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Abstract

The peregrine falcon Falco peregrinus is renowned for attacking its prey from high altitude in

a fast controlled dive called a stoop. Many other raptors employ a similar mode of attack, but

the functional benefits of stooping remain obscure. Here we investigate whether, when, and

why stooping promotes catch success, using a three-dimensional, agent-based modeling

approach to simulate attacks of falcons on aerial prey. We simulate avian flapping and glid-

ing flight using an analytical quasi-steady model of the aerodynamic forces and moments,

parametrized by empirical measurements of flight morphology. The model-birds’ flight

control inputs are commanded by their guidance system, comprising a phenomenological

model of its vision, guidance, and control. To intercept its prey, model-falcons use the same

guidance law as missiles (pure proportional navigation); this assumption is corroborated by

empirical data on peregrine falcons hunting lures. We parametrically vary the falcon’s start-

ing position relative to its prey, together with the feedback gain of its guidance loop, under

differing assumptions regarding its errors and delay in vision and control, and for three differ-

ent patterns of prey motion. We find that, when the prey maneuvers erratically, high-altitude

stoops increase catch success compared to low-altitude attacks, but only if the falcon’s guid-

ance law is appropriately tuned, and only given a high degree of precision in vision and con-

trol. Remarkably, the optimal tuning of the guidance law in our simulations coincides closely

with what has been observed empirically in peregrines. High-altitude stoops are shown to

be beneficial because their high airspeed enables production of higher aerodynamic forces

for maneuvering, and facilitates higher roll agility as the wings are tucked, each of which is

essential to catching maneuvering prey at realistic response delays.

Author summary

Peregrine falcons are famed for their high-speed, high-altitude stoops. Hunting prey at

perhaps the highest speed of any animal places a stooping falcon under extraordinary
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physical, physiological, and cognitive demands, yet it remains unknown how this beha-

vioural strategy promotes catch success. Because the behavioral aspects of stooping are

intimately related to its biomechanical constraints, we address this question through an

embodied cognition approach. We model the falcon’s cognition using guidance laws

inspired by theory and experiment, and embody this in a physics-based simulation of

predator and prey flight. Stooping maximizes catch success against agile prey by minimiz-

ing roll inertia and maximizing the aerodynamic forces available for maneuvering, but

requires a tightly tuned guidance law, and exquisitely precise vision and control.

Introduction

The stoop is a remarkable attack strategy used by peregrine falcons Falco peregrinus, and a

range of other raptors [1–4]. It involves a steep, controlled dive in which the attacker strikes

its prey at high-speed with a massive blow in mid-air [1]. The high momentum of the attacker

places it at obvious risk of harm, especially when diving into flocks of birds [1] or when pulling

out only meters from the ground [3]. Arguably, for the stoop to evolve as an habitual attack

strategy, these risks must be outweighed by certain survival advantages, and stooping has

therefore been proposed either to save energy [5], or to enhance catch success [6]. These hypo-

thetical advantages remain unproven, however, because it is challenging to compare the suc-

cess rates of different attack strategies empirically. Success rates are confounded by a variety of

factors, including the experience [1, 5] and reproductive status [7] of the attacker, the season

of the attack [8], and the species of prey [6]. Even the seriousness of the attacker’s behavior

may be an important source of variation: falcons seem to not always focus on achieving a high

success rate, and appear sometimes to be practising or playing with their prey [9]. Moreover,

the outcome of the stoop is often difficult to observe due to its high speed [6].

There presumably exists a trade-off between different factors influencing catch success in a

stoop. On the one hand, it has been proposed that the high speed of the attack provides an ele-

ment of surprise, leaving little time for the prey to evade [5, 10]. On the other hand, it is possi-

ble that the high speed of the attack decreases the precision of interception [2], and makes it

harder for the attacker to follow the prey if it turns sharply [11]. Such trade-offs are difficult to

investigate empirically, and we therefore turn to modeling and simulation. Because physical

and physiological constraints influence catch success, we use an embodied cognition approach

[12]. We investigate the success of different attack strategies by incorporating in a physics-

based simulation model the aerodynamics, flight mechanics, guidance, and control. Such

detailed simulations have already proven useful in work on missile guidance: the increasing

demand for better performing missiles forces the inclusion of the detailed dynamics of the mis-

sile and its target when comparing the effectiveness of different guidance systems [13]. The

nonlinear nature of these dynamics restricts the use of analytic methods, such as linear-qua-

dratic optimal control, and the effectiveness of different mechanisms must therefore be exam-

ined through parametric variation of the system between repeated simulations of interception.

Here, we study the general intercept problem under the particular dynamics of flapping and

gliding bird flight. Interception in this biological context differs from that of missiles in that

gravity plays a pivotal role in determining the best attack strategy: in missiles, the speed and

acceleration are so high that the effects of gravity are marginal, but in birds, the acceleration

due to gravity dominates the dynamics.

The flight performance of the model-birds in our simulations depends on their flight mor-

phology, and differs considerably between predator and prey. To maneuver, model-birds flap,

Stooping by peregrine falcons: A physics-based simulation
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glide, and vary their wing span. We use the model to study attacks by peregrine falcons on a

habitual prey species, the common starling Sturnus vulgaris. We simulate three different pat-

terns of flight by the prey—straight flight, smooth turning, and non-smooth turning (see

Fig 1). This approach to varying the target motion is standard in simulations of missile guid-

ance systems, and broadly summarizes the main options for the target to maneuver [13, 14].

It also captures the range of different prey behaviors found in nature. For instance, if a bird

is caught by surprise while commuting, then typically it will be flying in a straight line. Con-

versely, when turning, birds usually maneuver smoothly, but they will also fly erratically if a

threat is detected, in a kind of non-smooth maneuvering flight known as jinking. Here we

investigate whether, when, and why stooping increases catch success in each of these three sit-

uations (see S1–S5 Videos for a visualization of attacks in each scenario).

Because falcons often attack in wide, open spaces at high altitude, there are no objects or

boundaries in our simulation space. We parametrically vary the falcon’s initial position relative

to its prey to simulate a continuum of possible attack strategies (e.g. stoops versus level chases).

Predator and prey are each free to move with 6 degrees of freedom in translation and rotation,

and are subject to gravitational and aerodynamic forces, which they manipulate by controlling

their wings (Fig 2). The model-bird’s flight controller determines the changes in wing shape

and motion that best meet the accelerations commanded by its guidance system, under a

quasi-steady blade element model of the aerodynamics. In model-falcons, the guidance system

commands turning toward the prey in closed-loop, whereas in model-starlings the guidance

system is a forcing function that is set to ensure that the prey remain within approximately

±20 m of their starting altitude. Because we assume that birds maximize their flight speed dur-

ing escape and pursuit, model-birds always generate the maximum possible forward accelera-

tion given their instantaneous velocity and orientation, subject to the constraint that they must

simultaneously meet, as closely as possible, the acceleration demanded normal to their flight

direction by their guidance system.

The falcon’s closed-loop guidance is essential in commanding the changes in velocity that

are needed to intercept prey, whether maneuvering or not, and to deal with the effects of steer-

ing error. Our model-falcons use a guidance law called pure proportional navigation, which

has been shown to fit the empirically measured attack trajectories of peregrine falcons closely

[15]. Proportional navigation is also favored as a guidance law in missiles, because it provides a

simple way of implementing the geometric rule known as parallel navigation or constant abso-

lute target direction (CATD), according to which the attacker holds the geographic direction

of the line-of-sight to target constant through time [14, 16–18]. This geometry guarantees

interception if the attacker is closing range, because at every instant it is set on a collision

Fig 1. Examples of prey motion in the no maneuver, smooth maneuver and non-smooth maneuver condition.

https://doi.org/10.1371/journal.pcbi.1006044.g001
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course with its target (i.e. would hit its target if both continued flying at constant velocity

thereafter). Under pure proportional navigation, the attacker turns at an angular rate propor-

tional to the angular rate of the line-of-sight to target. Although this guidance law can be writ-

ten in three-dimensional vector form, it is more intuitively explained in the two-dimensional

Fig 2. Block diagram of the feedback-loop in model-falcons. This diagram is intended to communicate the general structure of the model. A detailed

explanation of the model equations is provided in Materials and methods. The boxes denote transfer functions, and additional parameters of the

functions are noted in between brackets. Most of the feedback loop is generic, except for the detailed implementation of flapping flight contained in the

black box labelled “dynamics and control”. A brief summary of the feedback loop now follows, in which we walk through each of the different segments

of the feedback loop summarised as “Vision”, “Guidance”, “Dynamics and Control”, “Kinematics”, and “Vector Geometry”. Vision: to determine how it

should turn, the falcon first extracts the line-of-sight angle λ, which is measured subject to visual error ξ. The measured line-of-sight angle λξ is

subsequently transformed into an angular velocity vector _lx that denotes the estimated rate of change in the line-of-sight. The resulting signal from the

visual system is fed to the guidance function every time interval τ, as denoted by the block labelled “sample . . . and hold”. Note that we also test an

alternative implementation of visual processing delay in the model (continuous and delayed, instead of in discrete update intervals), as little is known

about the nature of delay in birds. Results using either form of delay are highly similar (see S1 Fig). Guidance: the falcon’s guidance system multiplies

the estimated line-of-sight rate _lx by the navigation constant N to obtain the commanded change in the angle of the falcon’s velocity _g (see Eq 1), and

the cross product is taken with the velocity of the falcon to obtain the commanded acceleration â. The dynamics and control function depends on the

morphological parameters μ1, . . . μn and manipulates the wing shape and motion to produce an acceleration α which maximizes the forward

acceleration whilst meeting the commanded acceleration as closely as possible (see Materials and methods section D.2 and E for detailed model

equations). Kinematics and Vector Geometry: the acceleration of the falcon α is integrated in the kinematics section and fed back to the visual system

through the medium of the vector geometry needed to relate the line-of-sight angle to the updated positions of the model-falcon and model-starling.

Note that the segment of the block diagram labeled “Vector Geometry” operates outside of the model-falcon, so we do not imply that the falcon

cognitively represents either its own position or that of its target. In particular, the falcon has no knowledge of—and no need to know—the distance to

its target; all that the falcon needs to know is the direction of its target as measured visually by the line-of-sight angle, and its own velocity, which is

needed to determine the commanded acceleration from the commanded turn rate. Model-starlings have a similar control-loop, in which the segments

of the feedback loop labelled “Vision” and “Guidance” are replaced by a forcing function z(t) that determines their (desired) trajectory (see Materials

and methods section C).

https://doi.org/10.1371/journal.pcbi.1006044.g002
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case, for which:

_g ¼ N _l ð1Þ

where γ denotes the bearing of the attacker’s velocity vector and λ denotes the bearing of the

line-of-sight to target, both measured in an inertial reference frame; the dot notation denotes

the time derivative, and N is called the navigation constant. The numerical value of N deter-

mines the rate of convergence to a parallel navigation (CATD) course: in missiles, low values

of N result in slow convergence, whilst high values can cause overshoot, leading to control

instability [14]. Partly for these reasons, intermediate values of N between 3 and 5 are typical

in most missile applications.

The overall objective of our simulations is to identify the attack strategy that maximizes the

catch success of the falcon for a given prey motion, a range of assumptions regarding the delay

in the falcon’s response, and the error in its vision and control (see Materials and methods).

Here, an attack strategy is defined as some particular combination of the predator’s navigation

constant N, and its initial vertical and horizontal distance from the prey. The optimization was

conducted via parametric variation of the attack strategy, in combination with Generalized

Additive Modeling (GAM), which we used to interpolate between the 106 randomly chosen

attack strategies that we simulated in each optimization [19, 20]. We hypothesise that stooping

maximizes catch success, and that it does so as a direct consequence of the flight physics in our

simulation model. We test this by asking whether a model-falcon’s catch success is maximized

by attacking from a high altitude, which couples into a high flight speed in our simulations.

