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Genome editing with the CRISPR/Cas9 system has revolutionized life and medical sciences,
particularly in treating monogenic genetic diseases by enabling long-term therapeutic effects from a
single intervention. However, the CRISPR/Cas9 system can tolerate mismatches and DNA/RNA
bulges at target sites, leading to unintended off-target effects that pose challenges for gene-editing
therapy development. Existing high-throughput detection and in silico prediction methods are often
limited to specifically designed single guide RNAs (sgRNAs) and perform poorly on unseen
sequences. To address these limitations, we introduce CCLMoff, a deep learning framework for off-
target prediction that incorporates a pretrained RNA language model from RNAcentral. CCLMoff
captures mutual sequence information between sgRNAs and target sites and is trained on a
comprehensive, updated dataset. This approach enables accurate off-target identification and strong
generalization across diverse NGS-based detection datasets. Model interpretation reveals the
biological importance of the seed region, underscoring CCLMoff’s analytical capabilities. The
development of CCLMoff lays the foundation for a comprehensive, end-to-end sgRNA design
platform, enhancing both the precision and efficiency of CRISPR/Cas9-based therapeutics. CCLMoff
is a versatile tool and is publicly available at github.com/duwa2/CCLMoff.

The CRISPR/Cas9 systems have been used to investigate target genes in
genome modification1, transcription2 and splicing3, and have been applied
in various research settings to investigate and treat multiple genetic
diseases4,5, infectious diseases6, immunological diseases7, and cancers8.
Among the exciting advances, the translational use of CRISPR/Cas9 system
inmonogenic humangenetic diseaseshas thepotential toprovide long-term
therapy after a single treatment9. However, extensive studies have also
demonstrated thatmultiplemismatches as well asDNA/RNAbulges can be
tolerated, resulting in the cleavage of unintended genomic sites, termed off-
targets10. The potential off-target effect of the CRISPR/Cas9 system can lead
to inadvertent gene-editing outcomes and become a bottleneck in the
development of gene therapy9.

Generally, the off-target effect is hard to discover as a result of the
extremely low editing rate. Several experimental approaches have been
developed to detect the off-target activity of CRISPR/Cas9 system. To

provide clarity, the experimental detection techniques are divided into three
major categories: (i) detection of Cas9 binding, such as Extru-seq11, SELEX
and its derivatives12; (ii) detection of Cas9-induced Double Strand Breaks
(DSBs), such as in vitro techniques, Digenome-seq13, CIRCLE-seq14 and
in vivo approaches DISCOVER-seq15; (iii) detection of repair products
arising from Cas9-induced DSBs including IDLV16 and GUIDE-seq17.
However, while various experimental detection approaches can validate the
defined sgRNA off-target effects, they fail to provide prior knowledge for
sgRNA design. Computational methods address this limitation by utilizing
the comprehensive datasets generated by these NGS-based approaches to
construct predictive models, which efficiently forecast sgRNA off-target
effects and offer valuable guidance for sgRNA design18.

Recently, a variety of in silico tools for off-target prediction have been
proposed. Based on their underlying principles, these methods can be
categorized into fourmajor groups19: (i) The alignment-based approachwas
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the first computational method to introduce mismatch pattern into off-
target prediction, such as Cas-OFFinder20, CHOPCHOP21 and GT-Scan22.
These approaches employed different alignment methods to improve
genome-wide scanning efficiency. (ii) Formula-based methods such as
CCTop23 andMIT24 assigned the differentmismatchweights of PAM-distal
region and PAM-proximal region to aggregate the contribution of mis-
match in different positions. (iii) Energy-based methods, including
CRISPRoff 25, present an approximate binding energy model for the Cas9-
gRNA-DNA chimeric complex. (iv) Learning-based methods, such as
DeepCRISPR26 and CRISPR-Net27, can automatically extract the sequence
information from training dataset to determine the genomic pattern of the
off-target site. The deep learning-based methods exhibit superior perfor-
mance and now serve as the state-of-the-art model in the off-target effect
prediction28. However, existing deep learning-based models are often
trained on limiteddatasets containing a small number of sgRNAs andNGS-
based off-target detection data, which restricts their generalization ability
and confines their applicability to specific detection approaches.

To address these limitations, we proposed a deep learning framework,
namely CCLMoff, which incorporates the RNA language model to extract
the sequence information and the genomic contexts. Besides, we compiled a
comprehensive dataset with 13 genome-wide off-target detection technol-
ogies, forcing CCLMoff to learn the general off-target pattern. Thus,
CCLMoff demonstrated superior performance over the state-of-the-art
model in various scenarios. The thorough evaluation showed that CCLMoff
accurately identified off-target sites and displayed strong cross-dataset
generalization ability. The model interpretation analysis indicated that
CCLMoff successfully captured the seed region foroff-target prediction.The
development of CCLMoff paves the way for the establishment of a versatile
and end-to-end in silico sgRNA design platform.

