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Abstract

Visual stimulus-induced gamma oscillations in electroencephalogram (EEG) recordings have been recently shown to be compromised
in subjects with preclinical Alzheimer’s Disease (AD), suggesting that gamma could be an inexpensive biomarker for AD diagnosis
provided its characteristics remain consistent across multiple recordings. Previous magnetoencephalography studies in young
subjects have reported consistent gamma power over recordings separated by a few weeks to months. Here, we assessed the
consistency of stimulus-induced slow (20–35 Hz) and fast gamma (36–66 Hz) oscillations in subjects (n = 40) (age: 50–88 years) in
EEG recordings separated by a year, and tested the consistency in the magnitude of gamma power, its temporal evolution and
spectral profile. Gamma had distinct spectral/temporal characteristics across subjects, which remained consistent across recordings
(average intraclass correlation of ∼0.7). Alpha (8–12 Hz) and steady-state-visually evoked-potentials were also reliable. We further
tested how EEG features can be used to identify 2 recordings as belonging to the same versus different subjects and found high
classifier performance (AUC of ∼0.89), with temporal evolution of slow gamma and spectral profile being most informative. These
results suggest that EEG gamma oscillations are reliable across sessions separated over long durations and can also be a potential
tool for subject identification.
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Introduction
Gamma rhythm corresponds to narrowband oscillatory
activity between 30 Hz and 70 Hz in the brain, which has
been shown to be involved in many higher cognitive func-
tions like attention (Fries et al. 2001; Jensen et al. 2007)
and memory (Herrmann et al. 2004). Gamma oscillations
have also been shown to be affected in cognitive disor-
ders such as schizophrenia, autism (Uhlhaas and Singer
2010, 2012; Kitchigina 2018), bipolar disorder (Garcia-Rill
et al. 2019) and Alzheimer’s Disease (AD) (Stam et al.,
2002; Kitchigina 2018). In addition, gamma oscillations
can be induced by presenting certain visual stimuli such
as bars and gratings, and their amplitude and center
frequency dependent on the stimulus properties such as
size, contrast, and spatial frequency (Henrie and Shapley
2005; Gieselmann and Thiele 2008; Ray and Maunsell
2010; Jia et al. 2013; Murty et al. 2018). Recently, we have
shown that these stimulus-induced narrowband gamma
oscillations recorded using electroencephalogram (EEG)
in middle-aged/elderly subjects (>49 years) weaken
with age (Murty et al. 2020) and are weaker in subjects
with mild cognitive impairment (MCI) and early AD
compared with their age and gender matched controls

(Murty et al. 2021). These results suggest that stimulus-
induced gamma oscillations recorded using EEG could
potentially be an inexpensive and easily accessible
biomarker for diagnosis of mental disorders such as AD.

For the induced gamma to serve as a clinical biomarker,
it is necessary to confirm its consistency across mul-
tiple recording sessions. Previous studies have shown
that stimulus-induced visual gamma oscillations are
test–retest reliable, but there are several limitations.
First, such test–retest reliability of induced visual
gamma oscillations is limited to magnetoencephalogram
(MEG) recordings (Hoogenboom et al. 2006; Muthuku-
maraswamy et al. 2010; Tan et al. 2016). The only
EEG study to our knowledge that reported induced
gamma oscillations used a checkerboard stimulus
that mainly induced broadband gamma (Keil et al.
2003); another study that used gratings to induce
gamma oscillations reported reliability of evoked, not
induced, gamma oscillations (Fründ et al. 2007). Second,
although having a test–retest interval of a year allows
for checking its feasibility as an annual check-up, most
of these studies have tested reliability with test–retest
interval spanning from a few weeks to months (but see
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McCusker et al. 2021 who had a test–retest interval
of 3 years, although they used checkerboard patterns
and their paradigm also included a behavioral task).
Third, most studies have been conducted on young
subjects (20–40 years), but it is also important to
study the reliability in older subjects who are prone
to cognitive disorders. Further, steady-state-visually
evoked-potentials (SSVEPs) at gamma frequencies have
recently been shown to have therapeutic effect on rodent
models of AD (Iaccarano et al., 2016), and to be useful in
brain computer interfacing (BCI) applications (Vialatte
et al. 2010). Therefore, it is important to compare the
test–retest reliability of SSVEPs with induced gamma
oscillations. Finally, most previous studies have focused
on power and center frequency of induced gamma
oscillations. However, these oscillations also have a
characteristic temporal evolution, and in addition, the
peak frequencies of these and other oscillations vary
across individuals, thus generating a characteristic
spectral profile as well. Since these spectral and temporal
features could provide additional information beyond
simply the power and center frequency, it is important to
study test–retest reliability of these features. Such power
and center frequency based features have been studied
in the context of subject identifiability (Näpflin et al.
2007) and biometric authentication (Thomas and Vinod
2018) in resting state EEG data as well as visual evoked
potentials (Sarnthein et al. 2009), but not for stimulus-
induced gamma oscillations.

To address these limitations, we tested the reliability
of visually induced narrowband gamma oscillations
recorded using EEG in healthy middle-aged/elderly (aged
>49 years) with an interval of 1 year or more. Since
several previous studies have reported reliability of
alpha oscillations (Salinsky et al. 1991; Corsi-Cabrera
et al., 2007; McCusker et al. 2021), we performed these
analyses on the alpha band as well. This dataset is a
part of double-blind case–control EEG study (n = 257; 106
females), part of which has been used earlier to show that
gamma oscillations weaken with healthy aging (Murty
et al. 2020) and with MCI/AD (Murty et al. 2021). Fifty-two
subjects were retested with the same visual paradigm
after a period of approximately 1 year. We employed
large visual stationary Cartesian grating stimuli that
induced 2 distinct gamma oscillations in both monkeys
and humans (Murty et al. 2018), called slow [20–35 Hz]
and fast gamma [36–66 Hz]. We estimated reliability of
power in alpha and both gamma bands using a widely
used measure called Intraclass Correlation Coefficient
(ICC; (Shrout and Fleiss 1979)). We examined the test–
retest reliability of SSVEPs at 32 Hz as well. We also
studied correlations in the temporal and spectral profiles
across same versus different individuals. In addition, we
studied intersubject variability (subject distinctiveness)
through a linear classifier that was trained to discern
same subject pairs from the all possible cross-subject
pairs and compared the contribution of various features
toward classification.