Remarkably, we find that the optimality of stooping depends not only on the motion of the

prey, but also on the tuning of the underlying guidance law. Specifically, we show that stooping

is only expected to evolve in conjunction with the same low values of the navigation constant

N that have been identified empirically in peregrine falcons [15].

Results

Starlings outmaneuver falcons in slow flight

Flight performance is expected to be a key determinant of catch success in a chase. Clearly, any

prey species that can fly faster than a falcon will be able to outrun its attacker in straight flight.

In practice, peregrine falcons fly much faster than starlings, and our aerodynamic model pre-

dicts that they hold a considerable speed advantage in both level flight (maximum speed: 29

versus 23 ms−1; Fig 3a) and vertical dives (terminal speed: 123 versus 52 ms−1; Fig 3b; see sec-

tion K for a comparison between flight performance in the model and empirical measure-

ments). Even so, escape is possible if the prey species can outmaneuver its attacker. For

instance, if at a given flight speed the prey can produce a higher aerodynamic force relative to

body weight than its attacker (i.e. produce a higher load factor), then it may escape by turning

more tightly than its attacker in a smooth maneuver called a turning gambit [21, 22]. Our aero-

dynamic model shows that starlings can indeed sustain higher load factors than peregrine fal-

cons flying at the same speed (Fig 3c), and that although falcons can achieve even higher load

factors by flying faster (Fig 3c), the net effect is such that a starling will always be able to turn

on a tighter radius than a faster-flying falcon (Fig 3e). Similarly, if the prey can achieve a higher

roll acceleration than the falcon, then it will be able to redirect its lift faster, and hence outma-

neuver its attacker in a non-smooth jinking maneuver. Our aerodynamic model predicts that a

starling can indeed produce a higher roll acceleration than a falcon flying at the same speed

(Fig 3d). So great is a model-starling’s advantage in this respect that a model-falcon can only

be expected to match a model-starling’s maximum roll acceleration by diving at close to termi-

nal velocity (i.e. at close to its maximum speed). Hence, model-starlings may often escape

Stooping by peregrine falcons: A physics-based simulation
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model-falcons in our simulations, even though their maneuvers are not implemented as an

evasive response to the falcon. In summary, a starling can always outmaneuver a falcon that is

flying at a similar speed, but a falcon can always beat the load factor and roll acceleration of a

starling by diving at a sufficiently higher speed. Whether this strategy enhances catch success

will presumably depend on the flight pattern of the prey, and the complex ways in which the

predator’s flight speed, response delay, and errors in vision and control interact to affect its

guidance. We explore the outcome of these complex interactions in the simulations presented

below.

Stooping maximizes catch success if the prey maneuvers

The catch success of model-falcons was always maximized by entering a steep dive, but the

optimal starting altitude varied greatly between the three different flight patterns of the prey

(Table 1; see asterisked points in Fig 4). Catch success in attacks on straight-flying prey (Fig 4a)

Fig 3. Flight performance graphs in the flight simulator for the peregrine falcon (dark blue) and the common starling (light blue). The double

arrows denote the direction of acceleration displayed in the graph. The starling is able to outmaneuver the falcon at a given airspeed, if there exists a

region under the curve of the starling that is not overlapping with that of the falcon. (a) Level acceleration versus air speed: level flight with the

requirement that lift equals weight. Dashed lines denote the speed wherein torque forces constrain the maximum acceleration (mechanical constraints).

Top level flight speed is reached at the point where level acceleration is zero. (b) Vertical dive acceleration (including gravity) versus air speed. At the

end of the dashed lines, flapping is substituted by gliding with retracted wings in order to maximize vertical acceleration. (c) Load factor versus air

speed. The load factor is defined as lift divided by weight. The maximum load factor does not scale quadratically with forward speed due to constraints

in torque forces [11]. Instead, wings are retracted optimally to increase maximum load. (d) Roll acceleration versus air speed. Roll acceleration

determines the speed with which the bird can redirect its lift and is calculated by estimating the whole-body inertia around the roll-axis and the

maximum net torque production [11]. (e) Turning radius is calculated as the square of air speed divided by the maximum normal acceleration.

https://doi.org/10.1371/journal.pcbi.1006044.g003

Table 1. Attack strategies with maximum catch success.

prey motion navigation constant N altitude (m) horizontal distance (m) speed at interception (ms−1)

no maneuvers 1–6 150–200 70–90 35–45 (Low-speed)

smooth maneuvers 5.6 350 0–200 50–55 (moderate-speed)

non-smooth maneuvers 2.8 1500 641 >105 (high-speed)

https://doi.org/10.1371/journal.pcbi.1006044.t001
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Fig 4. Catch success mapped onto initial altitude and horizontal distance from the prey for non-maneuvering, smooth maneuvering and

non-smooth maneuvering prey, and for 4 values of the navigation constant N: A low extreme (N = 1), the optimal value for catching non-

smooth maneuvering prey (N = 2.8), the optimal value for catching smooth maneuvering prey (N = 5.6), and a high extreme (N = 15). The

yellow asterisks depict the global optima with respect to attack position and N, showing the attack strategy which uniquely maximizes catch

success for a given prey motion. The yellow crosses denote local optima for a given N and prey motion. The approximate intercept speed

Stooping by peregrine falcons: A physics-based simulation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006044 April 12, 2018 7 / 38

https://doi.org/10.1371/journal.pcbi.1006044


was maximized by stooping from a low altitude (< 200m), leading to a low flight speed at the

point of intercept (35 − 45ms−1). Optimal stoop altitude was somewhat higher (c. 350m) when

prey maneuvered smoothly (Fig 4b), leading to a moderate intercept speed (50 − 55ms−1).

Catch success with non-smoothly maneuvering prey (Fig 4c) was maximized by stooping

from a very high altitude (c. 1500m), leading to a very high intercept speed (> 100ms−1)

approaching the terminal velocity of the model-falcon (see Fig 3). Interestingly, catch success

barely declined when the model-falcon attacked from a higher altitude than the optimum (Fig

4), but was greatly reduced if the model-falcon attacked from a lower starting position (Fig 4),

so stooping from a high altitude is never a bad strategy provided that the guidance system is

appropriately tuned (see below).

Optimization of the navigation constant for stooping

The attack strategy of a model-falcon encompasses both its initial position relative to the prey,

and the setting of its navigation constant N. The global optima that we have so far discussed

(asterisked points in Fig 4) assume joint optimization of the predator’s initial attack position

and its navigation constant N, and the optima for both parameters depend on the motion of

the prey (see also Table 1). Selection on N is expected to be strongest when prey execute non-

smooth maneuvers, for which high catch success is achieved over only a narrow range of N
(compare width of dark blue area denoting high catch success in Fig 5c with the equivalent

areas in Fig 5a and 5b). Interestingly, for all three types of prey motion, the optimal setting of

N tends to be lower the faster the stoop (see dashed lines in Fig 5 plotting the optimal setting of

N conditional upon the speed at intercept). Conversely, for a given setting of N, the optimal

intercept speed becomes lower the higher the value of N (see solid lines in Fig 5 plotting the

optimal speed at intercept conditional upon the setting of N). Thus, for any given type of prey

motion, high-speed, high-altitude stoops only maximize catch success over a small range of

comparatively low values of N. At higher values of N, catch success is maximized by using a

corresponding to the initial altitude is shown on the right of the graph. This is only an approximate relationship because the exact intercept speed

depends on many factors within each hunt.

https://doi.org/10.1371/journal.pcbi.1006044.g004

Fig 5. Catch success mapped onto intercept speed and navigation constant N for (a) non maneuvering, (b) smooth maneuvering and (c) non-

smooth maneuvering prey. The solid line denotes the optimal interception speed for a given N and the dashed line denotes the optimal N for a given

interception speed. The asterisks denote the global optimum with respect to intercept speed and N for a given prey motion.

https://doi.org/10.1371/journal.pcbi.1006044.g005
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low-speed (Fig 5), low-altitude (Fig 4) attack, but this is generally less successful than a high-

speed, high-altitude attack at a lower value of N.

In summary, it turns out to be essential for our model-falcons to set their navigation con-

stant appropriately: if a sub-optimal value of N were used, then stooping might no longer be

the best attack strategy, because of poor catch success. For instance, if a model-falcon were to

use the optimal value of N for smoothly maneuvering prey (N = 5.6) against prey executing

non-smooth maneuvers, then a high-altitude stoop would be unlikely to result in prey capture

(third panel of Fig 4c). This does not necessarily mean that a falcon must actively adjust N to

match the maneuverability of its prey: the best attack strategy of a model-falcon against the

best defensive flight pattern of a model-starling (i.e. non-smooth) involves entering a high-

speed, high-altitude stoop at N� 3. This minimax strategy not only yields maximal catch

success against non-smoothly maneuvering prey, but also yields near-maximal catch success

against prey that are flying straight or maneuvering smoothly (second row of Fig 4). Hence,

subject to the assumptions of our model, we expect falcons to adopt a general strategy of stoop-

ing from high-altitude at N� 3, because this strategy is effective against all of the different pat-

terns of prey flight that we have tested here.

Some interesting flight trajectories emerge at N< 2 (see S2 Fig). In this case, the model-falcon

exerts most of its acceleration towards the end of its attack (see also [14]), often diving below its

prey before looping upward to intercept. This upward-curved trajectory is regularly observed in

nature [4, 23], and has previously been suggested to be a strategy of a falcon to fly into the blind

spot of its prey’s vision [9]. Our model provides a more parsimonious explanation for these flight

paths, which can emerge naturally from the dynamics of the underlying feedback law.

Response delays and errors in vision and control drive the need to stoop

The most important factor that causes the reduction in catch success observed at high values

of the navigation constant N is the response delay of the model-falcon. A robustness analysis

(Fig 6a) shows that high values of N are no longer associated with a low catch success if the

Fig 6. Relationship between catch success and various model parameters. Graphs depict results for non-smooth maneuvering prey, because in this

condition the high-speed stoop with a low N shows the most marked increase in catch success for the falcon. The upper bounds in values for reaction

times and errors in vision and control are chosen such that they are different enough to show substantial variation in simulation results, but remain low

enough to allow for capture. (a) Maximum catch success as a function of N in the baseline model, for smaller (τ = 0.1ms& 25ms) or larger (τ = 100ms &

150ms) response delays, assuming the optimal attack position. The margins depict the 95% confidence intervals of the GAM. The asterisks denote the

global optimum with respect to the x-axis. (b) Maximum catch success as a function of N for different visual (ξ) and control error (χ). (c) Maximum

catch success as a function of altitude, for the baseline and for increased error in vision. (d) Maximum catch success as a function of altitude for various

values of control error. (e) Maximum catch success as a function of altitude, for various values of response delay τ.

https://doi.org/10.1371/journal.pcbi.1006044.g006
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reactions of the falcon are effectively instantaneous (compare catch success as a function of N
at τ = 0.1ms delay with the equivalent line for the default τ = 50ms delay used in our baseline

model; see Materials and methods). Conversely, if the falcon’s actual response delay is greater

than the default assumed in our baseline model, then the optimal value of N is driven towards

an even lower value (Fig 6a). Visual error also affects the optimal value of N in our simulations:

if the falcon is subject to greater visual error than the default value assumed in our model, then

the navigation constant is again driven towards an even lower value of N (Fig 6b). This reflects

the fact that the propagation of this visual error into the commanded acceleration is directly

proportional to N (see Fig 2). In contrast, the optimal value of N is robust to the error assumed

in the control system itself (Fig 6b).