Methods
Data source
In order to guide the construction of a universal and versatile model for off-
target prediction, we first curated a comprehensive off-target dataset
encompassing a wide range of validated sgRNAs and diverse off-target
detection methods. We specifically excluded targeted site detection tech-
niques such as targeted PCR, and focused on the genome-wide deep

sequencing-based off-target detection approaches to ensure the model’s
capability to detect off-target sites on a genome-wide scale. In total, we
integrated 13 genome-wide deep sequencing techniques from 21 publica-
tions, categorized into three groups based on their detectionmethods: DNA
binding detection methods (Extru-seq11, SITE-seq29); the DSB detection
methods (CIRCLE-seq14, DISCOVER-seq15, DISCOVER-seq+30,
CHANGE-seq31, BLESS32); the repair product detection methods (GUIDE-
seq17, Digenome-seq13, DIG-seq33, IDLV34, HTGTS35 and SURRO-seq36).
However, these studies only released validated off-target sites corresponding
to the tested sgRNAs.During themodel training process, negative off-target
sites need to be externally constructed.

To generate an appropriate negative dataset, Cas-OFFinder20 was
employed for the negative sample construction, imposing constraints on the
number of mismatches and bulges to ensure a representative distribution
between off-target sites andmismatch candidates. The negative dataset was
divided into two major categories based on whether the corresponding
positive off-target sites containedbulges.Asonly recent studies27 account for
bulge information, many earlier studies do not incorporate it. To ensure a
fair comparison, we constructed two distinct negative datasets. For positive
samples with bulge information, Cas-OFFinder was configured with para-
meters allowing up to 6 mismatches and 1 bulge. For positive samples
without bulge information, Cas-OFFinder was set to consider only up to six
mismatches between the sgRNA and the target sites. When constructing
negative samples using Cas-OFFinder, CCLMoff was designed to identify
off-target sites frommismatch candidates, effectively reducing the sampling
space and providing challenging samples to enhance the model’s ability to
distinguish off-target sites.

Model construction
To address the off-target prediction problem, which has two components:
sgRNA and target site, we adopted a question-answering framework,
wherein we formulated the problem as follows (Fig. 1). The input to this
framework consisted of two separate parts: the sgRNA sequence, which
served as the question stem, and the target site candidate, which acted as the
answer. The target site, being a DNA sequence, was transformed into
pseudo-RNA by substituting thymine (T) with uracil (U) when using a
languagemodel pretrained on RNA. The primary objective was to ascertain

Fig. 1 |Overview of the pipeline for CCLMoff.The high-throughput off-target data
is encoded as the sgRNA-target site pair and concatenated by a predefined token
[SEP]. The sgRNA-target site pairs go through the Input Embedding layer and feed

into 12 Transformer Blocks initialized by RNAcentral. The [CLS] of the final hidden
layer is employed for classification using the multilayer perceptron to predict the
sgRNA-target site pair score.
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whether the sgRNA sequence could interact with the candidate pseudo-
RNA sequence and result into off-target effect. Building upon this
hypothesis, we developed a transformer-based languagemodel to fulfill this
classification task. Initially, we tokenized the sgRNA sequence and candi-
date pseudo-RNA sequence at the nucleotide level, using Input Embedding
block.To indicate their discontinuity,we introduced a special token [SEP] as
a delimiter to separate them. Subsequently, the input embeddings of the
sgRNAand thepseudo-RNAcandidatewere input into anencoder,which is
composed of 12 transformer blocks. These transformer blocks with amulti-
head attention module enabled effective information processing and con-
textual feature extraction between sgRNA and the target site.

For the off-target classification task, we utilized the final hidden layer
state of the transformer encoder. Specifically, the [CLS] token from the final
hidden layer was employed as the input for aMultilayer Perceptron (MLP),
which was tasked with predicting the sgRNA-target site pair score. This
MLP layer generated a score representing the likelihood that the candidate
pseudo-RNA sequence is an off-target site for the sgRNA. The scoring
mechanism evaluated the compatibility and binding affinity between the
sgRNA and the candidate pseudo-RNA sequence. The encoder, consisting
of 12 transformer blocks, was initialized using the RNA-FMmodel37, which
had been pretrained on 23millionRNA sequences fromRNAcentral38. This
pre-training approach ensured that the encoder had a robust understanding
of RNA sequences, enhancing its ability to capture relevant features during
the subsequent off-target prediction task.

To evaluate the impact of epigenetic information on model perfor-
mance, we incorporated epigenetic data obtained from DeepCRISPR. A
convolutional neural network (CNN) was used to encode four epigenetic
channels: CTCF binding information, H3K4me3 histone modification,
chromatin accessibility, and DNA methylation derived from reduced
representation bisulfite sequencing (RRBS). The resulting representation
vectorwas then concatenatedwith the output of the languagemodel and fed
into theMLP layer. This enhancedmodel is referred to as CCLMoff-Epi. In
addition, we introduced a model without the pretrained language model,
referred to as CCLMoff-Vanilla, whichwas trained from scratch on the off-
target dataset. This setup was designed to evaluate the impact of the pre-
trained language model RNA-FM on model performance.