Materials and Methods
Human Subjects
The full dataset was collected from 257 middle-aged/
elderly human subjects (females: 106) aged 50–88 years
as part of the Tata Longitudinal study of aging (TLSA).
For brevity, we refer to the whole population as “elderly,”
even though there is considerable age variation in the
population. The subjects were recruited from urban
Bengaluru communities, with careful evaluation by
trained psychiatrists, psychologists, and neurologists
affiliated with National Institute of Mental Health and
Neuroscience (NIMHANS) and M.S. Ramaiah Hospital,
Bengaluru. Their cognitive performance was evaluated
by a set of tests—Addenbrooke’s Cognitive Examination
(ACE), Clinical Dementia Rating (CDR), and Hindi Mental
State Examination (HMSE). More details have been
provided in previous reports (Murty et al. 2020, 2021).
Out of the 257 subjects recruited in the first year, we
discarded data of 10 subjects due to noise. Out of the
remaining 247 subjects, 52 subjects were retested after
approximately a year (this test–retest interval was based
on constraints not related to EEG recordings, since this
was part of a multi-investigator project involving many
types of recordings). Among these, 4 subjects were either
unhealthy (CDR > 0) or had invalid CDR score, leading
to usable data of 48 subjects who were healthy in both
sessions. The test–retest sessions of a subject are referred
to as baseline and follow-up.

All subjects received monetary compensation for par-
ticipating in both the sessions. Informed consent was
obtained from the subjects prior to the experiment. All
procedures were approved by The Institute Human Ethics
Committees of Indian Institute of Science, NIMHANS,
Bengaluru and M.S. Ramaiah Hospital, Bengaluru.

Experimental Setting and Behavioral Task
Experimental setup and details of recordings have been
explained in detail previously (Murty et al. 2020, 2021)
and are summarized here. EEG was recorded from 64-
channel active electrodes (actiCap) using BrainAmp DC
EEG acquisition system (Brain Products GMbH) and were
placed according to the international 10–10 system. Raw
signals were filtered online between 0.016 Hz (first-order
filter) and 1 kHz (fifth-order Butterworth filter), sampled
at 2.5 kHz, and digitized at 16-bit resolution (0.1 μV/bit).
Samples were decimated to 250 Hz using the Matlab
command “resample,” which applies an finite impulse
response antialiasing lowpass Kaiser filter before down-
sampling by 10. Average impedance of the final set
of electrodes was (mean ± SEM) 7.89 ± 0.67 kΩ and
7.73 ± 0.54 kΩ for baseline and follow-up, respectively.
All the EEG signals recorded were referenced to electrode
FCz during acquisition (unipolar reference scheme).

All subjects sat in a dark room facing a gamma-
corrected LCD monitor (dimensions: 20.92 × 11.77 inches;
resolution: 1280 × 720 pixels; refresh rate: 100 Hz; BenQ
XL2411) with their head supported by a chin rest.
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It was placed at (mean ± SD) 58 ± 0.7 cm from the
subjects (range: 54.9–61.0 cm) based on their comfort
and subtended 52◦ × 30◦ of visual field for full screen
gratings.

In the “gamma” experiment, subjects performed a
visual fixation task, wherein 2–3 full screen grating
stimuli were presented for 800 ms with an interstimulus
interval of 700 ms after a brief fixation period of 1000 ms
in each trial using a customized software running
on MAC OS. The stimuli were full contrast sinusoidal
luminance achromatic gratings with either of the 3
spatial frequencies (1, 2, and 4 cycles per degree (cpd))
and 4 orientations (0◦, 45◦, 90◦, and 135◦). Out of the 48
subjects that were retested, 1 subject had noisy follow-
up data, leaving with 47 pairs of subjects. With further
constraints on the number of good electrodes for analysis
(see Artifact Rejection below) over both baseline and
follow-up, we finally had 40 pairs of subjects (20 males
and 20 females). Subjects with data available on both
the sessions (n = 40) aged in the range of (mean ± SD)
64.3 ± 7.17 (min: 50, max: 85 years). The test–retest
interval was (mean + SD) was 380.4 ± 10.12 days (min:
256, max: 519), as reported in the plots in Figures 1
and 2.

The “SSVEP” experiment was performed on a subset
of these subjects. This was always conducted after
the gamma experiment, on the same day because
the stimulus settings were dependent on the gamma
experiment results. Here, subjects viewed a random
presentation of grating counter-phasing at 16 cycles
per second (cps), along with a static grating, both of
spatial frequency, and orientation that produced the
maximum gamma in the gamma experiment, but only
the data from counter-phased grating was used. These
stimuli were presented in a similar stimulus paradigm
as the gamma experiment. Out of the 48 subjects that
were retested, 3 subjects had unusable baseline or
follow-up data and 9 subjects did not have enough
number of good electrodes (see Artifact Rejection below),
leaving us with 36 pairs of subjects (20 males and 16
females). Of these, subjects with the number of trials less
than 15 were further discarded because an appreciable
SSVEP peak was often not visible with fewer trials (4
subjects), ending up with 32 pairs (17 males and 15
females).

Eye position was monitored using EyeLink 1000 (SR
Research Ltd), sampled at 500 Hz. Any eye-blinks or
change in eye position outside a 5◦ fixation window
during −0.5 s to 0.75 s from stimulus onset were noted as
fixation breaks, which were removed offline. This led to
a rejection of 14.6 ± 2.8% (mean ± SEM) and 17.8 ± 2.9%
(mean ± SEM) repeats for the baseline and the follow-
up groups for the gamma experiment, and 14.9 ± 2.4%
and 16.5 ± 2.7% for the SSVEP experiment. We have pre-
viously shown that eye-movements and microsaccades
(Hassler et al. 2011) have a negligible effect on gamma
power in this dataset (Murty et al. 2020).