How do response delays, or errors in vision and control, impact the success of a given

attack strategy? As expected, catch success declines as each of these quantities increases (Fig 2).

Remarkably, however, the optimal starting altitude becomes lower when the visual error or

control error is increased (Fig 6c and 6d). Thus, a high-speed, high-altitude stoop only maxi-

mizes catch success if the falcon is accurate in both vision and control. A high-speed stoop

maximizes catch success for all of the response delays that we tested, noting that any much lon-

ger delay would have resulted in very low catch success (Fig 6e). On the other hand, if the fal-

con’s response is effectively instantaneous (τ = 0.1ms), then 100% catch success is attained

even in a low-altitude dive from < 200m. This implies that the falcon’s flight performance is

sufficient to catch a starling in a low-level stoop, but that delays in the model-falcon’s response

hamper its ability to catch prey. The lower catch success that results from having a slower

response can be ameliorated by diving from higher altitudes at lower N.

What mechanisms underlie the increased catch success in a stoop?

When a falcon stoops from high altitude, its attack is characterized by both a very high flight

speed, and a very steep descent angle—either of which could promote catch success. To inves-

tigate the effect of steepness of the descent, we altered the initial conditions of the simulations

so as to model a horizontal attack at very high initial speed (112 ms−1). This effectively simu-

lates the final approach of a falcon that stoops from a very high altitude to gain speed before

levelling off to intercept. Remarkably, the maximum catch success of these model-falcons is

only 3% lower than for those intercepting their prey at the same speed in a steep dive (61 vs

64%). This implies that the steep descent angle is not directly responsible for the overwhelming

success of a stoop, and hence that the key reason for starting from a very high altitude is to

gain airspeed by converting potential energy to kinetic energy.

The very high airspeed attained in a stoop enables model-falcons to exceed the model-

starlings’ maximal load factor and roll acceleration (Fig 3). To test which of these two dimen-

sions of flight performance causes an increase in catch success in a stoop, we artificially

capped the maximal load factor or maximal roll acceleration of our model-falcons. We thus

investigated the catch success of a bird flying at the same high speed achieved in a high-alti-

tude stoop (> 100ms−1), but with the lower maximal acceleration associated with sustained

level flight (30ms−1). Limiting either component of the model-falcon’s flight performance

resulted in a substantial drop in catch success (51% when limiting roll acceleration and 42%

when limiting load factor). This suggests that the high speed that a falcon attains in a stoop is

important partly because of the higher load factors and higher roll accelerations that can be

achieved in high-speed flight. Interestingly though, model-falcons flying at high speed still

performed considerably better than model-falcons in sustained level flight (31% vs 26%)

even though the maximal load factor and roll acceleration was made the same, and even

when these fast falcons levelled off before interception. This implies that a high flight speed is
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beneficial in and of itself, independent of the higher acceleration performance that is usually

also associated with fast flight.

This result might seem surprising, because model-falcons fly faster than model-starlings

even in sustained level flight (Fig 3a), and the most obvious consequence of increasing the fal-

con’s flight speed further is to increase its turning radius, potentially causing it to overshoot

when attacking sharply turning prey. However, the flight speed of a falcon varies continuously

in our model, on account of its varying acceleration demand, and work on missile guidance

and control has shown that the accelerations commanded in response to variations in speed

are lower when the angle between the current line-of-sight and the expected point of intercept

is smaller. The faster the falcon, the smaller this angle, which reduces the risk of control satura-

tion, and thereby decreases the probability of missing the target.

Discussion

Previous authors have suggested that falcons stoop at high-speed to add an element of surprise

to their attack, thereby preventing escape maneuvers by the prey. Our simulations suggest that

there are many other, previously unrecognized advantages to stooping: for example, a high-

speed stoop still provides a clear advantage over an attack from lower altitudes even if the prey

individuals fly erratically, which models how real prey behave when alerted to the presence of

a predator. This is because fast-flying falcons can obtain a higher load factor, can roll faster

into a turn, and can slow down less when increasing their load factor to maneuver—each of

which increases the falcon’s catch success. Moreover, the steep angle of the stoop, and the

details of the attack geometry of a fast-flying falcon further enhance catch success. The func-

tional reasons for stooping are therefore far richer than considered previously, and are closely

related to the physical constraints upon the problem (see [24] for a wider discussion of the

operation of natural selection in relation to biomechanical constraint).

In order to intercept prey successfully at high speed, our model-falcons required a suitably

optimized guidance law. Informed by a recent empirical study [15], our model-falcons used a

pure proportional navigation guidance law, but we identified the optimal value of the naviga-

tion constant N post hoc through Monte Carlo simulation. A range of different values of N can

be used successfully in low-speed flight, or when attacking non-maneuvering and smoothly-

maneuvering prey, so the tightly-defined optimum of N� 3 that applies in a high-speed stoop

works well under all of the conditions that we tested (Fig 4). This most broadly effective value

of the navigation constant coincides closely with the median value of N = 2.6 that has been

found empirically in captive-bred peregrine falcons attacking artificial targets [15]. It also coin-

cides with a classical result of linear-quadratic optimal guidance theory, which shows that pro-

portional navigation with an effective navigation constant N0 = 3 minimizes the control effort

needed to intercept a non-maneuvering target [14] (the effective navigation constant is defined

as N0 = N(v cos δ)/vc for pure proportional navigation, where v is the attacker’s speed relative

to the ground, vc its closing speed relative to the target, and δ the deviation angle between the

attacker’s velocity vector and its line-of-sight to target [14]). The fact that a navigation constant

of N� 3 is found to be optimal or near-optimal in so wide a range of circumstances—and in

so wide a range of systems, from birds to missiles—strongly indicates the robustness of our

analysis and conclusions.

The results of our simulations also offer insight into the variability that is intrinsic to the

attack behavior of real falcons. Captive-bred falcons have been shown to use a range of naviga-

tion constants around the median value of N = 2.6 that is comparable to the range of values of

N that are optimal under the various conditions simulated in our model [15]. Whereas these

real falcons seem to maintain an approximately constant value of N during a single interception
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attempt, they also vary it appreciably between attacks. It is currently unknown what drives

this variability in the tuning of the navigation constant. Our model suggests that the details of

the prey’s motion, and the details of the falcon’s flight speed, response delay, and precision in

vision and control are all important determinants of the optimal tuning of N, and might there-

fore explain any adaptive variation in N.

Surprisingly, attacking at high speed does not require a faster response from the falcon

than attacking at low speed (Fig 6e). By increasing the falcon’s flight performance, the

stoop compensates for the decrease in catch success that would otherwise result from a slow

response. In contrast, the need for accuracy in vision and control is especially acute when

flying at high speed, and stooping is only optimal if the falcon has reasonably low error in

both (Fig 6). Hence, we assume that selection for high visual acuity will be especially strong

in species that use high-speed attacks. It follows that stooping should be considered a spe-

cialist hunting technique, because only accurate falcons with optimized guidance will be

able to increase catch success by stooping. This arguably poses an exploration-exploitation

dilemma for a falcon learning to catch prey: either it may seek to optimize its current catch

success by adopting the easy strategy of a low-speed attack, for which the details of the

parameter tuning are not critical; or, it may explore the more difficult strategy of a high-

speed stoop, which could decrease catch success at first in an unskilled falcon, but can be

expected to increase catch success in the long-run. The playful attacks by falcons in which

they do not seriously attempt to kill their prey [6], may be necessary for acquiring sufficient

skill in stooping.

Limitations and wider implications

Although our physics-based model is realistic enough for its intended purpose, there are obvi-

ously further constraints in nature that we have not modelled here, including the effects of

unsteady aerodynamics, the dynamics of pitch and yaw instability, and the mechanics of catch-

ing or knocking the prey with the talons at intercept. There are also other complicating factors

that we have not modelled, including the effects of explicit evasive maneuvers by the prey, or

the impact of intra- and inter-specific variation in flight morphology and physiology, and

hence variation in the flight performance of predator or prey. These factors can be studied

through extensions of the model and through parametric variation of the model between sim-

ulations, and will be considered elsewhere. Nevertheless, our approach to studying the dynam-

ics of aerial predation is unique among behavioral studies of complex systems in combining

guidance and control laws inspired by missile theory [14] with a detailed simulation model of

the biology and physics of animal flight. The underlying feedback laws are well-founded in the

theory of optimal guidance [14], and their validity as a phenomenological model of guidance

and control in peregrine falcons has already been verified in nature [15]. Furthermore, the

simulation approach that we have used proves necessary because of the complexity of the flight

dynamics, which precludes an analytical approach [13]. Even setting aside the aerodynamic

complexities that we have handled using a blade-element model of flapping flight, the mere

fact that the birds must reorient their body to redirect their lift vector generates dynamics that

are known to have no analytical solution in the most-closely analogous case of bank-to-turn

missiles [25]. Our modeling therefore follows an embodiment approach, which states that

behavior emerges through feedback-loops between the brain, the body, and the world. Aspects

of cognition, such as the guidance laws used to intercept prey, are shaped by properties of the

body and therefore bodily traits need to be considered to fully understand behavior [12, 26].

In summary, our agent-based simulation approach provides insights into the optimization of

attack strategies by an aerial predator that could not have been reached in any other way, and
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thereby paves the way for a new generation of studies into the optimization of complex multi-

agent flight behaviors.

Materials and methods

Summary of simulation procedure

In our simulations, model-birds fly with six degrees of freedom through an open three-dimen-

sional space without objects or boundaries. In each simulation run, a model-falcon aims to

intercept a lone model-starling in mid-air, using a pure proportional navigation guidance law

(Eq 1). In model-starlings, the guidance command is a forcing function that ensures that they

either fly linearly, or execute smooth or non-smooth maneuvers, always keeping within ±20m

of their initial altitude. Model-birds are subject to gravitational and aerodynamic forces, and

flap, glide and retract their wings to manipulate the aerodynamic forces. Model-birds maxi-

mize their forward acceleration at a given speed and orientation, subject to the constraint that

they meet the normal acceleration commanded by their guidance system. A flight controller

determines the changes in wing shape and motion that best meet the desired acceleration.

When the commanded normal acceleration cannot be met, model-birds simply exert the maxi-

mum attainable lift force.

At the start of an attack, the model-starling is located at the origin of the global coordinate

system, with its body coordinate system oriented randomly. This variation in initial orienta-

tion ensures sufficient randomization to avoid artificial results due to coupling of highly spe-

cific initial conditions of the falcon and starling. The model starling begins flying at an initial

speed of 11 ms−1, calculated as the airspeed at which the cost of transport is minimized under

the model. The model-falcon initially flies at a speed of 16 ms−1, with its longitudinal body axis

pointing directly towards the starling, and its lateral body axis horizontal. We parametrically

vary the falcon’s initial position relative to the prey, and vary the navigation constant N (i.e.

the one free parameter of the falcon’s guidance law; see below) to simulate a continuum of dif-

ferent attack strategies. For each attack, we sample at random from a uniform distribution,

sampling the navigation constant N between 1 and 20, the falcon’s initial altitude above the

prey between −200 and 1500 m, and the initial horizontal distance to the prey between 0 and

800 m. The simulation ends when the falcon either intercepts the starling or is unsuccessful in

its attempt to intercept, according to the criteria defined below. For a visualization of the simu-

lations, see SI videos.