Trainingprocess. To utilize the robust feature extraction ability from the
RNA-FM foundation model, we set a small learning rate for the para-
meter of 12 Transformer Blocks. The CCLMoff is trained using a stan-
dard binary cross-entropy (BCE) loss defined as follows:

BCE ¼ � 1
N

XN

i¼0

yi � log ŷi
� �þ 1� yi

� � � log 1� ŷi
� �

where yi represents the true label (off-target or not) for the i-th sample, and
ŷi denotes the predicted probability that the candidate pseudo-RNA is an
off-target for the corresponding sgRNA.This loss functionwasused toguide
the optimization of the model, ensuring that it effectively distinguished
betweenoff-target andnon-off-target sequences.Weemployed theAdamW
optimizer with a learning rate of 5 × 10−4 for the 12 Transformer encoder
blockers parameters and 1 × 10−3 for the parameters of theMLP. A learning
rate warm-up strategy was applied during the first 5 epochs. CCLMoff was
trained for 10 epochs using 8NVIDIAA100 80GGPUs, with a batch size of
128, and the total training time amounted to ~3 h. The deep learning
baseline models, including CRISPR-Net, LSTM, CCLMoff-Epi and
CCLMoff-Vanilla were trained using the consistent hyperparameters.
Due to the dataset’s high level of imbalance, the bootstrapping sampling
strategy was applied to ensure an equal number of positive and negative
samples in each training batch.

Interpretation analysis
Attention scores serve as a fundamental mechanism in attention-based
models, particularly in language models, by dynamically determining the
importanceofdifferent elementswithin an input sequence.Thismechanism

allows the model to focus selectively on relevant parts of the data. By
assigning varying weights to different tokens, attention scores enable the
model to capture contextual relationships, long-range dependencies, and
nuanced interactions between sgRNA and target site. This selective
weighting not only enhances the model’s predictive capabilities but also
provides a window into its decision-making process, making it a corner-
stone for both performance and interoperability. Intuitively, these scores
reflect the contribution of each nucleotide to the model’s prediction, with
higher attention scores indicating a greater significance of the nucleotide’s
position and composition in the sequence. The attentionmechanism allows
the model to focus on specific parts of the input, helping it prioritize key
features relevant to off-target prediction. The attention score for each
nucleotide is calculated as follows:

Attention Score ¼ Q× klffiffiffi
d

p

whereQ is the query vector, and kl is the lth columnofK. Note that the score
functions presented in this section can be more efficiently calculated in
matrix form using K instead of each column separately.

Statistics and reproducibility
All computational experiments were performed with clearly defined
training and testing procedures. For model training, we used a benchmark
dataset composed of 418 sgRNAs and 82,699 validatedoff-target sites, along
with 9,521,638 negative samples generated via Cas-OFFinder. To address
the data imbalance (positive-to-negative ratios ranging from1:26 to 1:4189),
we applied a bootstrapping sampling strategy that ensured an equal number
of positive and negative samples in each training batch.Model performance
was evaluated using standard metrics including balanced accuracy, F1-
score, area under the Receiver Operating Characteristic curve (AUROC),
and area under the precision–recall curve (AUPRC). Five-fold cross-vali-
dation was performed to assess model robustness, and all reported results
represent the mean and standard deviation across five repeated runs with
different random seeds. For statistical comparisons, two-sided Student’s t
tests were conducted to assess performance differences between CCLMoff
and baseline models, with P values <0.05 considered significant. All com-
parisons were carried out using identical training settings, data partitions,
and evaluation metrics to ensure fairness and reproducibility.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Benchmark dataset construction
In this study, we aimed to create a comprehensive off-target dataset to
facilitate the development of a universal model for off-target prediction. To
ensure the dataset’s suitability for genome-wide off-target detection, we
excluded targeted site detection methods, such as targeted PCR, and con-
centrated on genome-wide and deep sequencing-based off-target detection
approaches. Thus, we incorporated 13 genome-wide deep sequencing
techniques, including GUIDE-seq17, CIRCLE-seq14, SITE-seq29,
DISCOVER-seq15, DISCOVER-seq+30, CHANGE-seq31, Digenome-seq13,
DIG-seq33, HTGTS35, IDLV34, BLESS32, Extru-seq11, and SURRO-seq36 to
construct a comprehensive off-target dataset categorized into three groups
basedon theunderlying sequencingmechanisms.Abunchof in silicomodel
studies have curated datasets for off-target prediction, yet these datasets face
significant limitations, such as covering a small number of sgRNAs or
employing inconsistent criteria for constructing negative samples. For
instance, the dataset utilized by CRISPR-Net27 contained only 145 sgRNAs
and relied on five deep sequencing-based off-target detection methods. For
negative sample construction, CRISPR-Net employedCas-OFFinder with a
parameter setting of 6 mismatches and 1 bulge. Similarly, CrisprDNT39

compiled datasets frommultiple studies, comprising 149 sgRNAs, five deep
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sequencingapproaches, andonePCR-basedmethod,which is a targetedoff-
target detection technique. CrisprDNT also utilized Cas-OFFinder but with
different parameters, permitting sixmismatcheswithout bulge information.
This highlights the urgent need for researchers to establish a standardized
benchmark dataset to unify and address the off-target site prediction
challenge.