Artifact Rejection
We implemented a fully automated artifact rejection
framework for further details, see (Murty et al. 2020,
2021), in which outliers were detected as repeats with
deviation from the mean signal in either time or fre-
quency domains by more than 6 standard deviations,
and subsequently electrodes with too many (30%) out-
liers were discarded. Subsequently, stimulus repeats that
were deemed bad in the visual electrodes (see the sec-
tion on EEG data analysis below) or in more than 10%
of the other electrodes were considered bad, eventu-
ally yielding a set of good electrodes and common bad
repeats for each subject. Overall, this led us to reject
(mean ± SEM) 14.7 ± 0.8% and 14.6 ± 0.8% of repeats for
the baseline and follow-up groups for the gamma exper-
iment, and 6.9 ± 0.6% and 7.3 ± 0.7% for the SSVEP exper-
iment. Finally, we computed slopes for the baseline power
spectrum between 56 Hz and 84 Hz range for each unipo-
lar electrode and rejected electrodes whose slopes were
less than 0. We further discarded protocols which did not
have any of the bipolar electrode pair (see EEG data anal-
ysis) in the visual anterolateral electrode groups (both
left and right anterolateral group) after electrode rejec-
tion. Subjects with no good protocols (in either baseline
or follow-up group or both) were rejected from analysis,
yielding 40 subjects (20 females) for the gamma experi-
ment and 32 subjects for the SSVEP experiment.

In addition to this artifact detection pipeline that was
used in previous studies, 2 additional conditions were
included. First, for each subject, we computed the union
of bad electrodes in baseline and follow-up sessions
and rejected this union from both sessions, such that
analyses for baseline and follow-up were over the same
set of electrodes. Second, we noticed the presence of
a large discontinuity in the signal in a small fraction
(∼3%) of stimulus repeats and added a pipeline to remove
those. Specifically, stimulus repeats with discontinuities
(in any of the electrodes) were detected by thresholding
the derivative of signal (>120 μV/sec) in time within
[−0.5 1.5] s with respect to stimulus onset. This led
to the rejection of (mean ± SEM) 5.07 ± 0.89 (maximum:
21) repeats in baseline and 4.55 ± 1.04 (maximum: 23)
repeats in follow-up subjects. Electrodes with more than
20 such discontinuities were considered noisy (maxi-
mum: 5 electrodes). These additional conditions were
added mainly to improve the time–frequency plots (Figs 1
and 2) that were sensitive to these large discontinuities;
the main results (Figs 5 and 8) remained similar even
without these additional conditions. Overall, after dis-
carding all bad repeats, 291.6 ± 12.8 and 298.9 ± 14.12
stimulus repeats were available for the gamma experi-
ment, and 30.1 ± 1.1 and 29.5 ± 1.1 for the SSVEP experi-
ment, for the baseline and the follow-up groups, respec-
tively.

The exclusion criteria are summarized in Table 1
below. Note that the reduction in the size of the SSVEP
dataset is simply because it was always done after
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Figure 1. Gamma oscillations remain consistent across baseline and follow-up sessions. Change in time–frequency power spectra for the 2 recording
sessions, baseline (left), and follow-up (right) of 20 female subjects to static gratings (“gamma” experiment). Subjects are ordered vertically based on
the decreasing average slow and fast gamma power in visual electrodes, starting from the top left. The color bar on the top left denotes the log power
ratio in dB units. The numbers indicate test–retest interval in days.

the Gamma experiment and for a shorter duration,
since the main aim of this project was to investigate
stimulus-induced gamma oscillations. However, even for
the Gamma study, data from 8/48 (∼17%) of subjects
were discarded. This relatively high number of rejections
is because of the very stringent criteria for subject
selection. For example, the visual electrodes that were

used for analysis (see “EEG data analysis” section
below) were divided into 2 anterolateral groups and one
posteromedial group. We rejected any subject for which
even one of the 2 anterolateral groups did not have
any good electrodes. This was done so that we could
test for potential asymmetry in gamma distribution on
the scalp (as shown in Supplementary Figs S1 and S2).

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab066#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab066#supplementary-data
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Figure 2. Same as Figure 1 for 20 male subjects.

Relaxing this requirement such as usable electrodes in
either one (instead of both) of the 2 anterolateral groups
lead to subject selection would have yielded 4 additional
subjects (and a rejection ratio of ∼8%).

EEG Data Analysis
All analyses were performed using bipolar reference
scheme. Every electrode was re-referenced offline to its
neighbor, yielding 112 bipolar pairs of electrodes from
the 64 unipolar electrodes (Murty et al. 2020, 2021). The

bipolar pairs among the visual electrodes considered for
analysis (except for scalp maps) were: PO3-P1, PO3-P3,
POz-PO3 (left anterolateral group); PO4-P2, PO4-P4, POz-
PO4 (right anterolateral group) and Oz-POz, Oz-O1, Oz-O2
(posteromedial group).

All the data analyses were done using custom codes
written in MATLAB (MathWorks. Inc; RRID:SCR_001622).
Power spectrum and time–frequency spectrograms were
obtained using the Chronux Toolbox ((Bokil et al. 2010),
RRID:SCR_005547). Both were calculated for individual
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Table 1. The summary of the exclusion criteria for subject
rejection across the two experiments, responsible for different
subject counts in analysis

S.no Exclusion criteria “gamma” “SSVEP”

1 Not healthy (CDR > 0) 1 1
2 Invalid CDR score 3 3
3 Incomplete experiment or

could not be extracted
0 3

4 Unusable baseline or follow-up
data

7 9

5 Outlier subjects (manual) 1 [noisy Time
Frequency
spectra]

4 [weak SSVEP
peak] (n < 15)

Overall usable subjects 40 32

trials and then averaged across trials. For analysis, sim-
ilar to our previous study (Murty et al. 2020), we chose
[−500 0] ms as the baseline period and [250 750] ms
as the stimulus period, yielding a resolution of 2 Hz.
This stimulus period was so chosen to avoid stimulus-
onset transients. Time–frequency spectrogram was com-
puted with 4 Hz frequency resolution (moving window of
250 ms) and a step size of 25 ms.