Analysis

Every simulation ends in either the success or failure of the model-falcon to catch the model-

starling. A catch is defined as occurring when the model-falcon comes within 0.2m of the

model-starling. Failure occurs if either the falcon has not caught the starling within 40 s, or if it

experiences a near-miss from which it cannot recover. A near-miss occurs when the model-fal-

con comes within 5.0 m of the model-starling, but subsequently finds itself further than this

from the model-starling and with the model-starling in the blind zone of the model-falcon (a

cone of 45˚ behind the bird) such that the falcon would effectively need to begin a new engage-

ment in order to re-acquire its target. In order to analyze how the model parameters affect

catch success, we apply Generalized Additive Modeling (GAM; [19, 20]). This is a nonlinear

regression method which places no assumptions on the shape of the relationship between pre-

dictor and outcome. The estimation of the smoothing functions is conducted by automated

cross-validation procedures (quadratic penalized likelihood), which reduce the likelihood of

over-fitting and therefore ensure that our (conditional) maxima are not spurious. We applied

GAMs with a logit link function, with catch success as the outcome variable and with the
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navigation constant N, initial-altitude and horizontal-distance as the independent variables.

We built separate models for each combination of prey motion, response delay, and error. No

constraints on the effective degrees of freedom were applied.

Software

Model simulations were programmed in C++, using openGL for graphics rendering. Hilden-

brandt’s StarDisplay model [27] was used as the framework for graphical display. Optimization

studies of the blade-element model were conducted in MATLAB 2014a, and the mgcv package

[28] of R statistics [29] was used for GAM regression.

Detailed description of the bird-flight simulator

Here we explain the detail of our simulation model, using the block structure depicted in Fig 2,

and discussing each of the following four segments of the block diagram in turn: A. Kinemat-

ics, B. Vision, C. Guidance, D. Control and E. Aerodynamics. We justify each variable and

mechanism by parameterization to empirical data, and justify mathematical argument in

terms of physics or optimality. For symbol meanings, see Table 2.

A Kinematics. From a flight dynamics perspective, birds are implemented in the model as

rigid bodies with six degrees of freedom. Model birds bank to turn, so as a simplification we

take account only of their roll moment of inertia in modelling the rotational dynamics. The

position vector~r determines the position of the bird in a right-handed inertial axis system

(x, y, z) in which~ex,~ey,~ez are unit vectors defining the inertial axes, where~ez points upward

and therefore defines the bird’s altitude. The orientation of the bird is described by a rotating

right-handed body-fixed axis system (x0, y0, z0), in which~ex0 ,~ey0 , and~ez0 are unit vectors directed

along the principal axes of the bird, and called the roll, pitch, and yaw axes, respectively. The

roll axis~ex0 is assumed to be aligned instantaneously with the bird’s forward velocity~v, which

amounts to assuming perfect pitch and yaw stability, and together with the yaw axis~ez0 is

assumed to define the bird’s plane of bilateral symmetry.

The kinematics of the model are governed by Newton’s laws of motion. Numerical Verlet

integration is used to solve the translational motion of the bird according to the following dif-

ferential equations:

~rðt þ dtÞ ¼~rðtÞ þ~vðtÞdt þ
1

2
~aðtÞdt2 ð2Þ

~vðt þ dtÞ ¼~vðtÞ þ
1

2
ð~aðtÞ þ~aðt þ dtÞÞdt ð3Þ

~aðt þ dtÞ ¼
~F
m

ð4Þ

where~r is the position,~v is the velocity,~a is the acceleration, and m is the mass of the bird.

The update time dt is the time step of the model at which both the numerical integration

scheme and the flight forces are updated, and is set at 1 × 10−4 s (see section L for convergence

tests). The flight force~F is composed as follows:

~F ¼ TD~ex0 þ L~ez0 � mg~ez ð5Þ

where TD is the net thrust minus drag force, L the lift force, and g the gravitational acceleration.

The time-varying aerodynamic forces TD and L are outputted by the lift controller described

in Section D.2. Model-birds respond to their normal acceleration command by reorienting
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Table 2. Symbol meanings.

symbol explanation

α angle of attack

β dive angle (negated elevation angle)

� visual error vector

θ wing-beat angular amplitude

κ altitude relative to preferred altitude

~_l
angular velocity vector of the line-of-sight

~m vector of morphological properties

μ dynamic viscosity of air

ξ limit of the distribution of visual error

ρ air density

τ response delay, differencing time of visual input and update interval

ϕ fraction of wing retraction

ω roll (angular) velocity

O roll angle

~a translational acceleration vector

~asteer commanded acceleration vector

~aprojected acceleration vector outputted by the weight support controller

AR aspect ratio

B body coordinate system

b wing span

bmin minimum wing span

bmax maximum wing span

cn various constants in equations

cl lift coefficient

cl.max maximum lift coefficient

ctorque decrement in thrust due to torque

cd.fric friction drag coefficient

cd.body body drag coefficient

cd.induced induced drag coefficient

dt model time-step

~F flight
total translational force

f wing-beat frequency

g gravitational acceleration

Ix0 total moment of inertia about the roll axis

Ib body inertia around the roll axis

Ib0 body inertia for body width of 1m and body mass of 1kg

Iwing wing inertia around the shoulder

Iwing.center wing inertia around the center of gravity of the bird

J sum of mass times distance to center of gravity

L lift

L0 maximum lift at maximum wing span

Lmax maximum attainable lift

lw wing length

Mx0 net torque around the roll axis

Mwing net torque around the roll axis of one wing

m total mass

mw wing mass

(Continued)
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their lift vector in a banked turn, applying lift asymmetrically so as to generate a net roll torque.

To simplify the model, it is assumed that the exerted roll does not affect lift, thrust and drag.

Wing retraction is assumed to be symmetric, so that asymmetric lift forces are produced only

by angle of attack asymmetries, and the roll moment of inertia depends appropriately on the

retraction of the wings. The rotation of the body about its roll axis is updated as follows:

Oðt þ dtÞ ¼ OðtÞ þ oðtÞdt ð6Þ

oðt þ dtÞ ¼ oðtÞ þ _oðtÞdt ð7Þ

_o ¼
Mx0

Ix0
ð8Þ

where O is the roll angle, ω is the roll angular velocity, Ix0 is the total moment of inertia of the

bird about its roll axis~ex0 , and Mx0 is the roll torque. The time-varying roll inertia Ix0 and roll

torque Mx0 are outputted by the roll controller described in Section D.3. Eq 8 assumes that the

body axes (x0, y0, z0) are principal axes, and that no inertial coupling occurs.

B Vision. The model-falcon is assumed to apply a pure proportional navigation (PPN)

guidance law, such that the function of its visual system is to estimate the angular rate of

change
~_l in the line-of-sight to target~rd ¼~rf � ~rp, where~r f is the position of the falcon and~rp

the position of its prey. In other words, the function of the visual system is to estimate the

angular rate of change in the line drawn from the model-falcon to the model-starling, which,

importantly, is independent of gaze direction. Mathematically, the line-of-sight rate is

Table 2. (Continued)

symbol explanation

mb body mass

~q random unit vector

Q random unit vector

~r position vector

~̂rd estimated position of the starling relative to the falcon

Re Reynolds number

Sw wing area

Sb frontal projected body area

t time

TD magnitude of thrust—drag

TDf magnitude of thrust—drag when flapping

TDg magnitude of thrust—drag when gliding

U airspeed relative to wing motion

Ua airspeed

Uw speed of a single wing-blade

~v velocity vector

~vfalcon velocity vector of falcon

~̂vd estimated velocity of the starling relative to the falcon

vthresh threshold speed for torque constraints

wb body width

https://doi.org/10.1371/journal.pcbi.1006044.t002
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calculated as:

~_l ¼
~̂rd � ~̂vd
j~̂rdj

2
ð9Þ

where~̂rd is the line-of-sight vector measured with error, and where ~̂vd is the corresponding

velocity of the falcon relative to its prey. Although we assume that the falcon holds an explicit

representation of the line-of-sight rate
~_l, it is important to note that our use of Eq 9 does not

imply that the bird must necessarily hold an explicit representation of its own position and

velocity relative to its prey. For example, the line-of-sight rate on the lefthand side of Eq 9

could be estimated directly from the retinal coordinates of the target, provided that the falcon

is able to subtract from this the apparent motion of the target due to rotation of its retinal coor-

dinate system. Rather, Eq 9 should be thought of as providing a convenient way of computing

the line-of-sight rate in the simulation, which simultaneously allows us to model the effects of

error in the falcon’s visual system phenomenologically.

We incorporate this visual error by defining a random error vector~� whose magnitude is

drawn from the uniform distribution from 0 to ξ (see Section F for explanation and justifica-

tion of the magnitude of ξ), and whose direction is drawn from the uniform circular distribu-

tion around the true line-of-sight vector~rd. This visual error vector~� explicitly models the

effects of angular error in the estimation of the direction of the line-of-sight vector~rd, and is

therefore scaled by the target range j~rdj when computing the estimate of the line-of-sight vec-

tor required by Eq 9:

~̂rd ¼~rd þ~�j~rdj ð10Þ

We calculate the corresponding relative velocity as:

~̂vd ¼
~̂rdðtÞ � ~̂rdðt � tÞ

t
ð11Þ

where τ is the differencing time, which we also take to represent the sampling rate from vision

to guidance in the falcon.

C Guidance. Changes in the model-falcon’s velocity are commanded by a pure propor-

tional navigation (PPN) guidance law. The input to this guidance law is the estimated line-of-

sight rate
~_l from Eq 9, whilst the output from the guidance system to the controller is the com-

manded acceleration~a�. In three dimensions, the PPN guidance law is defined as:

~a� ¼ N~_l �~v ð12Þ

where~v is the falcon’s velocity and N is a constant of proportionality called the navigation con-

stant. The form of this equation is such that the acceleration~a� commanded under PPN guid-

ance is always perpendicular to the falcon’s velocity vector~v.

The guidance system of the model-starlings is described by one of three different kinds

of forcing-function: straight flight, smooth maneuvers, and non-smooth maneuvers (see also

Fig 1).

C.1 Straight flight. In straight flight, acceleration is commanded on a constant heading

drawn at random from a uniform circular distribution, and at a constant elevation drawn at

random from a uniform distribution between ±2.5˚. In combination with its random initial

orientation, this forcing function causes the model-starling to turn towards an almost horizon-

tal flight direction within 1 or 2 s of the start of the simulation, after which it flies in a straight
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line whilst maximizing its forward acceleration. The magnitude of the commanded accelera-

tion~a� is such that its combination with gravitational acceleration does not exceed the star-

ling’s maximum normal acceleration as calculated in Section D.1.

C.2 Smooth maneuvers. In smooth turning, centripetal acceleration is commanded to the

bird’s left or right, with oscillations in the magnitude of the commanded acceleration specified

according to a harmonic forcing function. This smooth forcing function is described by the

following equation:

~a� ¼~hðc1 sin c2t þ c1Þ
c3amax þ c4k~ez ð13Þ

where t is the time in seconds, and κ is the difference between the current and initial altitude

of the starling. The last term in this equation ensures that the starling always remains close to

its starting altitude. The unit vector~h is perpendicular to the model-starling’s velocity vector

and is directed horizontally:

~h ¼
~ex0 �~ez
j~ex0 �~ezj

ð14Þ

The terms c1, . . ., c4 in Eq 13 were optimized by varying them parametrically (see Table 3

for optimized settings) so as to maximize the mean magnitude of the normal acceleration, sub-

ject to the constraints that: 1. the mean roll rate remains below 30 rad s−2; 2. the starling exerts

accelerations equivalently in all directions (see S1 Fig); 3. the starling flies within bounds of

±20 m of its initial altitude. The starling does not exert maximal normal acceleration at each

time step, because it slows down when maneuvering, thereby decreasing the maximum normal

acceleration in a future time step. The optimized smooth forcing function results in high load

factors (mean load factor: 3.4) and low roll accelerations (mean roll acceleration magnitude:

27 rad s−2).