For the benchmark dataset, we collected the positive off-target sites
from the 21 studies, including both the original publications and their
application studies (Table 1). These studies only provided validated off-
target sites for the tested sgRNAs, requiring the negative off-target sites to be
externally constructed during the model training process. For the con-
struction of the negative dataset, we categorized the data into two groups
based on whether the positive off-target sites contained bulge information.
For positive samples with bulge information, we set the Cas-OFFinder
parameters to allow six mismatches and one bulge. For positive samples
without bulge information, Cas-OFFinder was configured to consider up to
six mismatches between the sgRNA and target sites.

In developing a universal model, our dataset includes two species and
four reference genomes. Furthermore, uncanonical-length sgRNAs were
incorporated to enhance the dataset’s breadth and applicability. Overall, we
constructed a benchmark dataset integrating 13 off-target detection tech-
nologies from 21 studies, making it themost comprehensive dataset to date,
with 418 sgRNAs and 82,699 validated off-target sites. The negative dataset,
generated using Cas-OFFinder with constrained parameters, consisted of a
total of 9,521,638 negative samples. Given the highly imbalanced nature of
the dataset, with imbalance ratios ranging from 26:1 to 4189:1, addressing
this imbalance was a critical focus during the model construction and
training process. In comparison to the recently published database
CrisprSQL40, which contains cleavage data from only 144 guide RNAs and

25,632 guide-target pairs, our dataset is significantly more comprehensive.
Moreover, CrisprSQL only includes positive target sites and lacks negative
sample information, making it insufficient for training predictive models.
Furthermore, Sherkatghanad et al.41 provide a comprehensive review of
CRISPR/Cas-related computational challenges, including a table summar-
izing six off-target studies. This covers datasets such as GUIDE-seq and
CHANGE-seq, which represent only a small fraction of the datasets
incorporated into our benchmark. Consequently, our benchmark dataset
offers a more complete resource for off-target prediction, addressing both
positive and negative off-target sites to support future model development.

Language model improve the off-target prediction
To evaluate the capability of the pretrained language model framework, we
adopted a rigorous training process identical to that of the baseline models.
Both CCLMoff and the baseline model were trained on the same dataset to
facilitate a direct performance comparison and to assess the effectiveness of
CCLMoff framework relative to the baseline model. Thus, we conducted a
thoroughevaluationofCCLMoff on theCIRCLE-seqdataset and found that
it exhibited superior performance in identifying off-target sites compared to
SOTAmodels, including CRISPR-Net, LSTM and CCTop. Besides, we also
incorporated two variants of CCLMoff called CCLMoff-Epi and CCLMoff-
Vanilla, to investigate the impact of incorporating epigenetic information
and pretraining process on massive RNA sequence datasets (Fig. 2). For a
fair comparison, we only included the models capable of accounting for
bulge information in this section. The results (Table 2) demonstrated the
superior performance of the pretrained language model across various
metrics, including balanced accuracy, F1-score, AUROC and AUPRC.
CCLMoff outperformed the state-of-the-art models, achieving a balanced
accuracy of 0.998 (± 0.001), an F1-score of 0.409 (± 0.003), an AUROC of

Table 1 | Summary of the comprehensive dataset construction with technique categorization based on the off-target detection
mechanism

ID Technique Category Total Pos + Neg Target site Imbal ratio PosþNeg
Pos

sgRNA Genome Bulge sgRNA length Ref.