Change in power between stimulus period and base-
line period for a frequency band was computed using the
following formula:

�Power = 10

(
log10

∑
f ST(f )∑
f BL(f )

)

where ST is the stimulus power spectra and BL is the
baseline power spectra, both averaged within relevant
frequency bins (f ), across all the analyzable repeats.
Band powers are specifically computed in 3 frequency
bands, namely slow gamma (20–35 Hz), fast gamma (36–
66 Hz), and alpha (8–12 Hz). The gamma frequency band
limits were set based on the localization of 2 gamma
peaks in the change in PSD profile, and are the same
as used in our previous studies (Murty et al. 2018, 2020,
2021). These were averaged across all the 3 electrode
groups. Scalp maps were generated using the topoplot
function of EEGLAB toolbox ((Delorme and Makeig 2004),
RRID:SCR_007292) with custom bipolar montage of 112
channels.

Test–retest reliability was assessed by Intraclass Cor-
relation Coefficient (ICC) measure. Suppose the dataset
is arranged in a matrix with each column representing
a session and each row a different subject. ICC incor-
porates both intersubject and intrasubject variability in
terms of mean square (variance) for rows (MSR) [variance
of sessions’ means across subjects] and mean square
(variance) within raters (MSW) [mean of subjects’ vari-
ance across sessions], respectively. A specific type of ICC,
called 1–1 ICC, which is based on one-way analysis of
variance model, is defined as follows (see (Shrout and
Fleiss 1979) for details):

ICC = MSR − MSW
MSR + (Nsessions − 1) ∗ MSW

In our case, since Nsessions = 2, this reduces to ICC = (MSR
− MSW)/(MSR + MSW). This measure increases with
decreasing within-subject variability (MSW) and with
increasing between-subject variability (MSR), with values
approaching 1 with perfect reliability (MSW = 0). This
measure was used for the reliability of spectral power
in sensor and source domains in MEG (Martín-Buro et al.
2016). Also, the null-hypothesis H0: ICC = 0 was tested
for significance by F-statistical test, F-value = MSR/MSW,
with (Nsubjects − 1) and Nsubjects(Nsessions − 1) degrees of
freedom (Shrout and Fleiss 1979), reported with 95%
confidence interval, F-value, and P-value. Larger the
variation of session means across subjects, relative to
the variation within sessions, larger is the F-value. Given
the F-value, degrees of freedom of MSR and MSW, P-value
is computed based on the F cumulative distribution
function. Two related types of ICC, called Consistency
and Agreement ICC (ICC(C,1) and ICC(A,1)) were also
computed for comparing our results with other studies.
These ICC definitions involve mean square for error
which encompasses variance across both subjects and
sessions (for details, see (McGraw and Wong 1996)). We
computed the ICC using MatlabCentral file-exchange
codes provided by Salarian (2016), which implemented
the statistical testing described by (McGraw and Wong
1996).

Estimating Subject Distinctiveness Using Linear
Discriminant Analysis
A measure of subject distinctiveness reflects the sepa-
rability between the self-pairs and cross-pairs—which is
approximated here, in terms of classifier performance
(Linear Discriminant classifier) in discriminating the 2
categories of pairs. Input to the classifier is a pair of base-
line and follow-up session recordings from 2 subjects. For
each pair, we defined 7 comparative measures (stimulus-
induced features), namely, absolute difference in relative
band powers within slow gamma (psγ ) [20–35 Hz], fast
gamma (pfγ ) [36–66 Hz], and alpha (pα) [8–12 Hz] (3
features), baseline corrected band power temporal corre-
lations (Pearson’s correlation) in the slow gamma (tcsγ ),
fast gamma (tcfγ ), and alpha (tcα) between [0 0.8] s (3
features; correlation between the traces shown in Fig. 3),
and spectral correlation (sc) in [0-100 Hz] (excluding 50 Hz
and 100 Hz peaks that represented line noise and monitor
refresh rate; 1 feature; correlation between the traces
shown in Fig. 4). To study the importance of the features
in the baseline period, we also considered baseline alpha
difference power (pblα ) and raw PSD correlation (bl sc)
features (correlation between the baseline PSDs shown
in Supplementary Fig. S3). Three binary classifiers (using
only stimulus-induced features, only baseline features,
and both feature sets combined) were trained to classify
a pair into either self-pair or cross-pair and was tested
according to 5-fold stratified cross-validation.

Because the cross-pairs (40 × 39 = 1560) far outnum-
bered the self-pairs (40), classifier performance could

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab066#supplementary-data
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Figure 3. Temporal evolution of band powers in slow gamma, fast gamma, and alpha range across baseline and follow-up remain consistent in males
and females. Band power as a function of time, computed from averaging baseline corrected time–frequency spectra across relevant frequency bins
for slow gamma, fast gamma, and alpha bands. Traces are plotted in black for baseline (Y0) and gray for follow-up (Y1) for 20 female and 20 male
subjects. Same subject order as in previous plots.