C.3 Non-smooth maneuvers. In non-smooth turning, acceleration of approximately con-

stant magnitude is commanded in a stepwise fashion in a randomly varying direction close to

the horizontal. The non-smooth function has the following equation:

~a� ¼~qc6amax þ c7k~ez ð15Þ

where~q is a random unit vector that is updated by the following equation:

~qðt þ dtÞ ¼

(
~qðtÞ; if c5 < i � Uð0; 1Þ

c8~qðtÞ þ ð1 � c8Þ
~Q otherwise

ð16Þ

Table 3. Model settings.

parameter setting

dt 0.0001

c1 0.7

c2 3.5

c3 0.13

c4 1.5

c5 0.008

c6 0.99

c7 1.6

c8 0.1

c9 20

https://doi.org/10.1371/journal.pcbi.1006044.t003
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where U denotes sampling from a uniform distribution, and where ~Q is a unit vector pointing

towards a random azimuth angle and elevation between −c9 and c9 degrees. The parameters

c5, ‥, c9 are optimized as for the smooth forcing function (see Table 3), with the modification

that the non-smooth forcing function also aims to maximize roll acceleration. The non-

smooth forcing function results in similarly high load factors to the smooth forcing function

(mean load factor: 3.4), but involves much higher roll accelerations (mean roll acceleration

magnitude: 2012 rad s−2).

D Control. The bird’s flight controller ensures that the acceleration commanded by the

guidance law is achieved or approximated by making the appropriate adjustments to the wing

motion and shape. The bird’s flight controller is subdivided into three subsystems determining

weight support, lift control, and roll control, which we now discuss in turn.

D.1 Weight support. To achieve a change in velocity with the magnitude and direction of

the commanded acceleration, gravitational acceleration needs to be considered at each time

point. Specifically, the sum of the centripetal acceleration due to lift and the component of

gravitational acceleration that is perpendicular to the bird’s velocity should equate the com-

manded centripetal acceleration. Hence, to determine the required magnitude and direction

of the lift force, gravitational acceleration is first subtracted from the commanded accelera-

tion:

~asteer ¼~a� � g~ez ð17Þ

then projected onto the plane defined by the bird’s transverse and dorsoventral axes,~ey0 and~ez0 :

~aprojected ¼
0

~asteer �~ey0
~asteer �~ez0

2

6
4

3

7
5 ð18Þ

The magnitude of the resulting acceleration~aprojected is then signalled to the lift controller

(described in Section D.2), whilst its direction is signalled to the roll controller (described in

Section D.3).

D.2 Lift control. Lift control is governed by the acceleration objective described in section E:

maximize forward acceleration given current airspeed and body orientation, subject to the

constraint that the lift needed to meet the guidance commands is exerted. This objective could

be achieved in multiple ways, whether by varying the wingbeat kinematics when flapping, or

by retracting the wings to reduce drag when gliding. In this section, the wing-beat averaged

equations that determine which of these flight modes is selected (see section E for a derivation

of these equations).

The magnitude of the desired lift L� is mj~aprojectedj. Constraints on the achievable lift arise

physiologically due to due to constraints on the torque forces that the flight muscles can sus-

tain, and aerodynamically due to wing stall, where cl.max is the lift coefficient at the stall limit.

To calculate the maximum achievable lift for which the muscle torque constraints are not

exceeded, we use the allometric scaling rule L0 = 1.7mg, where L0 is the maximum lift at maxi-

mum wing span [11] (see section G for a justification of the mechanical constraints in our

model). In flapping flight, we assume no wing retraction, and thus Lmax = L0 is the upper limit.

In gliding flight, model-birds retract their wings, and the maximum achievable lift Lmax is
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found by [11]:

bml ¼ ðbmax � bminÞ
L0

1

2
Swcl:maxrv2

� �1=2

þ bmin ð19Þ

Sw:ml ¼ Sw:max
bml � bmin
bmax � bmin

ð20Þ

Lmax ¼
1

2
rSw:mlcl:maxv

2 ð21Þ

where bml is the wing span that maximizes lift, bmax and bmin are the minimum and maximum

wing span respectively, Sw.max is the wing area at maximum span, and Sw.ml is the wing area

that maximizes lift, ρ is the air density, and v is the airspeed. The achievable lift L is the lower

value of the desired lift L� and the maximum achievable lift Lmax. The following equations

relate the achievable lift L to the maximum net thrust (or minimum drag):

cl ¼
2L

Swrv2
ð22Þ

TD ¼ 1 �
c2
l

c2
l:max

� �
p3

16
rb2 sin2ð0:5yÞf 2l2wctorque � cd:bodySb þ cd:fricSw þ

c2
l Sw

2pAR

� �

rv2 ð23Þ

where cl is the wingbeat-averaged lift coefficient, cl.max is the maximum achievable wingbeat-

averaged lift coefficient, cd.fric is the friction drag coefficient on the wing, cd.body is the total

drag coefficient of the body, Sw is the maximum projected wing area, and Sb is the frontally

projected body area, AR is the wing aspect-ratio, b is the actual wing span, θ is the stroke angle

from the highest point of the wing-beat to the lowest point, f is the wingbeat frequency, and lw
is the wing length. The coefficient ctorque accounts for the constraints in torque forces that the

flight muscles can sustain. The torque forces increase linearly with airspeed v, for a given

wing-beat frequency and optimal wing-twist, and exceed the sustainable threshold at a point

vthresh which is determined through simulation of the blade-element model described in sec-

tion E (note that this expression is almost equivalent to stating that the maximum available

power for flight is constant across values of airspeed). The coefficient ctorque is calculated as:

ctorque ¼ min 1;
vthresh
v

� �

ð24Þ

It is important to note that the wingbeat-averaged lift coefficient cl can differ substantially

from the local lift coefficient at a particular section of the wing at a particular time point in the

wingbeat. For instance, when the downstroke delivers an upward lift force, and the upstroke a

downward lift force of equal magnitude, cl will be zero. When the bird is flapping, f is set to the

maximum observed wingbeat frequency for the species, jointly with a stroke amplitude derived

using allometric scaling rules (see Table 4). When the bird glides, f = 0 by definition, and the

wing span b is optimized to achieve L with the lowest amount of drag. The wing span b deter-

mines the wing area according to the relationship:

Sw ¼ Sw:max
b � bmin
bmax � bmin

ð25Þ
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and determines the aspect ratio as:

AR ¼
b2

Sw
ð26Þ

To find the optimal wing span b� that achieves a given lift L with the least amount of drag,

the following steps are applied. First b� is calculated by:

b� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbmax � bminÞ8ðL�Þ

2

pcd:fricSw ðrv2Þ
2

3

s

ð27Þ

(see Section J for derivation), and then b� is truncated if required to fall within the closed inter-

val [bmin, bmax]. An additional upper bound on b� is the wingspan b at which the torque con-

straint is exceeded when exerting L:

b� ¼ max ðbmin; min ðb�; bmax; L0bmax=LÞÞ ð28Þ

cl is subsequently calculated by Eq 22. Again, cl is truncated not to exceed cl.max and if

Table 4. Morphological parameters of the bird species in the model.

parameter symbol peregrine falcon common starling

wingbeat frequency (hz) f 5.1 a [51] 10.5 [52]

wing length (m) lw 0.284 [51] 0.185 [43]

wing span (m) b 0.873 [51] 0.39 [43]

body mass (kg) mb 528 � 10−3 [51] 70 � 10−3 [43]

wing mass (kg) mw 32 � 10−3 b [43] 3.7 � 10−3 [43]

body inertia (kg m2) Ib 448.0 � 10−6 c 15.65 � 10−6 c

extended wing inertia (kg m2) Iwing 296.6 � 10−6 d 14.55 � 10−6 d

wing summation term Eq 32 J 2501.3 � 10−6 d 152.8 � 10−6 d

wing area (m2) Sw 89.7 � 10−3 24.14 � 10−3

wing aspect ratio AR 8.49 [51] 6.40

angular flapping amplitude (rad) θ 0.4π e 0.47π g

body area (m2) Sb 4.275 � 10−3 f 2.1 � 10−3 [53]

body drag coefficient cbody 0.14 [44] 0.24 h [53]

wing friction drag coefficient cfric 14 � 10−3 i 9.35 � 10−3 i

speed at which torque constrains thrust (ms−1) vthresh 16.5 11.62

maximum steady lift coefficient cl.max 1.6 [44] 1.6 [44]

a maximum from range in Table 5 of [51]
b estimated from [43] by interpolating between allometrically similar birds
c see Eq 82 for the allometric scaling law applied
d recalculated for a peregrine falcon and common starling, assuming mass distrubitions along the wing as in [30, 41]
e estimated by analyzing slow-motion videos of peregrine falcons
f allometric scaling law in Eq 80
g log10 (θ/180) = 1.83–0.24 log10 (b) [54]
h Literature estimates range from 0.2 to 0.35 and depend strongly on the measurement of the frontally projected area. We have taken the measurements of both variables

from the same paper [53].
i Friction drag depends on the Reynolds number (see section J).

https://doi.org/10.1371/journal.pcbi.1006044.t004
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truncated, b� is recalculated as:

b� ¼
2Lðbmax � bminÞ
Swcl:maxrv2

þ bmin ð29Þ

and b� is truncated again to fall within the closed interval [bmin, bmax]. The bird chooses either

to flap or to glide according to which mode of flight achieves or most closely approximates L�

with the largest net thrust (or least drag).

D.3 Roll control. The roll controller determines the roll acceleration used to reach the

desired bank angle. The desired direction of roll by the bird is determined by calculating the

angle between aprojected and~ez0 :

g ¼ sin� 1
j~aprojected �~ez0 j
j~aprojectedj

 !

ð30Þ

To roll in this direction, the bird must apply the appropriate roll acceleration. As Eq 8

implies, roll acceleration is determined by the the aerodynamic roll torque Mx0 and the roll

moment of inertia Ix0. The inertia is dependent on the wing span b, whilst the net torque

depends on the differential lift exertion between left and right wings, together with the wing

span. Therefore, the goal of the roll controller is to find the optimal wing span and lift exertion

to reach the desired bank angle in the minimum amount of time. We assume that on average

the lift force acts at half the wing length, thus the total torque M generated by one wing is:

Mwing ¼ Lwing
b
4

ð31Þ

The roll moment of inertia is calculated as:

Ix0 ¼ Ib þ 2ðIwing�
2
þ 2:4 � 10� 3m0:70

b mwing þ 0:098m0:35
b J�Þ ð32Þ

(see section H for justification), where Ix0 is the total moment of inertia about the roll axis, Ib is

the body inertia, Iwing the inertia of one wing around the shoulder, ϕ the proportion of wing

retraction, mw the mass of the wing, mb the body mass, and J = ∑i mi ri, where r denotes the dis-

tance from the bird’s shoulder when the wing is fully extended and where mi denotes the mass

of a blade element of the wing at that point.

To obey the guidance law, the bird must roll until it reaches the desired bank angle, as dic-

tated by the guidance algorithm, and must then stop rolling. The faster the bird reaches the

desired bank angle, the more accurately it obeys its guidance law. The fastest way to reach a

given bank angle is to accelerate maximally until some point q, and then decelerate maximally

(called Bang-Bang control). The highest roll acceleration is achieved at the wing span that maxi-

mizes lift production (see section I for a proof). Given this maximal acceleration, the bird must

know this point q in the roll at which it should start to decelerate in order to reach a roll velocity

of zero at the desired bank angle. We calculate q as follows. Let ω be the roll (angular) velocity

and γ (see Eq 30) be the angular position relative to the desired bank angle. The angular acceler-

ation _o is either the positive or negative maximal angular acceleration. The angular velocity is

o ¼ _ot þ o0 ð33Þ

g ¼
_ot2

2
þ o0t ð34Þ

where ω0 is the angular velocity at the current time step. We calculate the time t it takes to
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reach γ by solving

t ¼
� o0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

0
þ 2 _og

p

_o
ð35Þ

where the minimum positive t is the answer. If q (the point at which the bird should start to

decelerate) is exceeded, there are 2 positive solutions for Eq 35, according to whether a has

the opposite or same sign as γ (which is the case when turning towards the desired bank

angle and decelerating). If the bird has not yet reached q, then there are no real solutions.