1 CIRCLE-seq DSB detection 1,683,395 5796 290 11 hg19 Yes 19, 20 14

2 GUIDE-seq Repair Product Detection 1,599,541 414 3864 10 hg19 Yes 20 17

3 GUIDE-seq Repair Product Detection 195,186 414 471 10 hg19 No 20 17

4 DISCOVER-seq DSB Detection 104,971 31 3386 4 hg19 No 20 15

5 DISCOVER-seq+ DSB Detection 105,038 98 1072 4 hg19 No 20 30

6 DISCOVER-seq DSB Detection 26,757 49 546 1 mm10 No 20 15

7 DISCOVER-seq+ DSB Detection 26,805 98 274 1 mm10 No 20 30

8 CHANGE-seq DSB detection 1,880,364 71,254 26 110 hg19 No 20 31

9 GUIDE-seq Repair Product Detection 804,809 1702 473 58 hg19 No 20 31

10 Extru-seq DNA Binding 205,375 94 2185 5 hg19 No 19 11

11 Extru-seq DNA Binding 137,936 56 2463 2 mm10 No 19 11

12 SURRO-seq Repair Product Detection 1,263,524 863 1464 110 hg19 No 20 36

13 SITE-seq DNA Binding 102,691 89 1154 8 hg38 No 20 54

14 Digenome-seq Repair Product Detection 25,796 162 159 2 hg19 Yes 20 13

15 Digenome-seq Repair Product Detection 195,031 258 756 10 hg19 No 20 13

16 DIG-seq Repair Product Detection 91,297 141 647 8 hg38 No 20 33

17 GUIDE-seq Repair Product Detection 385,759 426 906 31 mm9 No 20, 21 58

18 GUIDE-seq Repair Product Detection 84,703 61 1389 7 hg19 Yes 20 59

19 GUIDE-seq Repair Product Detection 162,136 272 596 9 hg19 No 20 18

20 GUIDE-seq Repair Product Detection 115,465 203 569 5 hg19 No 20 60

21 HTGTS Repair Product Detection 49,178 87 565 3 hg19 No 20 35

22 IDLV Repair Product Detection 54,459 13 4189 2 hg19 No 20 34

23 BLESS DSB Detection 73,807 31 2381 2 hg19 No 20 61

24 BLESS DSB Detection 113,291 53 2138 3 hg19 No 19, 20 61

25 BLESS DSB Detection 34,324 34 1010 2 mm9 No 19, 20 62
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0.985 (± 0.001), and an AUPRC of 0.524 (± 0.004). Notably, we observed
that the simplified LSTMversion of CRISPR-Net outperformed the original
version (CRISPR-Net) in terms of balanced accuracy, AUROC, and
AUPRC. This suggests that the RNN framework may be more effective in
processing raw sequence data. The CCLMoff-Epi obtained a balanced
accuracy of 0.998 (± 0.001), an F1-score of 0.429 (± 0.005), an AUROC of
0.989 (± 0.001), and anAUPRCof 0.513 (± 0.004).However, the addition of
four channels of epigenetic information, including DNase, CTCF,
H3K4me3, and RRBS, did not result in significant improvement. We
hypothesize that the pretrained language model inherently captures

epigenetic and genomic context information during training, rendering the
extra epigenetic channels unnecessary for further enhancing off-target
prediction performance. Notably, CCLMoff-Vanilla, trained from scratch
without a pretraining process on a large-scale dataset, still achieved con-
siderable performance,whichwe attribute to the strength of its transformer-
based framework. The detailed AUROC and AUPRC figures for each
sgRNA were shown in Supplementary Figs. S1 and S2. A t test further
confirmed that CCLMoff significantly outperformed CRISPR-Net, LSTM,
and CCTop across all metrics. These findings indicate that the language
model framework effectively captures mutual information between the
sgRNA and target site, resulting in superior performance in off-target
prediction.

Language model exhibits robust cross-dataset generalization
ability
To comprehensively evaluate the generalization ability of the pretrained
languagemodel in CCLMoff, we trained themodel on a specific dataset and
evaluated it on an external dataset from a different experimental category.
Specifically, we trained CCLMoff on the CIRCLE-seq dataset and validated
its performance on GUIDE-seq, which utilizes a distinct sequencing
mechanism. The results demonstrated that CCLMoff exhibits robust cross-
dataset generalization, significantly outperforming existing state-of-the-art
models such as AttenToCrispr42, CRISPR-Net27, and LSTM. Notably,
CCLMoff achieved an AUROC of 0.996 and an AUPRC of 0.520 on the
GUIDE-seq dataset—substantially higher than the AUPRC of 0.210
attained by CRISPR-Net.

To further contextualize these findings, we compared CCLMoff with
several recent and high-performing methods. The first is CRISPR-IP43, a
graph-basedmodel that incorporatesmismatch position encoding. Trained
on CIRCLE-seq and tested on GUIDE-seq, CRISPR-IP achieved an
AUROCof 0.945 and anAUPRCof 0.337. The second isMOFF44, a random
forest model that integrates chromatin accessibility and sequence features,
which achieved an AUROC of 0.876 and an AUPRC of 0.282. The third is
CRISPR-DNT39, a dinucleotide-enhanced neural network model that
obtained an AUROC of 0.977 and an AUPRC of 0.381 under the same
evaluation setting. While these recent models demonstrate competitive
performance, CCLMoff consistently outperforms them across evaluation
metrics. We further benchmarked CCLMoff against two recent language
model-based approaches to evaluate the impact of pretraining modality.

Fig. 2 | Cross-dataset evaluation on the GUIDE-seq dataset. The models were
trained on the CIRCLE-seq dataset and externally validated on GUIDE-seq, which
uses a different experimental platform. Left: ROC curves showing the AUROC
performance of all models. Right: Precision–recall curves showing AUPRC per-
formance, which is particularly important in imbalanced datasets. The RNA-
pretrained model CCLMoff achieved the best performance (AUROC = 0.996,
AUPRC = 0.520), significantly outperforming baseline models including LSTM,

CRISPR-Net, and AttenToCrispr. In addition, we evaluated three recent language
model-based approaches: CCLMoff-Hyena (DNA-pretrained), CRISPR-BERT
(task-specific pretraining), and CRISPR-DNT (Transformer-based). Both CRISPR-
BERT and CCLMoff-Hyena demonstrated lower AUPRC than CCLMoff, high-
lighting the advantage of RNA-specific foundation model pretraining in capturing
sgRNA–DNA interactions.

Table 2 | Cross-validation results on the CIRCLE-seq dataset

Model Bal Acc F1-score AUROC AUPRC

CCLMoff 0.998 ± 0.001 0.409 ± 0.003 0.985 ± 0.001 0.524 ± 0.004

LSTM 0.843 ± 0.002 0.052 ± 0.001 0.926 ± 0.001 0.479 ± 0.003

CRISPR-
Net

0.806 ± 0.002 0.083 ± 0.001 0.915 ± 0.003 0.462 ± 0.007

CCTop 0.887 ± 0.004 0.003 ± 0.001 0.711 ± 0.004 0.008 ± 0.001

CCLMoff-
Epi

0.998 ± 0.001 0.429 ± 0.005 0.989 ± 0.001 0.513 ± 0.004

CCLMoff-
Van

0.836 ± 0.001 0.053 ± 0.001 0.901 ± 0.003 0.422 ± 0.005

CCLMoff
v.s.