Figure 4. Power spectral densities (PSDs) are consistent across baseline and follow-up in males and females. The change in PSD during stimulus period
relative to baseline PSD for baseline (Y0; black) and follow-up (Y1; gray) for 20 female and 20 male subjects.
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not be assessed using accuracy, since even a null
classifier that categorizes every observation as a cross-
pair would have an accuracy of 97.5%. Instead, we
assessed the classifier performance through the area
under the receiver operating characteristic (ROC) curve
(AUC), where the ROC curve represents the true positive
rate against false positive rate. AUC calculation does not
need the class label output of classifier, as it considers
various thresholds for classification. Only the weighted
projection along with the true class labels are needed for
true positive rate and false positive rate. AUC values vary
between 0.5 (chance level classification) and 1 (perfect
classification). Feature importance was determined by
the weight of the feature computed using linear discrim-
inant analysis (LDA) classifier on the z-scored feature
values, as well as using single feature AUC method
wherein each feature was individually considered to
classify self versus cross-pair. We used MATLAB statistics
and machine learning toolbox function perfcurve.m for
computing AUC.

Statistical Analysis
All the statistical analysis and results obtained, are using
the power spectrum or correlation measures. Appropri-
ate tests (t-statistic; F-statistic; Wilcoxon rank sum) were
used to interpret our findings.

Data and Code Availability
All spectral analyses were performed using Chronux
toolbox (version 2.10), available at http://chronux.org.
ICC analysis functions were taken from MatlabCentral
file-exchange, provided by Salarian (2016). Figure data
and codes used here are available at https://github.com/
supratimray/TLSAEEGProjectPrograms under the con-
sistencyProject folder. Raw data will be made available
to readers upon reasonable request and made publicly
available at a later time.

Results
Time Frequency Spectra Remain Reliable over
1-Year Interval
We first examined the change in time–frequency power
spectra relative to baseline power (−0.5 to 0 s) of
EEG signals for the “gamma” experiment, averaged
across the 3 bipolar electrode groups, for the baseline
and follow-up sessions (see Methods). Figures 1 and 2
show the results for female (n = 20) and male subjects
(n = 20), sorted based on decreasing total gamma power.
Both females and males show visually reliable time–
frequency spectra within a subject across baseline
(left panel) and follow-up (right panel). Specifically,
the powers in the 3 frequency bands, slow gamma,
fast gamma, and alpha were consistent in time–
frequency spectra, as were the temporal evolution of
these rhythms. Similarly, the topographic scalp maps
of average gamma band power (mean of slow and fast
gamma) appeared consistent between baseline and

follow-up sessions in females (Supplementary Fig. S1)
and males (Supplementary Fig. S2).

Band Powers, Spectral and Temporal Profiles All
Remain Highly Reliable
Figure 3 shows the temporal evolution of band powers
in alpha, slow gamma, fast gamma range, computed
by averaging time frequency spectra across relevant
frequency bins, separately for males and females.
Remarkably, these profiles were distinct across subjects
but appeared highly correlated across the 2 sessions
within subjects. Figure 4 shows the change in power
during the stimulus period (0.25–0.75 s, where 0 is the
stimulus onset) relative to baseline for the 2 sessions.
These traces show a prominent suppression at alpha
range, and elevation of power at slow and fast gamma
bands, and together represent a “spectral profile” for
each subject. These spectral profiles were also highly
similar for each subject and distinct across subjects.
Consistency was found in the spectral profile of baseline
period absolute power as well, although for several
subjects there was substantial difference in the noise
floor (Supplementary Fig. S3). For these subjects, the
stimulus-induced PSDs were also different in a similar
way (data not shown), such that the change in PSD plots
shown in Figure 3 remained highly overlapping. Further,
in spite of the difference in noise floor, the spectral shape
during baseline periods was informative about subject
identity (see Fig. 8 for details).

Figure 5a–c shows a scatter plot of power in slow
gamma, fast gamma, and alpha bands in baseline
versus follow-up sessions. Supplementary Figure S4
shows similar scatter plot of average resting state alpha
power (baseline period). SSVEP power (increase in power
at 32 Hz from baseline) computed from the SSVEP
experiment (see Methods) is also shown (Fig. 5d). In all
cases, the powers were highly correlated (significance
results are indicated in the plots). Overall, we did not
find age dependence or the dominance of any age group
in the observed correlation pattern (not shown).

We further assessed the reliability using a metric
called ICC (Shrout and Fleiss 1979), which compares the
ratio of variances within and across subjects. Average
band powers were highly reliable for all frequencies
ranges: slow gamma ICC: 0.74 (95% CI = 0.56–0.85;
F = 6.77, P = 9.68e−9), fast gamma ICC: 0.69 (95% CI = 0.50–
0.82; F = 5.64, P = 1.41e−7), alpha ICC: 0.65 (95% CI = 0.43–
0.79; F = 4.68, P = 1.89e−6), and SSVEP ICC: 0.58 (95%
CI = 0.30–0.77; F = 3.75, P = 1.76e−4). In addition, average
resting state alpha power was also reliable; ICC: 0.78 (95%
CI = 0.62–0.88; F = 8.12, P = 5.94e−10). Previous studies
have used 2 other variants of ICC, called consistency
ICC(C,1) and agreement ICC(A,1), see Methods and
(McGraw and Wong 1996) for details. These measures
were also comparable to the classical ICC in our dataset.
For slow gamma, fast gamma, alpha, and SSVEP, ICC(C,1)
values were 0.74, 0.72, 0.67, and 0.59, respectively,
whereas ICC(A,1) values were 0.74, 0.70, 0.65, and 0.58.

http://chronux.org
https://github.com/supratimray/TLSAEEGProjectPrograms
https://github.com/supratimray/TLSAEEGProjectPrograms
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab066#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab066#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab066#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab066#supplementary-data
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Figure 5. Change in slow gamma, fast gamma, alpha power and SSVEP at 32 Hz power are correlated across baseline and follow-up. (A)–(C) Scatter
plots of the average change in power within slow gamma, fast gamma, and alpha bands for baseline and follow-up sessions. (D) The average change in
power at SSVEP frequency at 32 Hz. Pearson’s correlation coefficient and P-value are mentioned on the top left and bottom right in each panel. Note
the difference in axis limits across the plots.