These equations have no real solutions when:

o2
0
þ 2 _og < 0 ð36Þ

Thus the following rule obeys Bang-Bang control: _o should have the same sign as γ, unless

both ω has the same sign as γ and o2
0
> 2 _og, in which case _o should have the opposite sign.

When o2
0
> 2 _og, the equations have real and positive solutions when decelerating, which

means that γ is reached within a positive time. The first moment in time when this is the case

must be closest to the point q. Finally, the output of the controllers is fed to the kinematics,

which completes the feedback loop.

E Aerodynamics. We used a multistage modeling approach to model the aerodynamic

forces on the birds. First, we constructed a blade-element model of flapping and gliding flight,

assuming sinusoidal wingtip kinematics and quasi-steady flow [30–36]. Since our model-birds

mostly flew at low Strouhal numbers (St< 0.22), this quasi-steady analysis provides sufficient

accuracy for our modeling objectives [31, 37]. We assumed that the relation between the lift

coefficient and induced drag coefficient was that of an elliptical wing under classical lifting-line

theory [38], and incorporated realistic physical constraints on the maximum aerodynamic tor-

que, to account for the limits of sustained force production by the pectoralis and supracoracoi-

deus [39, 40]. All of the morphological parameters needed to model body, friction, and induced

drag, as well as lift and thrust were derived from empirical estimates [11, 30, 41–45], or esti-

mated using allometric scaling laws. We then used a combination of regression statistics and

analytic methods to derive a set of equations relating the maximum forward acceleration over a

wingbeat to the bird’s load factor (i.e. lift divided by body weight) and airspeed (Fig 7a). To

determine the maximum forward acceleration for a given load factor and airspeed, we opti-

mized the time-varying wing twist and mean angle of attack, as well as the stroke plane, and

whether the bird should flap at the maximum wingbeat frequency or glide and retract its wings.

To account for errors in control, we modified the load factor by a multiplicative error term (χ)

proportional to the rate of change in the lift coefficient, setting χ = 0 in our baseline model.

Here, we present a derivation of the time-averaged equation (Eq 23) that we used in section D.

The goal is to come up with a simple approximate function

TD ¼ f ðL; v;~mÞ ð37Þ

Where TD is the time-averaged maximum thrust minus drag, L is the lift, v the airspeed, and~m

is a vector of morphological parameters that can be gathered empirically.

E.1 Assumptions. We assume the following aerodynamic and kinematic properties. For each

blade-element the equations for lift and drag are:

Lði; pÞ ¼
1

2
rclSðiÞUði; pÞ

2 ð38Þ
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Dði; pÞ ¼
1

2
rcdSðiÞUði; pÞ

2 ð39Þ

Where S(i) denotes the total area of the element i, and U(i, p) is the speed of air relative to

the (moving) blade at point p of the wing-beat cycle.~Lði; pÞ is defined to be perpendicular to

~U ði; pÞ in the plane spanned by the blade, while ~Dði; pÞ is parallel to ~U ði; pÞ and has the oppo-

site sign. The drag coefficient cd is composed of the body, induced and wing-friction drag coef-

ficients:

cd ¼ cd:body þ cd:induced þ cd:friction ð40Þ

where the body drag coefficient cd.body is referenced to the body’s frontal projected area Sb. The

induced drag coefficient cd.induced is related to cl by [46]:

cd:induced
cl
¼

cl
pAR ð41Þ

which is the classical limit from lifting line theory for a wing with an elliptical lift distribution,

and we apply Blasius’ solution for laminar boundary layer of a flat plate [47] to obtain the fric-

tion drag coefficient:

cd:friction ¼ 2
1:328
ffiffiffiffiffi
Re
p

� �

ð42Þ

where Re denotes the Reynolds number, which is calculated as

Re ¼
rU
m

ffiffiffiffiffi
S
AR

r

ð43Þ

with μ the dynamic viscosity of the air. Furthermore, the lift coefficient cl is related to the angle

Fig 7. (a) Look-up table for the accelerations due to the aerodynamic forces acting on the falcon. At each model time-step, the falcon maximizes

forward acceleration (minimizes deceleration), given its forward speed and with the constraint that load factor is set to achieve the net commanded

acceleration by the guidance law. If this constraint cannot be met (i.e. if it is unfeasible due to aerodynamics or high resulting torque forces), the closest

approximation of the load factor is chosen. In the blade-element model, the falcon optimizes the wing twist, the wing’s angle-of-attack, the wingbeat

frequency and the wing retraction. Inside the trapezoidal contour, the falcon flaps at maximal wingbeat frequency, and outside it the falcon glides.

Above the contour, flapping results in too high torque forces on the wing. Gravity is excluded from the accelerations in the figure. (b) The partial

derivative of forward aerodynamic acceleration with respect to load factor, termed the “aerodynamic deceleration penalty”.

https://doi.org/10.1371/journal.pcbi.1006044.g007

Stooping by peregrine falcons: A physics-based simulation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006044 April 12, 2018 24 / 38

https://doi.org/10.1371/journal.pcbi.1006044.g007
https://doi.org/10.1371/journal.pcbi.1006044


of attack α by the higher-order lifting line theory [24]:

cl ¼
2pa

1þ 2=ARþ 16ð log pAR � 9=8Þ=ðpARÞ2
ð44Þ

We further assume that the wing shape is elliptical, that there is no side-slip, that the airfoil

is symmetric and that the wing-motion is sinusoidal.

E.2 Optimization problem. Our aim is to find the function c�l ði; pÞ that maximizes TD under

several constraints. Because the friction drag and body drag are independent of cl, we maxi-

mize TDi, which is thrust minus induced drag. The objective function is a double integral over

the wing length i and wing-beat cycle p:

TDi ¼ max
clði;pÞ

Z 2p

p¼0

2

Z lw

i¼0

c1ði; pÞclði; pÞ � c2ði; pÞclði; pÞ
2didp ð45Þ

with the equality constraint that lift equals the desired lift:

L� ¼
Z 2p

p¼0

2

Z lw

i¼0

c3ði; pÞclði; pÞ þ c4ði; pÞclði; pÞ
2didp ð46Þ

and the inequality constraints

� cl:max < clði; pÞ < cl:max; 8ðp; iÞ : p 2 f0; 2pg; i 2 f0; 1g ð47Þ

� tmax <
Z lw

i¼0

ic3ði; pÞclði; pÞ þ ic4ði; pÞclði; pÞ
2di < tmax; 8p 2 f0; 2pg ð48Þ

where cl.max is the lift coefficient at the stall limit, tmax is the maximum torque that the flight

muscles can sustain, and where

c1ði; pÞ ¼
Uwði; pÞ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Uwði; pÞ
2
þ U2

a

q SrU2

ð49Þ

c2ði; pÞ ¼
Ua

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Uwði; pÞ
2
þ U2

a

q

pAR
SrU2

ð50Þ

c3ði; pÞ ¼
Ua

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Uwði; pÞ
2
þ U2

a

q SrU2

ð51Þ

c4ði; pÞ ¼
Uwði; pÞ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Uwði; pÞ
2
þ U2

a

q

pAR
SrU2

ð52Þ

where Uw(i, p) is the speed of blade-element i in section p of the wing-beat cycle, Ua is the air-

speed and U2 ¼ Uwði; pÞ
2
þ U2

a . To start solving this objective function, we make a few obser-

vations. First, the unconstrained optimal c�l ði; pÞ can be written as

c�l ði; pÞ ¼
Uwði; pÞ

2Ua
pAR ¼

Uwði; pÞ
2Ua

c0 ð53Þ

and when Ua� Uw(i, p), the value of the unconstrained objective function remains constant
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with respect to changes in airspeed and c�l ði; pÞ converges to zero. Also, because the wings are

symmetric, the maximum of the unconstrained TDi always corresponds to L = 0. Therefore, to

get the maximum value of the unconstrained TDi, we solve for lim Ua1
TDi. First, we rewrite the

equation:

TDi ¼ ð
Uwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2
w þ U2

a

p
Uw

2Ua
c0 �

Uaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

w þ U2
a

p
U2

w

22U2
a

c0Þc5ðU
2

w þ U2

a Þ ð54Þ

where c5 ¼
1

2
Sr. Removing all brackets:

TDi ¼
c0c5U4

w þ c0c5U2
wU

2
a

2Ua

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

w þ U2
a

p �
c0c5UaU4

w þ c0c5U3
aU

2
w

4U2
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

w þ U2
a

p ð55Þ

We can note that:

lim
Ua!1

Ua

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

w þ U2
a

p
¼ U2

a ð56Þ

and

lim
Ua!1

U2

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

w þ U2
a

p
¼ U3

a ð57Þ

Therefore

TDi:max ¼ lim
Ua!1

T ¼
1

2
c0c5U

2

w �
1

4
c0c5U

2

w ¼
1

4
c0c5U

2

w ð58Þ

Thus

TDi:max ¼
p

8
ARrSU2

w ð59Þ

which is

TDi:max ¼
p

8
rb2nðiÞUwði; pÞ

2
ð60Þ

where n(i) is the fraction of the total wing area. Next, numerical simulations show that, despite

the non-linearities caused by the inequality constraints, we can accurately fit a quadratic

model of the form:

TDi ¼ aL2 þ b ð61Þ

Also, our numerical simulations show that, when L is maximized, TDi by flapping converges

to TDi by gliding. Therefore, we know two properties of the quadratic function:

TDiðLmax; v;~mÞ ¼ TDiðcl:max
1

2
Srv2; v;~mÞ ¼ � c2

l:max
1

2pAR
Srv2 ð62Þ

TDiðLmin; vmax;~mÞ ¼ TDið0;1;~mÞ ¼ TDi:max ð63Þ

Because TDi ¼ TDi:max when L = 0, we know that b ¼ TDi:max. From Eq 62 we know that:

� c2
l:max

1

2pAR
Srv2 ¼ aL2 þ TDi:max ¼ aðcl:max

1

2
Srv2Þ

2
þ TDi:max ð64Þ
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Therefore a is:

a ¼
� 2

pARSrv2
�

TDi:max

cl:max 1

2
Srv2

� �2 ð65Þ

The relation between thrust and lift becomes:

TDi ¼
� 2

pARSrv2
�

TDi:max

cl:max 1

2
Srv2

� �2

 !