LSTM 6 × 10−12 3 × 10−12 9 × 10−9 4 × 10−11

CRISPR-
Net

1 × 10−9 8 × 10−7 1 × 10−5 7 × 10−6

CCTop 1 × 10−8 1 × 10−23 1 × 10−13 1 × 10−18

CCLMoff-
Epi

0.82 0.53 0.09 0.12

CCLMoff-
Van

1 × 10−4 2 × 10−13 6 × 10−4 5 × 10−6

Bal Acc Balanced Accuracy, used for evaluating imbalanced datasets, CCLMoff-Van CCLMoff-
Vanilla.
A t test was conducted to assess the statistical significance of performance differences between
CCLMoff and baseline models.
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The first is CCLMoff-Hyena, a variant of our model that incorporates the
genomicDNA foundationmodel HyenaDNA45. Thismodel was trained on
CIRCLE-seq and tested on GUIDE-seq, achieving an AUROC of 0.904 and
an AUPRC of 0.180. The second is CRISPR-BERT46, a task-specific BERT

model trained from scratch on sgRNA-target site pairs without large-scale
DNA or RNA pretraining. Under the same protocol, CRISPR-BERT
achieved an AUROC of 0.856 and an AUPRC of 0.150. These results
underscore the effectiveness of RNA-specific pretraining for modeling

Fig. 3 | The model performance on external validation. On DIG-seq dataset,
CCLMoff achieved superior performance (AUROC=0.985 and AUPRC=0.720)
than the SOTA model, indicating that CCLMoff can successfully capture off-target
pattern revealed by DIG-seq. In DISCOVER-seq and DISCOVER-seq+ dataset,
CCLMoff exhibited superior performance in AUPRC (AUPRC=0.661) and con-
siderable performance in AUROC (AUROC=0.944), indicating that CCLMoff have

sufficient capacity in recalling the potential off-target sites. In GUIDE-seq dataset,
CCLMoff exhibited limited performance (AUPRC=0.810, AUROC=0.279), due to
the baselinemodel was directly trained on the dataset of GUIDE-seq, indicating that
the existing model intend to be an approach-specific model instead of general off-
target site prediction model.
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CRISPR-Cas9 off-target effects. Compared toCRISPR-BERT,which suffers
from limited generalization due to its narrow training domain, and
CCLMoff-Hyena, which is pretrained on genomic DNA rather than RNA,
CCLMoff leverages large-scale RNA-based pretraining to better capture the
biological properties of sgRNA and its interactions with DNA target sites.
This is particularly important given that sgRNA is an RNA molecule, and
modeling it in the correct modality appears to be beneficial for downstream
prediction tasks. Thesefindings demonstrate thatCCLMoff captures shared
off-target sequence patterns across datasets and technologies, enabling it to
generalize across cell types, sequencing protocols, and experimental con-
ditions. Furthermore, these results highlight the potential of pretrained
languagemodels in developing scalable and robust tools for genome editing,
and lay a strong foundation for future extensions that integrate diverse data
sources to further enhance off-target prediction.

CCLMoff can accurately predict off-target sites
The pretrained language model’s robust generalization ability prompted us
to train the full version of CCLMoff on a comprehensive dataset to learn the
general patterns of off-target effect occurrence. We employed a leave-one-
dataset-out evaluation strategy to assess the model’s performance on the
latest datasets: DIG-seq, GUIDE-seq, DISCOVER-seq, and DISCOVER-
seq+. As these datasets are bulge-free, we included additional mismatch-
only models, such as AttenToCrispr42, CNN_std47, and CRISPRoff 48 for
performance comparison (Fig. 3). These models were evaluated using the
same parameters as specified in their original papers and implementations
available on GitHub (ref “Code availability”).

CCLMoff achieved outstanding performance across all evaluated
datasets. In the DIG-seq dataset, CCLMoff demonstrated superior results,
with an AUROC of 0.985 and an AUPRC of 0.720, outperforming state-of-
the-art models and showcasing its ability to capture off-target patterns
revealed by DIG-seq. In the DISCOVER-seq and DISCOVER-seq+ data-
sets, CCLMoff also exhibited superior performance in terms of AUPRC
(0.665) and solid performance in AUROC (0.944), demonstrating its
effectiveness in recalling potential off-target sites. However, in the GUIDE-
seq dataset, CCLMoff showed more considerable performance (AUPRC =
0.810, AUROC = 0.279), while the state-of-the-art models (e.g., CRISPR-
Net and CNNSTD) used for comparison were directly trained on the
GUIDE-seq dataset. CCLMoff used the leave-one-dataset-out strategy and
was unable to assess GUIDE-seq dataset during the training process. This
suggests that these baseline models may be more approach-specific rather

than providing general off-target site prediction capabilities. Overall, these
results highlight that CCLMoff trained on the comprehensive dataset can
accurately predict off-target sites and capture general off-target occurrence
patterns, making it a valuable tool for general off-target prediction across
diverse datasets and technologies.