We also assessed the internal consistency of these
measures within baseline and follow-up sessions by
splitting the trials of a single session into 2 halves.
We found band powers to be highly reliable in the 2
halves in both baseline and follow-up sessions for all
frequency ranges. Baseline sessions: slow gamma ICC:
0.90 (95% CI = 0.83–0.95; F = 19.83, P = 1.11e−16), fast
gamma ICC: 0.94 (95% CI = 0.89–0.97; F = 31.55), alpha ICC:
0.80 (95% CI = 0.66–0.89; F = 9.30, P = 6.71e−11). Follow-
up sessions: slow gamma ICC: 0.94 (95% CI = 0.88–0.97;
F = 30.77), fast gamma ICC: 0.90 (95% CI = 0.82–0.94;
F = 18.65, P = 4.44e−16), alpha ICC: 0.86 (95% CI = 0.75–
0.92; F = 12.97, P = 2.53e−13).

To quantitatively assess the reliability in the tem-
poral evolution and spectral profile, we computed the
Pearson’s correlation between baseline and follow-
up traces for each subject (“self-pair correlation”)
and compared with the average correlation between
the follow-up traces of all other subjects (“cross-pair

correlation”). This is similar to the analysis done by
Vázquez-Marrufo et al. (2017) in which correlation of
alpha ERD topography profiles within a subject was
compared with the correlation across subjects. For
the temporal correlation of slow gamma, self-pair
correlation was 0.87 ± 0.09 (median ± median absolute
deviation (MAD)), significantly greater than cross-
pair correlation (0.28 ± 0.09; left-sided Wilcoxon rank
sum test, P = 1.59e−13, n = 40/1560; Fig. 6a). Similarly,
for the temporal correlation of fast gamma, self-pair
correlation was 0.88 ± 0.09 (median ± MAD), significantly
greater than cross-pair correlation (0.73 ± 0.07; left-
sided Wilcoxon rank sum test, P = 8.74e−7, n = 40/1560;
Fig. 6b). Likewise, alpha temporal correlation within
self-pair was 0.94 ± 0.03 (median ± MAD), significantly
greater than cross-pair correlation (0.88 ± 0.03; left-
sided Wilcoxon rank sum test, P = 2.1e−7, n = 40/1560;
Fig. 6c). For spectral correlation, self-pair correlation was
0.85 ± 0.08 (median ± MAD), significantly greater than
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Figure 6. Change in PSD profile and temporal profiles of band powers are more correlated within self-pairs than cross-pairs. (A)–(C) Correlation
between the band power time series traces (shown in Fig. 3) computed between 2 sessions of the same subject (self-pair) plotted against the median
correlation between traces for all other subjects (cross-pair), for slow gamma (A), fast gamma, (B) and alpha (C) bands. (D) Same plot for the change in
PSD traces shown in Figure 4. There are 40 data points in each plot. The median of these data is shown by the black box with error bars indicating
median absolute deviation (MAD).

cross-pair correlation (0.56 ± 0.08; left-sided Wilcoxon
rank sum test, P = 3.36e−13, n = 40/1560; Fig. 6d).

Feature-Based Subject Identification
From the data collected under “gamma” experiment,
we computed subject distinctness measures, reflecting
the separation between the self-pairs (40/1600) and
cross-pairs (1560/1600), using spectral and temporal
profiles of the signal. The separation was assessed within
a classifier framework, based on 7 stimulus-induced
features including band power differences (slow gamma,
fast gamma, and alpha bands; 3 features), temporal
profiles (3 features), and spectral profile (1 feature; Fig. 7;
see Methods for details) using LDA. Feature weights were
computed by 5-fold stratified training and was used for
classifying test data.

Figure 7a shows the mean values of the 7 features for
the cross and self-pairs. As expected, the band power
differences were lower for self-pairs than cross-pairs
(plots on the left). To use the correlation-based features
in the same way to reflect dissimilarity, we subtracted

1 from the correlation values so that they were also
lower for self-pairs than cross-pairs (right plots). To
compare the distinctness of these features, and for
data standardization, we z-scored each feature value
across all the 1600 (40 × 40) pairs (Fig. 7b). All features
had lower z-scores for self-pairs compared with cross-
pairs, with the temporal profile of slow-gamma and
the spectral profile having the largest separation in z-
scores.

Next, we performed LDA on these z-scored data.
Because data are z-scored, the weights of the classifier
(shown in the legends of Fig. 7b) can be compared directly
and reflect the importance of the features toward
classification. These weights were also the highest for the
temporal profile of slow-gamma and the spectral profile.
Note that these weights are not always proportional to
the difference in z-scores between the 2 classes, since
some features may be highly correlated with others and
may therefore carry redundant information (for example,
temporal variation in fast gamma had a weight of almost
zero).



Gamma is Test–Retest Reliable Kumar et al. | 11

Figure 7. Temporal slow gamma and spectral correlations emerge as dominant features in classification. (A) The 7 features provided as inputs for the
subject distinctness analysis are plotted separately for cross-pairs (cross individual comparisons) and self-pairs (same individual comparisons).
Change in power (first 3 features) are in units of dB. Temporal and spectral correlations (other 4 features) are unitless. (B) Z-scored features are plotted
in the same way as panel (A). The values mentioned in the figure insets denote the classifier weight of the respective feature in separating out
self-pairs from the cross-pairs.

Further, we assessed the performance of each feature
separately by calculating the AUC, which is a measure of
the separation between the data in the 2 classes that does
not depend on any explicit threshold (Fig. 8). Again, AUC
values were highest for the temporal correlation of slow-
gamma (0.84) and spectral correlation (0.83). Temporal
correlation features remained dominant even when cal-
culated over [0.25–0.75] s to exclude the transient activ-
ity. However, including all 7 features improved the AUC
only marginally to 0.89, suggesting that these features
had high redundancy. We also considered the baseline
features (features obtained from resting state) including
absolute average alpha power (1 feature; from the PSD
in baseline period, Supplementary Fig. S3) and spectral
profile (1 feature; correlation between the PSDs shown in
Supplementary Fig. S3; see Methods for details) to deter-
mine the improvement in classification with inclusion
of stimulus-induced features. Features obtained from
resting state data also performed well (AUC = 0.82), with
resting state alpha power (AUC = 0.73) performing better
than spectral correlation of baseline PSDs (AUC = 0.67).
The features in the baseline period were redundant with
the stimulus features; adding these baseline features
only improved the AUC to 0.90 (Fig. 8). These observations
establish slow gamma temporal correlation and spectral
correlation as the dominant features.

