NN) on the average val-
ues for 10-fold validation and chromosome split validation
(Supplementary Figures S14 and S15, see Supplementary Data
available online at http://bib.oxfordjournals.org/). Results show
that GB model is the second best model in 10-fold validation and
the best model on independent test datasets (chromosome split
validation).

Prediction time complexity analysis

We report the time complexity for each prediction task by
providing the average training and test time for 10-fold vali-
dation (Supplementary Tables S9–S11, see Supplementary Data
available online at http://bib.oxfordjournals.org/). The operation
system is Linux with CPU type ‘Intel(R) Xeon® CPU E5-2698v4 @
2.2GHz’. The training process takes an average of 64–81 s on three
cell lines in verified transcript prediction with around 220 000
entries. The training and test times for exon usage prediction

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab254#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab254#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab254#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab254#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab254#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab254#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab254#supplementary-data
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Figure 5. Schematic of our proposed model of alternative splicing, which gives rise to differential exon usage, chromatin loops and transcription machinery. In this

model, we speculate that HMs, such as H3K36me3, H3K9ac and chromatin interactions, can bind to splicing regulators and transcription machinery. The transcriptional

machinery which includes RNA Polymerase II produces a nascent RNA transcript. Splicing of the nascent RNA takes place in a co-transcriptional manner, to remove

introns. The final mRNA product contains the exons that are used and does not include exons that are not used nor introns. This would explain our findings that HMs

and chromatin interactions can predict high exon usage.

are much longer than that of the transcription prediction, i.e.
more than 2000s, because the dataset size of exon is about
three times of the dataset size of transcript and the number
of estimators in the exon usage prediction model is five times of
the transcription prediction model. And also, the training time
for four classes (transcription abundance prediction) is longer
than that of two classes (verified transcript prediction) even with
relatively less training data.

Discussion
Exon usage is important in revealing the abundance of differ-
ent transcript variants of the same gene. Pre-mRNA alternative
splicing can result from different transcription kinetics, often
changing transcript abundance and biological function, which
can be implicated in diseases [35]. Here, we include chromatin
loop data (i.e. ChIA-PET data) in the transcript and exon usage
prediction. Our prediction results on 10-fold validation as well as
the chromatin split and cross cell line validation, which ensure
the independence of the data illustrated the effectiveness and
robustness of our approaches. The different validation methods

together with the large datasets on three cell lines also indicate
that our model is scalable.

Specifically, in the transcription prediction part, the machine
learning framework revealed close relationships between tran-
scription abundance and transcription-related HMs, including
H3K36me3, H3K79me3 and H3K9ac. These important features
again re-emphasized the importance of epigenetic marks in
maintaining a permissive and high-fidelity environment for
gene transcription. Moreover, our GB tree model was able to
recapture these features, as they were also reported to be
important in predicting gene expression using conventional
regression models [33, 34].

HMs have been reported to be involved in regulating differen-
tial exon usage in human cells [36]. For example, H3K9ac hyper-
acetylation at a splice site of NCAM gene can result in skipping
of an exon in neuron cells [37]. H3K36me3 histone marks can
be recognized and bound by splicing regulators (such as MRG15
and Psip1) and thus regulate the splicing of the transcript [36].
Importantly, our model also identified H3K36me3 and H3K9ac
as important features in predicting exon usage. The link between
splicing and chromatin interactions is unclear. While it has been
shown previously that chromatin loops can bring exons into
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close spatial proximity with promoters and enhancers [23], it
was unclear how important chromatin loops were in predicting
splicing occurrences. Here, we observed that RNA Pol2A ChIA-
PET anchors are important in predicting transcription and exon
usage.

Splicing mainly occurs while transcription is ongoing, and in
vivo studies have shown that the spliceosomes are physically
close to RNA Polymerase II [38, 39]. Splicing will give rise to
different exon usage because different exons may be included
in the final transcripts. Our model identified H3K36me3, H3K9ac
and RNA Pol2A ChIA-PET anchors as important for transcrip-
tion prediction as well as exon usage prediction, which high-
lights the tight connection between splicing and transcriptional
machinery. Based on our results, we extended this ‘splicing-
transcription’ model whereby we proposed that the splicing reg-
ulators, RNA polymerase II and chromatin loop anchors bound
by RNA polymerase II all come together in close proximity. This
may be facilitated in part by key HMs such as H3K36me3 and
H3K9ac helping to recruit splicing regulatory proteins (Figure 5).

We speculate that perhaps, chromatin interactions between
the exon being transcribed and distal regulatory elements may
help to stabilize the transcription machinery [32]. When the
splicing and/or transcription machineries are assembled at the
transcript, it creates structural scaffolds for DNA or RNA to
fold and interact with each other. Such interactions between
DNA/RNA and distal regulatory elements can be captured by
chromatin interaction profiling techniques such as ChIA-PET.
Therefore, this interaction information was learnt by our model
when predicting transcript and exon usage.

Taken together, our results show that transcription-related
HMs are important in predicting transcript abundance and exon
usage in human cells. More importantly, we show that chromatin
interaction data are also important in predicting transcript and
exon usage, suggesting a close relationship between transcrip-
tion, splicing and chromatin structural organization.

Key Points
• We did not just confine ourselves to splice sites, in

contrast to previous splicing event prediction methods
which use level of splicing calculated from the exonic
expression level involved in that splicing event. We
predicted the exon usage independently and quanti-
fied the transcript directly.

• We successfully applied a set of transcription factors
and ChIA-PET data which indicates locations of chro-
matin loops in the genome in transcript and exon
usage prediction.

• Our model performed well on independent test
datasets, which indicates its robustness.

• Examining the predictive features, we found that
ChIA-PET Pol2A data were one of the most important
features in both transcript and exon usage prediction,
suggesting that chromatin loop anchors are predictive
of both transcription and exon usage.

Data Availability

The data used in this work is freely available at https://resea
rchdata.ntu.edu.sg/dataverse/chrom_pred_exon. The code
used in this work is freely available at https://github.com/
mjflab/exon-prediction.

Supplementary Data

Supplementary data are available online at Briefings in Bioin-
formatics.
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