CCLMoff achieved considerable performance on uncanonical
length sgRNA
One of the notable advantages of the language model is its ability to handle
variable-length inputs. This feature is particularly valuable in the context of
sgRNA design, where several sgRNAs with non-canonical lengths are
engineered to optimize cutting sites and on-target efficiency. Despite the
need for such sgRNAs with uncanonical length, no existing in silico model
can predict off-target effects for these uncanonical length sgRNAs. To
address this gap,we trainedCCLMoff on a datasetwith sgRNAsof length 20
and evaluated its performance on datasets with sgRNAs of lengths 19 and
21. CCLMoff achieved an AUROCof 0.8123, demonstrating a considerable
capability for off-target prediction (Fig. 4). This result reveals thatCCLMoff,
when trained on a 20nt sgRNA dataset, can also effectively depict the off-
target landscape for sgRNAs of different lengths. Furthermore, the full
version of CCLMoff, which will incorporate a comprehensive dataset
encompassing various sgRNA lengths, is expected to offer evenmore robust
generalization capabilities. By training on such diverse data, CCLMoff aims
to develop a more universal model for off-target predictions, capable of
accurately predicting off-target effects across a wider range of sgRNA
lengths. This advancement will significantly enhance the flexibility and
applicability of the model in genomic research, ensuring that it can be
effectively used for designing sgRNAs with non-canonical lengths without
sacrificing prediction accuracy. Thus, CCLMoff not only addresses current
limitations but also sets the stage for more versatile and reliable off-target
prediction tools in the future.

CCLMoff reveals the PAM-near region motif for off-target
prediction
The attention map (Fig. 5) derived from CCLMoff reveals that the model
places greater emphasis on the PAM-proximal region (positions 16–20),
which aligns with the seed region identified in previous studies26. This
consistency with established research highlights the accuracy and reliability
of CCLMoff in capturing critical elements of the off-target occurrence
mechanism. Interestingly, a similar pattern is observed on the target site,
with a slight positional shift to positions 14–18. These findings suggest that
CCLMoff effectively captures the off-target occurrence mechanism,
demonstrating its capability to identify and emphasize key genomic regions
involved in off-target effects. The model’s alignment with known biological
mechanisms further validates its effectiveness and potential for accurate off-
target prediction in CRISPR applications.

Discussion
The development of genome editing technologies has opened new avenues
for disease treatment, but the potential off-target effects, particularly in the
widely used CRISPR/Cas9 system, remain a significant concern. Current
off-target detection methods rely on high-throughput sequencing, which is
both expensive and time-consuming, and are often limited in providing
prior knowledge for effective sgRNAdesign. To overcome these limitations,
several in silico models have been developed for off-target detection; how-
ever, manymodels still struggle with generalization ability. In this study, we
present a deep learning framework for CRISPR/Cas9 off-target prediction,
namely CCLMoff. Built on the most comprehensive dataset and pretrained
languagemodels to date, CCLMoff employs a two-step cascade strategy: off-
target searching and off-target scoring. The first step identifies as many
mismatch-based off-target candidates as possible, while the second step
scores these candidates to determinewhichmismatches are tolerable for the
CRISPR/Cas9 system.CCLMoff outperforms state-of-the-artmodels across
various scenarios, including both cross-validation and external validation,
demonstrating its ability to accurately identify off-target sites and capture

Fig. 4 | The CCLMoff performance on uncanonical length sgRNA (len= 19, 21).
Despite being trained solely on canonical 20- nt sgRNAs, CCLMoff achieved an
AUROC of 0.81 on this unseen dataset, highlighting its strong generalization ability.
This result underscores the advantage of the underlying language model in handling
variable-length inputs, which is crucial for real-world sgRNA design where non-
canonical lengths are frequently employed to optimize CRISPR targeting efficiency.
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general off-target occurrence patterns. The current version of CCLMoff is a
sequence-onlymodel,making it user-friendly. Besides, CCLMoff achieved a
comparable performance with the CCLMoff-Epi with the extra channel of
four epigenetic information. Thus, CCLMoff lays the groundwork for
optimizing sgRNA design and has the potential to accelerate advancements
in genome editing technologies for therapeutic applications.

In this study, we demonstrate that increasing the amount of data
enhances the model’s ability to extract genomic patterns captured by the
Cas9 protein. To this end, we compiled a comprehensive dataset utilizing
various deep sequencing methods from multiple sources. Although we
assembled the most extensive dataset available for constructing the
CCLMoff model, it still falls short of fully leveraging the potential of a
languagemodel. To further improve themodel’s capabilities, efforts such as
incorporating off-target datasets from other Cas proteins, like Cas12 and
Cas13, could reveal similar off-target patterns that would enhance model
development. In addition, integrating on-target efficiency datasets could
provide valuable sgRNA-related information, enabling more effective fea-
ture extraction. Overall, the incorporation of diverse datasets related to the
CRISPR/Cas system into the languagemodel could lay the foundation for a
versatile and robust model for the CRISPR/Cas system, capable of sup-
porting a broad range of genome editing applications.