Discussion
We studied reliability of various spectral and temporal
neural markers on visual stimulus-induced responses

in EEG recorded from middle-aged/elderly (50–88 years)
healthy human subjects, with a test–retest interval of
about 1 year. Time frequency spectra were consistent
across baseline and follow-up sessions for both males
and females. Similar consistency was observed for tem-
poral traces of alpha, gamma band powers as well as
change in PSD profiles. We used ICC to measure reliability
and found power in alpha, slow, and fast gamma to be sig-
nificantly reliable. SSVEP power at 32 Hz were also found
to be reliable. Temporal and spectral profiles were tested
for reliability through Pearson’s correlation between the
profiles of same individual pairs (“self-pair correlation”)
and were found to be significantly higher than the corre-
lations between cross individual pairs (“cross-pair corre-
lation”). We trained a linear classifier to distinguish pairs
of datasets as belonging to the same subject (self) ver-
sus different (cross) using 7 features including absolute
difference of powers (3 features), temporal band power
correlations (3), and spectral correlation (1). The feature
weights as well as the separation in individual feature
z-scores were highest for slow gamma temporal corre-
lation and spectral correlation. We measured classifier
performance using area under ROC curve and found that
each of these 2 features also performed the best (AUC
of ∼0.84). Overall classification performance increased
only modestly when all features were used (AUC of 0.89),
suggesting high redundancy between features. Classifi-
cation using only resting state (baseline) features was
also high (AUC of 0.82 when resting alpha and baseline
PSDs were considered) and combining resting state and
stimulus-induced features yielded AUC of 0.90. Overall,

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab066#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab066#supplementary-data
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Figure 8. Features from stimulus period perform better than resting state features. The AUC values obtained using various classifiers, constructed
based on the feature set listed on the x-axis. First, the performance of each of the stimulus-induced features is considered individually and
subsequently collectively, and then the baseline (resting state) features are considered, first individually and subsequently collectively, and finally
combined with the stimulus-induced features.

our results suggest that stimulus-induced spectral and
temporal changes in various frequency bands are reliable
and distinct, allowing their use in subject identification
as well.

Comparison with Previous Studies
Reliability of Fast and Slow Gamma

Visually induced gamma oscillations in fast gamma
range were shown to be reliable in human MEG with
substantially higher ICC(C,1) of 0.89 (Hoogenboom et al.
2006; Tan et al. 2016) compared with our results (ICC(C,1)
of 0.72 for fast gamma). However, these 2 studies had
much lower test–retest period of 1–11 day (Tan et al. 2016)
and 4 days–4 months (Hoogenboom et al. 2006), and the
stimulus was a contracting circular sine wave grating.
Hence, the low ICC in our case could be due to multiple
reasons, such as the stimulus, recording modality and
the test–retest period. Test–retest interval seems to be
an important factor, since McCusker et al. (2021) who
studied induced gamma in MEG after a period of up
to 3 years reported much lower agreement ICC(A,1) of
0.55 (McCusker et al. 2021). Apart from the duration,
the lower values could be due to the ICC type used,
as the agreement type ICCs are usually lower than
the consistency and classical definitions in presence
of systematic bias in the data (although we did not
find this in our data). Moreover, it could be due to the
use of a checkerboard stimulus. Another human MEG
study showed test–retest reliability in induced gamma
oscillations with 1 week gap (Muthukumaraswamy et al.
2010), but they did not report ICC values.

This is the first time that the reliability of induced
slow gamma oscillations was addressed in human EEG
with a gap of approximately a year. Slow gamma was

observable in a single subject (S02) in the study by Tan
et al. (2016) in human MEG, but they do not follow-up
on it further. They used many stimuli with differences in
spatial structure (circular or Cartesian grating), temporal
structure (moving or stationary), and size (large or small),
however, only some of which produced slow gamma.
We have previously shown that slow gamma oscillations
are induced in human EEG with stationary Cartesian
gratings of large size (Murty et al. 2018) and hence we
employed similar stimulus parameters for this study.

Reliability of Alpha Band

Corsi-Cabrera et al. (2007) found less intersession reli-
ability in absolute alpha band power with eyes open
compared with beta band. They attributed less interses-
sion reliability to the higher reactivity of alpha to exter-
nal stimulation modifying the subjects’ internal state.
Several studies have compared absolute versus relative
power (percentage value of power within the band w.r.t
total power across all the bands), with mixed results.
Some studies found relative alpha power to be more
reliable than absolute power (John et al. 1983; Kondacs
and Szabó 1999), others found comparable reliability
(Gasser et al. 1985; Salinsky et al. 1991), whereas a recent
study (McCusker et al. 2021) reported more robust reli-
ability of absolute alpha activity in resting state than
in the stimulus period (alpha desynchronization). In our
study, relative power (ICC(1) = 0.81) measures were more
reliable than absolute power (ICC(1) = 0.76) in the alpha
band, within the stimulus period. Moreover, in line with
the study by McCusker et al. (2021), the resting state
alpha reliability of both the relative power (ICC(1) = 0.83)
and absolute power (ICC(1) = 0.78) were higher than the
stimulus period. Apart from alpha power, alpha peak
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frequency also has been investigated and found to be
test–retest reliable (Maltez et al. 2004; Näpflin et al. 2007,
2008; Grandy et al. 2013).