L2 þ TDi:max ð66Þ

which can also be written as:

TDi ¼
� cl2Srv2

2pAR
þ 1 �

cl2

c2
l:max

� �
p

8
rb2nðiÞUwði; pÞ

2
ð67Þ

All that is left to do is to compute the double integral over the wing span and wing-beat

cycle:

Z 1

p¼0

Z 1

i¼0

nðiÞUwði; pÞ
2didp ð68Þ

Assuming sinusoidal flapping, the position (height) of the wing section i in time is deter-

mined by

sinð
1

2
yÞ sinð2pftÞlwi ð69Þ

where t denotes the time. Differentiating this with respect to t, we get the speed of the wing sec-

tion over time

f 2psinð
1

2
yÞ cosð2pftÞlwi ð70Þ

Assuming an elliptical wing, the double integral is:

1

p

Z 1

p¼0

Z 1

i¼0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � i2
p

ðf 2p sinð
1

2
yÞ cosð2ppÞlwiÞ

2didp ¼

p lwf 2 sinð
1

2
yÞ

� �2Z 1

p¼0

cos2ð2ppÞ
Z 1

i¼0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � i2
p

ðiÞ2didp

ð71Þ

We first compute the inner integral:

Z 1

i¼0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � i2
p

ðiÞ2di ¼
sin� 1i

2
�

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � i2
p

ð
i
2
� i3Þ ð72Þ

and evaluated at x = 1, we get:

p

4
ð73Þ

We thus need to solve

ðf psinð
1

2
yÞlwÞ

2

Z 1

0

cos2ð2ppÞdp ð74Þ
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The solution of the integral is

Z 1

0

cos2ð2ppÞdp ¼
p
2
þ

sinð4ppÞ
42p

ð75Þ

And evaluated at 1 and 0, we get:

1

2
þ

sinð4pÞ

8p
�

1

8p
ð76Þ

Thus the solution of the double integral is

ðf p sinð
1

2
yÞlwÞ

2
ð
1

2
þ

sinð4pÞ

8p
�

1

8p
Þ ð77Þ

Of which by far the most significant factor is the first term. Keeping only the first term, we

get

Z 1

p¼0

Z 1

i¼0

nðiÞUwði; pÞ
2didp �

ðf 2p sinð
1

2
yÞlwÞ

2

4

1

2
¼

1

2
ðf p sinð

1

2
yÞlwÞ

2 ð78Þ

Thus the final thrust becomes:

TDi ¼
� c2

l Srv2

2pAR
þ ð1 �

c2
l

c2
l:max
Þ

p3

16
rb2 sin2 ð0:5yÞf 2l2w ð79Þ

Subsequently, the coefficient for the decrement in thrust due to torque is added, as well as

the friction and body drag, to produce Eq 23.

F Justification of the bounds on visual error. In the absence of any detailed information

on visual processing in falcons, we estimate the magnitude of visual error by the falcon in the

following way. Hodos et al [48] found that the minimum retinal image velocity for the detec-

tion of motion in pigeons is about 8˚s−1. We assume that this detection threshold corresponds

to the point at which the apparent motion due to target motion exceeds the apparent motion

due to random noise. We further assume that the differentiation time of the falcon is 50ms

and that the apparent motion due to target motion must exceed the apparent motion due to

random noise in this short time frame. Therefore, the retinal image must move at least 0.007

rads per 50ms to be perceived. We thus take this value as the bound ξ on the visual error (see

Section B). We acknowledge that this method is somewhat arbitrary, but consider that stating

it in this way helps to provided confidence that the assumed numerical bound on the visual

error is likely to be of about the right order of magnitude.

G Justification of the mechanical constraints. Whether a bird is flapping or gliding,

aerodynamic loads place strain on the muscles, ligaments, and bones, in particular when the

bird is performing maneuvers. In our simulations, the constraints on the production of aero-

dynamic forces are such that the muscles, ligaments and bones would not break or tear in real

birds, and that the power required to produce these forces would not exceed the muscle power

available to counter the resulting torque. Here, we justify that we only need to consider the

constraint on the torque that arises around the shoulder due to lift production, as this con-

straint is likely to be exceeded before any other constraint.

The torque around the shoulder needs to be countered by the flight musculature, including

in particular the pectoralis and supracoracoideus muscles. Bayer et al. [39], provide detailed

measurements of the forces and constraints on these muscles in gliding flight of the domestic

pigeon Columba livia. We use their measurements to verify Pennycuick’s [40] and Tucker’s
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[11] proposal for a general allometric scaling law for maximum lift production in birds. In hor-

izontal gliding flight, lift balances weight (mg). Therefore, each wing carries half the body

weight, which we assume to be applied at half the total wing length (lw) in producing a torque

around the shoulder joint. Because the lever arm of the pectoralis is much shorter than this, it

needs to act with a force of 7mg, where m is mass and g is gravitational acceleration. The maxi-

mum force that can be sustained by the pectoralis is roughly 3 to 4 times the maximum load

that the muscle is required to take in gliding flight [39]. With the wings fully outstretched, this

would imply a maximum acceleration of 3g to 4g, corresponding to an aerodynamic load of

1.5mg to 2mg on each wing, and hence to an aerodynamic moment of 0.75mglw to 1mglw. Pen-

nycuick and Tucker propose the scaling law of a maximum lift of 1.7mg for fully stretched

wings, which corresponds to a torque force of 0.85mglw per wing, exactly in the middle of the

measurements by Bayer et al. [39]. When a bird retracts its wings, the moment arm decreases.

Hence the wing’s maximum load increases. Tucker’s model reveals that peregrine falcons, with

appropriately retracted wings, may experience forces of over 18mg during a pull-out of the

stoop, resulting in 9mg per wing.

Aerodynamic loads also place pressure on the ligaments and bones. Pennycuick [49] exten-

sively examined the strength of pigeons’ (Columba livia) wing bones. He investigated the

breaking points in bending and twisting of the humeri and the radio-ulna. Under simple

assumptions of the lift distribution on the wing during gliding flight and with fully stretched

wings, the lift would need to exceed 16.8 N before torsional or bending pressures would break

the bones. As the weight of his pigeons was on average 0.393 kg, this would imply that the

wings could hold up to 8 or 9 times the body weight, roughly equivalent to the maximum load

that the falcon’s pectoralis can hold when it stoops at high speed. Therefore, the constraint on

torque implicitly contains the constraint on aerodynamic loads due to breaking of bones. Fur-

ther evidence that the peregrine falcon is well adapted to cope with the large aerodynamic

forces that arise during maneuvers in a high-speed stoop is provided by Schmitz et al. [50].

These authors investigated the mechanical properties of the feathers of four species, including

the peregrine falcon, and found that the feathers of the falcon had larger cross-sections and

protrusions than the other species, resulting in a greater bending stiffness, thereby allowing

greater aerodynamic loads.

H Justification of the inertia equation in the model. Here, we derive Eq 32 that deter-

mines the whole body inertia in the model for a given wing retraction. The total roll moment

of inertia Ix0 is the sum of the inertia of the body Ib and the inertia of the wings Iwing.
H.1 Body moment of inertia. The body inertia about the roll axis is only available for one

species (the rose breasted cockatoo; Table 2 of [41]). We apply several allometric scaling laws

to determine the inertia of other species based on these data. According to Nudds and Rayner

[42], we can adopt the body frontal area and mass relation:

Sb ¼ 0:0066m0:68
b ð80Þ

The scaling of the body width has the relation

wb ¼ 0:098m0:35
b ð81Þ

Because these approximately preserve relationships in scaling, the inertia of the body in the

roll direction scales as follows:

Ib ¼ Ib0w2
bmb ¼ Ib00:0982m1:70

b ð82Þ

Where Ib0 is the inertia for a width of 1m and a mass of 1kg. The rose breasted cockatoo weighs

0.293 kg with Ib = 1685.5 � 10−7 kg m2. Therefore, we estimate Ib0 to be 0.1346717. With Ib0, we
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can now estimate the body inertia for other birds. For instance, using these equations, the Ib of

a male Peregrine falcon is estimated to be 448.0 � 10−6 kg m2.

H.2Wing moment of inertia. The wing inertia has been calculated for many species by Ray-

ner and Van Den Berg [43]. Their calculations determine the moment of inertia about the

attachment site of the wing to the body (i.e. the shoulder joint), whereas we are interested in

calculating the moment of inertia of the wings about the center of mass of the bird. There can,

of course, be a considerable difference between these two quantities (see Table 2 of [41]), but

they are easily inter-converted as follows. The moment of inertia about the center of mass is

given by:

Iwing:center ¼
Xn

i¼1

miðri þ xÞ2 ¼
Xn

i¼1

mir
2

i þ
Xn

i¼1

mix
2 þ

Xn

i¼1

mi2rix ð83Þ

where mi is the mass of the ith blade element of the wing, ri its distance from the shoulder

joint, and x the distance from the shoulder joint to the center of gravity. We may restate this

equation in terms of the total mass of the wing mwing and its total moment of inertia about the

shoulder joint Iwing as follows:

Iwing:center ¼ Iwing þ x2mwing þ 2x
Xn

i¼1

miri ð84Þ

where the summation may be calculated using data from Rayner & Van den Berg [43] and

Hedrick & Biewener [30, 41] regarding the mass distribution of the wing. We assume that

the distance x from the shoulder to the center of mass is half the body width. Empirically, if we

do not know the wing length, but do know the body mass, then we can approximate the wing

inertia as follows:

Iwing:center ¼ Iwing þ
1

4
0:0982m0:70

b mwing þ 0:098m0:35

b J ð85Þ

where J is the summation term of Eq 32. And, with a decreased wing span, we calculate:

Iwing:center ¼ Iwing�
2
þ

1

4
0:0982m0:70

b mwing þ 0:098m0:35

b J� ð86Þ

where lwing is the wing length and where ϕ is the fraction of wing retraction defined as:

� ¼
lwing

lwing:max
ð87Þ

Thus the total roll moment of inertia at a given point in time (assuming wing retraction is

symmetrical such that the center of gravity does not change) is:

Ix0 ¼ Ib þ 2ðIwing�
2
þ

1

4
0:0982m0:70

b mwing þ 0:098m0:35

b J�Þ ð88Þ

I Proof that the wing span that maximizes lift also maximizes roll acceleration. Here,

we explain why Eq 19 maximizes the roll acceleration with respect to wing span. Let us call this

maximizing wing span b�. Roll acceleration is maximized when one wing produces the largest

positive lift, and the other wing the largest negative lift. The roll acceleration depends on the
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wing span in the following way:

_o ¼
M
I
¼

bmax
4
�

2Smaxclrv
2

Ib þ 2ðIwing�
2
þ cþ 0:098m0:35

b J�Þ
ð89Þ

with the constraint that M�Mmax. When b> b� the torque will not change, but the inertia

will increase, so the roll acceleration is less. When b< b�, the torque declines by ϕ2, while the

inertia declines less than ϕ2. Therefore, b� maximizes the roll acceleration.

J Derivation of optimal wing retraction. The object of optimizing wing retraction is to

maximize the net thrust minus drag, given a desired lift L�. We assume a simple relation

between wing retraction, aspect ratio and wing area, as proposed by Tucker [11]:

S ¼ Smax
b � bmin
bmax � bmin

ð90Þ

AR ¼
b2

S
¼

b2

Smax
b� bmin

bmax � bmin

ð91Þ

Assuming this relation, the total induced drag becomes:

Di ¼
c2
l

pAR
r

1

2
Sv2 ¼

S2
max

b� bmin
bmax � bmin

� �2

2b2
c2

l rv
2 ð92Þ

and the total thrust minus drag is

TD ¼ �
S2
max

b� bmin
bmax � bmin

� �2

2b2
c2

l rv
2 � cd:fricSmax

b � bmin
bmax � bmin

1

2
rv2 � Dbody þmgcosðbÞ ð93Þ

where β is the dive angle (i.e. the negative of the elevation angle). The optimization becomes:

max
cl;b
fTDg ð94Þ

with the equality constraint that lift equals some desired value:

L� ¼
1

2
clrSmax

b � bmin
bmax � bmin

v2 ð95Þ

and the inequality constraints:

� cl:max < cl < cl:max; bmin < b < bmax ð96Þ

The optimization problem turns out to have a simple solution. Namely, we calculate the

partial derivative with respect to b

@

@b
�

2ðL�Þ2

b2rv2
� cd:fricSmax

b
bmax � bmin

1

2
rv2 þmg cosðbÞ � Dbody

� �

þ
@

@b
cd:fricSmax

bmin
bmax � bmin

1

2
rv2

� � ð97Þ
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then set it to zero

�
4ðL�Þ2

� 2pb3rv2
�

cd:fricSmax
2ðbmax � bminÞ

rv2 ¼ 0 ð98Þ

and solve for b:

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbmax � bminÞ8ðL�Þ

2

cd:fricSmaxðrv2Þ
2

3

s

ð99Þ

When b is less than bmin, b is set to bmin. This new value of b may cause cl to exceed the con-

straint. Therefore, we set cl to cl.max, and solve for the corresponding b. If b is greater than bmax,
we set it to bmax and solve for cl.