Existing in silico models primarily focus on identifying the contribu-
tion of mismatches to off-target effects, relying solely on sequence infor-
mation formodel construction.However, theCRISPR/Cas9 system involves
a protein-nucleic acid interaction, with two key components: the sgRNA
and the target sites. Recent research49 has shown that the secondary struc-
ture of sgRNA plays a crucial role in enhancing CRISPR/Cas9 cleavage
efficiency by introducing a structural lock into the hairpin structure. This
finding suggests that incorporating structural information into model
construction could further capture the true interaction dynamics of the
sgRNA-target site duplex for off-target prediction, potentially improving
model performance and providing deeper insights into the mechanisms of
off-target occurrences. Moreover, several studies26,40 have highlighted the
importance of epigenetic modifications and chromatin status at the target
site in predicting off-target effects. DeepCRISPR, for instance, employs
additional channels to encode epigenetic information, including DNase,
CTCF, H3K4me3, and RRBS. Similarly, CrisprSQL integrates epigenetic
data suchasCTCF,DNase,H3K4me3,RRBS, andDRIP, providing cell line-
specific annotations that enhance the precision of off-target effect predic-
tion. In addition, energy features generated by computationalmodels can be

incorporated as extra inputs to represent the mutual information between
the sgRNA and the target site50. By incorporating structural information,
epigenetic annotations, and energy features, future models can provide a
more comprehensive and explicit framework for off-target prediction,
improving both performance and understanding of the underlying
mechanisms.

The current off-target predictionmethods have been primarily utilized
for two key purposes. The first is to evaluate the activity levels of a specific
sgRNA on off-target regions, where CCLMoff has demonstrated strong
performance. The second purpose is to assess the off-target effects of
designed sgRNAs in advance. Previous models, such as Elevation-
Aggregate18 and CRISPR-Net-Aggregate27, follow an aggregate strategy,
where the potential sgRNA-target site pairs are summed into an overall off-
target score for a designed sgRNA. In the future,CCLMoff could introduce a
CCLMoff-Aggregate version that adopts a similar approach, enablingmore
effective evaluation of proposed sgRNAs. Predicting on-target efficiency is
an important aspect of the CRISPR/Cas9 system, and recent studies have
shown that deep learning frameworks such as DeepHF51 and CRISPRon52

have great potential for on-target efficiency prediction. However, these
models have not yet utilized language models for this purpose. With the
emergence of high-throughput sequencing-based on-target efficiency
determination approaches, comprehensive on-target efficiency datasets can
be built to enhance in silico sgRNA efficiency prediction. The current ver-
sion of CCLMoff is equipped with a pretrained language model on a
comprehensive sgRNA-target site pair dataset, which suggests that the
model can also be applied to on-target efficiency prediction through transfer
learning. Fine-tuning a CRISPR-based language model in this way may
significantly improve sgRNA on-target efficiency prediction. Moreover, the
language model has demonstrated its capability in multi-modality appli-
cations, whichmeans that it can directly incorporate structural information
about sgRNA, such as secondary structure and chromatin status at the
cleavage site.

Recent studieshavedemonstrated that the editing outcomeof a specific
sgRNA is reproducible, suggesting that the editing outcome of a specific
sgRNA can be predicted. Several models have been proposed for cleavage
outcome prediction, such as CROTON53, Lindel54, and Forecast55, all of
which have shown promising performance. In future versions of CCLMoff,
we plan to include a function for cleavage outcome prediction to provide a
more comprehensive evaluation of sgRNA performance. To achieve this
goal, we plan to integrateCCLMoff into the existing sgRNAdesign platform

Fig. 5 | Model interpretation analysis for CCLMoff. The attention map of multi-head attention (layer=0, head=9 and layer=0, head=12) extracted from CCLMoff reveal
that CCLMoff lay higher weight in the position 16–20 on sgRNA and position 14–18 on off-target site.
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to provide a comprehensive evaluation of sgRNA on on-target efficiency,
off-target effect, and cleavage outcome. By incorporating such a prediction
tool, the researchers can better evaluate the potential outcomes of a
specific sgRNA and design the most appropriate sgRNA for their
research purposes. Moreover, we aim to develop a user-friendly interface
for the platform, which enables users to input the target gene information
and obtain the optimal sgRNA sequences based on the comprehensive
evaluation.With such a platform, researchers can save a significant amount
of time and resources and accelerate their research in the field of
genome editing.

Data availability
The comprehensive curated dataset is available on Figshare56 with the
https://doi.org/10.6084/m9.figshare.27080566.v2. All other data supporting
the findings of this study are available from the corresponding author upon
reasonable request.

Code availability
The source code for CCLMoff is available at https://github.com/duwa2/
CCLMoffand Zenodo57. The model of AttenToCrispr is available at https://
github.com/qiaoliuhub/AttnToCrispr. The CNN_std is available at https://
github.com/MichaelLinn/off_target_prediction. CRISPR-Net is available at
https://github.com/JasonLinjc/CRISPR-Net. CRISPRoff is available at
https://github.com/RTH-tools/crisproff. CCTop is available at https://
cctop.cos.uni-heidelberg.de/.
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