Reliability of Other Signals

Test–retest reliability has been investigated in signals
such as event-related synchronization and desynchro-
nization (ERS/ERD) (Neuper et al. 2005), theta and alpha
oscillations during a working memory task (McEvoy
et al. 2000), functional EEG network characteristics
(Velde et al., 2019) and evoked oscillations with visual
stimuli (Keil et al. 2003; Fründ et al. 2007). Although the
degree of reliability is difficult to compare across studies,
all measures have shown some degree of test–retest
reliability. Similarly, spectral features like the spectral
exponent (slope of the PSD in log–log coordinates) have
been shown to convey test–retest reliability (Demuru and
Fraschini 2020).

Although, to our knowledge, reliability of SSVEPs in
gamma range has not been studied, there are several
studies on its auditory equivalent, the auditory steady-
state response (ASSR) (McFadden et al. 2014; Legget et al.
2017; Hirano et al. 2020). Interestingly, ASSRs have been
shown to be abnormal in patients with autism (Wil-
son et al. 2007) and schizophrenia (Brenner et al. 2003).
Hence, the aforementioned reliability studies have vali-
dated the use of ASSRs as a neuropsychiatric biomarker,
including those employing MEG recordings (Tan et al.
2015). A recent study further showed ASSRs to be reliable
in schizophrenia patients (Roach et al. 2019).

Subject Distinctness

Näpflin et al. (2007) used alpha power, center frequency,
and spectral correlation (in [2–32 Hz]) for data collected
under eyes closed and eyes open paradigm to separate
out same individual pair from interindividual pair using a
Generalized Linear Model (GLM) and reported 88% sensi-
tivity or probability of detection with 40 subjects. In their
study, GLM was fitted for each person separately. They
also reported remarkable performance by the spectral
shape feature. Another study used short time variability
of the EEG spectral pattern for subject recognition using
automatic speaker identification method (Stassen 1980).
This study used supervised clustering with a cluster for
each subject. We instead formulated a classifier over
all the subjects and measured performance using AUC.
Kondacs and Szabo (1999) found lower intraindividual
than interindividual variability mainly in alpha power
(7.5–12.5 Hz) and alpha mean frequency in eyes closed
condition. We chose spectral shape feature (spectral cor-
relation) (Fig. 7a) and alpha power during resting state
(Supplementary Fig. S4). Computation of alpha mean fre-
quency was not informative in our case since the spectral
resolution was 2 Hz (due to analysis duration of 0.5 s),
giving rise to only 3 bins in alpha range (8–12 Hz). Hence,
we did not consider alpha mean frequency feature in this
study.

Dominance of Spectral Profile and Slow Gamma
Temporal Correlation and in Classification
High performance of spectral profile feature is not
unexpected, since this feature captures the changes in
power at all frequencies including alpha and gamma
bands, as well as features such as the shape of the
PSD, and has been previously shown to perform well in
classification tasks (Näpflin et al. 2007). More surprising
was the high performance of the temporal profile of
slow gamma. As shown in Figure 3, first column, slow
gamma temporal profile was more variable across
subjects than other measures such as fast gamma.
We have previously shown that unlike fast gamma
which is induced soon after stimulus onset and then
is subsequently maintained throughout the stimulus
duration, slow gamma builds up slowly over time
(Murty et al. 2018). On the other hand, the transient
broadband component is high early after stimulus onset
(Figs 1 and 2). Depending on the ratio of transient and
steady-state components in the temporal profile, slow
gamma temporal profile showed higher variability across
subjects than fast gamma, which generally was highest
after stimulus onset and then decayed (Fig. 3).

Another reason could be the nature of slow gamma
itself. Slow gamma has larger functional spread, that is,
larger coherent neural population in comparison with
fast gamma, as shown in monkey LFP (Murty et al. 2018).
Such large-scale synchrony might contribute to its rela-
tively higher reliability. The dominance of slow gamma
over fast gamma also has important practical consider-
ations. In EEG, higher frequencies (>30 Hz) often get cor-
rupted by a high noise floor (as observed in a few cases in
our data as well; see Supplementary Fig. S3). In addition,
the line noise at 50 or 60 Hz is within the fast gamma
range. These factors impede accurate estimation of fast
gamma in EEG (which could have contributed to a lower
performance in our data as well). Slow gamma does not
suffer from these practical limitations. Therefore, using
static, full field gratings that induce strong slow gamma
could be a convenient way to obtain a richer spectral
signature that is also more reliable with age than fast
gamma (Murty et al. 2020) and is equally compromised
in AD as fast gamma (Murty et al. 2021).

Factors that Influence Reliability
The reliability of gamma oscillations could depend on
the stability of inhibitory interneuron networks that
are thought to generate these rhythms (Buzsáki and
Wang 2012). In addition, oscillations recorded on the
scalp could be influenced by various subject dependent
parameters like head geometry, scalp conductivity, and
other low-level factors. Further, some studies have shown
cortical thickness to be correlated with gamma peak fre-
quency, but not with power values (Muthukumaraswamy
et al. 2010; Gaetz et al. 2012). Auditory steady-state
activity (ASSR) at 40 Hz was also shown to be positively
associated with left superior temporal gyrus cortical
thickness in healthy controls (Edgar et al. 2014). Since

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab066#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab066#supplementary-data
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these external factors may also change with time, the
reliability of the recorded signal reflects both the stability
of the sources and these confounding factors. Some of
these factors such as cortical folding (Schultz et al. 2013),
cortical thickness (Gaetz et al. 2012), and surface area
(Herting et al. 2015) can be estimated using subject-
specific magnetic resonance imaging (MRI). Moreover,
reliability estimates could be improved by increasing
the signal to noise ratio by using accurate head models
allowing us to go from the sensor to source space
(Hoogenboom et al. 2006; Muthukumaraswamy et al.
2010; Martín-Buro et al. 2016; Tan et al. 2016).

Supplementary Material
Supplementary material can be found at Cerebral Cortex
Communications online.
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