K Comparison between flight performance in the model and empirical measurements.

In order for the model results to be relevant for our understanding of real falcons, the flight

performance of model-birds should approximate empirical measurements in falcons and star-

lings, as flight performance is expected to be a key determinant of catch success in a chase.

However, very little is known about the peak flight performance of birds. Most of the flight per-

formance mentioned elsewhere is derived using modeling, and we have mentioned how our

modeling relates to previous models throughout the section A-J. Here, we present the few

coarse comparisons that are currently possible. First, minimum sustained flight speeds (the

minimum speed of the model-starling is 4.5ms−1 and that of the falcon 7.3ms−1; defined as the

minimum airspeed where acceleration > 0 in Fig 3a) correspond closely with the minimum

speeds at which birds fly in wind tunnel experiments (starlings are not reported to fly below

6ms−2 [52, 55, 56]). Warrick [57] reports that the linear acceleration of a starling is approxi-

mately 5.8ms−2 when released to fly through a 2x2x5 tunnel, and our model-starlings linearly

accelerate 4.8ms−2. The top horizontal speed of peregrine falcons has been found to be

27.6ms−1 [58], which is very close to the speed of 28.4ms−1 in the model. Starlings have been

reported to occasionally fly at 22ms−1 during migration [59], so the top speed of 24ms−1 in the

model also seems appropriate. The maximum dive speed of the falcon is 122ms−1 and resem-

bles the speed of 108ms−1 achieved by a peregrine falcon in an unpublished study by National

Geographic (to date, no peer-reviewed articles include measures of the peak performance of fal-

cons in a stoop). The maximum load factors attained in the model are considerably higher than

those measured experimentally. Ponitz et al. [3] report that the load factor of their peregrine fal-

con during pull out was 1.15 (including gravity) at a speed of 20–22ms−1. Model-falcons are

able to generate a load factor of 2.5 at that speed (excluding gravity), but it is reasonable to

assume that a real falcon will generally pull out with a load factor below maximum, to maintain

stability throughout its flight. Lastly, the high roll accelerations of our model birds are of the

same order of magnitude as the roll accelerations measured in pigeons (columba livia) [60]:

pigeons had an average whole body angular acceleration of 601 rad s−2 flying 3–6 ms−1. At that

speed, a model-starling exerts *1200 rad s−2 and a model-falcon *400 rad s−2.

L Tests of convergence of numerical integration. In our simulations, we discretized time

and constructed a set of ordinary difference equations to numerically solve the initial value

problem of the original differential equations (see Eqs 2, 3, 4, 6 and 7). Here we test the conver-

gence of the position, speed and acceleration of predator and prey, as well as the falcon’s catch

success. As we do not have access to the algebraic solutions, we tested the convergence as fol-

lows. The time step of integration in the simulations was reduced iteratively in orders of mag-

nitude until an acceptable discrepancy with next step size of integration was obtained, where
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we define the discrepancy as:

edt ¼
1

k

Xk

n¼1

kf ðdt=10Þ
10n
� f ðdtÞnk ð100Þ

where edt is the discrepancy, k the number of model time steps, f(dt) the difference equation

describing the value of interest, where dt is the applied time step. We simulated trajectories

of stooping falcons (800m altitude and 600m horizontal distance) against erratically or

circularly moving prey, where the initial seeding of random variables was the same for each

applied time step dt and k was chosen such that the falcon intercepted the starling in simula-

tions using one of the time step sizes, and thus for no dt sizes the simulation continued

beyond interception. An acceptable discrepancy was achieved for dt = 1 � 10−4 s (see Table 5

and S4 Fig). Between dt = 1 � 10−4 s and dt = 1 � 10−5 s the catch success varied only 0.13%

which is much lower than the minimum difference in main results between tested conditions

(2%). Beyond dt = 1 � 10−6 s, edt increases due to floating point imprecision.

Additionally, we have tested the convergence and stability of the numerical integration of

Eq 6, in a scenario where convergence is expected to be weak on theoretical grounds. Namely,

when the birds exert large roll accelerations, oscillations around the equilibrium bank angle

may arise at larger dt. S5 Fig shows the bank angle change over time of a falcon stooping at

100ms−1, and exerting a roll acceleration of 5000 rad s−2 using Bang-Bang control to turn pi
rad. The maximum absolute error of a dt = 1 � 10−4 s with respect to dt = 1 � 10−5 s is only 0.007

rad, which is unlikely to affect the model outcome. We note that, although the model equations

are nonlinear, they are inherently stabilizing (i.e. robust to perturbations due to the numerical

scheme), as aerodynamic drag ensures that the speed converges towards an equilibrium point,

and the guidance law ensures that the falcon is attracted to the prey (see the smooth variation

of catch success with respect to variation in initial conditions in Figs 4 and 6).

Supporting information

S1 Fig. Prey accelerations. The figure portrays the distribution of prey accelerations along the

x, y and z axes of the inertial axis system, for smooth and non-smooth maneuvering prey.

(EPS)

S2 Fig. Flight trajectories. Examples of flight trajectories of the falcon when hunting non-

smooth maneuvering prey, and when the navigation constant N of the falcon is low (N< 2).

In some curved flight paths, the peregrine falcon drops below the prey; a phenomenon also

observed in nature.

(EPS)

Table 5. Test of convergence. Falcons stoop from 800m altitude and 600m horizontal distance from the prey. The

prey flies erratically. See Eq 100 for a definition of edt.

measure e10−1 e10−2 e10−3 e10−4 e10−5

distance predator to prey (m) 246.4 11.2 1.1 0.12 4.3

speed predator (ms−1) 23.1 1.1 0.1 0.03 0.9

acceleration predator (ms−2) 53.2 8.1 0.3 0.02 20.2

speed prey (ms−1) 12.7 2.6 0.4 0.02 1.0

acceleration prey (ms−2) 22.8 1.9 0.2 0.03 1.0

catch success (%) 63.2 1.2 0.22 0.13 0.14

https://doi.org/10.1371/journal.pcbi.1006044.t005
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S3 Fig. Alternative delay implementation. In our model, a parameter τ affects both the

differencing time of the line-of-sight, as well as the sample rate from vision to guidance. Here,

we show that our results are not implementation specific. When we implement a continuous

delay function with analytic differentiation, the same qualitative patterns are found: (a) a peak

success at an N value of around 3–4, (b) and an increase in success when the falcon dives from

a high-altitude.

(EPS)

S4 Fig. Example of a trajectory using a time step size 10−4s or 10−5s. The differences of the

trajectories of the prey and predator between step sizes is marginal (i.e. the trajectories con-

verge), and we thus use the larger step size such that run-time of the simulations is minimized.

(EPS)

S5 Fig. Change in bank angle over time for different step sizes. It portrays the bank angle

change over time of a falcon stooping at 100ms−1, and exerting a roll acceleration of 5000 rad

s−2 using Bang-Bang control to turn π rad.

(EPS)

S1 Video. Video of simulated attacks by peregrine falcons in level flight on starlings in

smooth maneuvering flight. The camera is set up to follow the falcon from below at a fixed

position, mimicking how a human observer would view the spectacle. The falcon misses the

starling three times and catches it once. A catch is defined as occurring when the model-falcon

comes within 0.2m of the model-starling. A near-miss occurs (“MISS!” appears on the screen

in the video) when the model-falcon comes within 5.0 m of the model-starling, but subse-

quently finds itself further than this from the model-starling and with the model-starling in

the blind zone of the model-falcon (a cone of 45˚ behind the bird).

(AVI)

S2 Video. Video of simulated attacks by peregrine falcons in level flight on starlings in

straight flight. The starling is caught by the falcon in the two attacks of the video, where a

catch occurs when the falcon comes within 20cm of the starling. Colored ribbons behind the

birds show their recent trajectories, and follow the motion of the wings; the white marker

at fixed time intervals of 0.5s is used to show the speed of the birds along their trajectories.

The wingbeat averaged aerodynamic forces due to flapping are analytically derived and act at

every time step of the model; there is no explicit model of the tail dynamics. We assume that

the lift contribution of the tail is negligible, and that it contributes to the overall body drag

measured empirically.

(AVI)

S3 Video. Video of simulated attacks by peregrine falcons in level flight on starlings in

smooth maneuvering flight. The falcon misses in the first two attacks and catches the star-

ling in the third. A catch is defined as occurring when the model-falcon comes within 0.2m

of the model-starling. A near-miss occurs (“MISS!” appears on the screen in the video)

when the model-falcon comes within 5.0 m of the model-starling, but subsequently finds

itself further than this from the model-starling and with the model-starling in the blind zone

of the model-falcon (a cone of 45˚ behind the bird). Colored ribbons behind the birds show

their recent trajectories, and follow the motion of the wings; the white marker at fixed time

intervals of 0.5s is used to show the speed of the birds along their trajectories. The wingbeat

averaged aerodynamic forces due to flapping are analytically derived and act at every time

step of the model; there is no explicit model of the tail dynamics. We assume that the lift con-

tribution of the tail is negligible, and that it contributes to the overall body drag measured
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empirically.

(AVI)

S4 Video. Video of simulated attacks by peregrine falcons in level flight on starlings in

non-smooth maneuvering flight. The falcon misses the starling three times and catches

it once. A catch is defined as occurring when the model-falcon comes within 0.2m of the

model-starling. A near-miss occurs (“MISS!” appears on the screen in the video) when

the model-falcon comes within 5.0 m of the model-starling, but subsequently finds itself fur-

ther than this from the model-starling and with the model-starling in the blind zone of the

model-falcon (a cone of 45˚ behind the bird). Colored ribbons behind the birds show their

recent trajectories, and follow the motion of the wings; the white marker at fixed time inter-

vals of 0.5s is used to show the speed of the birds along their trajectories. The wingbeat aver-

aged aerodynamic forces due to flapping are analytically derived and act at every time step of

the model; there is no explicit model of the tail dynamics. We assume that the lift contribu-

tion of the tail is negligible, and that it contributes to the overall body drag measured empiri-

cally.

(AVI)

S5 Video. Video of simulated attacks by peregrine falcons in stooping flight on starlings in

non-smooth maneuvering flight. The falcon catches the starling three times and misses it

once. A catch is defined as occurring when the model-falcon comes within 0.2m of the model-

starling. A near-miss occurs (“MISS!” appears on the screen in the video) when the model-fal-

con comes within 5.0 m of the model-starling, but subsequently finds itself further than this

from the model-starling and with the model-starling in the blind zone of the model-falcon

(a cone of 45˚ behind the bird). Colored ribbons behind the birds show their recent trajecto-

ries, and follow the motion of the wings; the white marker at fixed time intervals of 0.5s is used

to show the speed of the birds along their trajectories. The wingbeat averaged aerodynamic

forces due to flapping are analytically derived and act at every time step of the model; there is

no explicit model of the tail dynamics. We assume that the lift contribution of the tail is negli-

gible, and that it contributes to the overall body drag measured empirically.

(AVI)
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