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Summary
Objective: Patients	 with	 absence	 epilepsy	 sensitivity	 <10%	 of	 their	 absences.	
The	clinical	gold	standard	 to	assess	absence	epilepsy	 is	a	24-	h	electroencepha-
lographic	(EEG)	recording,	which	is	expensive,	obtrusive,	and	time-	consuming	
to	review.	We	aimed	to	(1)	investigate	the	performance	of	an	unobtrusive,	two-	
channel	behind-	the-	ear	EEG-	based	wearable,	the	Sensor	Dot	(SD),	to	detect	typi-
cal	absences	in	adults	and	children;	and	(2)	develop	a	sensitive	patient-	specific	
absence	seizure	detection	algorithm	to	reduce	the	review	time	of	the	recordings.
Methods: We	 recruited	 12	 patients	 (median	 age	 =	 21  years,	 range	 =	 8–	50;	
seven	female)	who	were	admitted	to	the	epilepsy	monitoring	units	of	University	
Hospitals	 Leuven	 for	 a	 24-	h	 25-	channel	 video-	EEG	 recording	 to	 assess	 their	
refractory	 typical	 absences.	 Four	 additional	 behind-	the-	ear	 electrodes	 were	 at-
tached	 for	 concomitant	 recording	 with	 the	 SD.	 Typical	 absences	 were	 defined	
as	3-	Hz	spike-	and-	wave	discharges	on	EEG,	lasting	3 s	or	longer.	Seizures	on	SD	
were	blindly	annotated	on	 the	 full	 recording	and	on	 the	algorithm-	labeled	 file	
and	consequently	compared	to	25-	channel	EEG	annotations.	Patients	or	caregiv-
ers	were	asked	to	keep	a	seizure	diary.	Performance	of	the	SD	and	seizure	diary	
were	measured	using	the	F1	score.
Results:We	concomitantly	recorded	284	absences	on	video-	EEG	and	SD.	Our	
absence	detection	algorithm	had	a	sensitivity	of	.983	and	false	positives	per	hour	
rate	of		.9138.	Blind	reading	of	full	SD	data	resulted	in	sensitivity	of	.81,	precision	
of	.89,	and	F1	score	of	.73,	whereas	review	of	the	algorithm-	labeled	files	resulted	
in	scores	of		.83,	.89,	and	.87,	respectively.	Patient	self-	reporting	gave	sensitivity	
of		.08,	precision	of	1.00,	and	F1	score	of	.15.
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1 	 | 	 INTRODUCTION

Typical	absence	seizures	are	episodes	of	sudden	onset	im-
pairment	 of	 consciousness	 accompanied	 by	 regular	 and	
symmetrical	3-	Hz	spike-	and-	wave	discharges	(SWDs)	on	
the	electroencephalogram	(EEG).1	They	appear	in	.7–	4.6	
of	 100  000	 individuals	 across	 the	 general	 population.2	
Typical	absence	seizures	occur	in	three	idiopathic	gener-
alized	epilepsy	syndromes,	namely	childhood	absence	ep-
ilepsy,	juvenile	absence	epilepsy,	and	juvenile	myoclonic	
epilepsy.3

Absence	seizures	place	a	burden	on	the	patient’s	qual-
ity	of	life	due	to	constraints	experienced	in	daily	life,	for	
example,	the	inability	to	drive	a	car	and	difficulties	experi-
enced	at	school	because	of	attention	problems.4	Prognosis	
and	 outcomes	 depend,	 among	 other	 things,	 on	 the	 type	
of	epilepsy	syndrome	and	the	efficacy	of	the	initial	treat-
ment.5	 Nevertheless,	 data	 on	 remission	 rates	 remain	 in-
conclusive	(range	=	51%–	93%)	due	to	sparse	research	and	
the	use	of	heterogeneous	classification	criteria	for	the	di-
agnosis	of	absence	epilepsy	as	well	as	for	remission.6–	8

To	 optimize	 therapy,	 accurate	 seizure	 counting	 is	 par-
amount.	Current	diagnostics	are	based	on	clinical	history,	
in-	hospital	monitoring	of	seizures	with	video-	EEG,	and	sei-
zure	diaries	kept	by	the	patient.	However,	the	latter	poorly	
reflects	 the	 actual	 seizure	 frequency,	 as	 <50%	 of	 seizures	
are	accurately	reported	by	patients.9	Absence	seizures	are	
often	the	most	challenging	seizure	type	to	be	correctly	iden-
tified	by	caregivers,	usually	due	to	the	lack	of	a	visible	clini-
cal	correlate.10	Research	showed	that	patients	reported	only	
6%	 of	 all	 experienced	 absences,11	 whereas	 caregivers	 of	
children	reported	14%.10	Moreover,	the	use	of	gold	standard	
video-	EEG	is	limited	to	the	hospital,	is	expensive,	and	does	
not	allow	for	long-	term	monitoring.9	Other	strategies,	such	
as	ambulatory	EEG,	are	not	available	everywhere,	and	can	
add	to	the	stigma	that	people	with	epilepsy	already	have.12

Therefore,	 the	market	of	wearable	seizure	detection	de-
vices	 has	 been	 growing	 steadily,	 but	 clinical	 adoption	 re-
mains	challenging.13	EEG	 is	 the	only	biosignal	 that	allows	
accurate	 detection	 of	 absences.	 EEG-	based	 wearables	 have	
been	previously	developed,	for	example,	the	ear-	EEG14,15	and	
Epilog16;	however,	little	research	has	been	done	into	wearable	
detection	of	absence	seizures.	In	addition	to	achieving	high	

detection	accuracy,	wearables	should	also	be	designed	to	be	
unobtrusive,	easy	to	wear,	and	nonstigmatizing.17	Accurate	
logging	of	the	frequency	of	seizures	using	a	wearable	would	
significantly	contribute	to	patient	management	in	the	outpa-
tient	setting.	Moreover,	 (semi-	)automated	seizure	detection	
would	facilitate	adoption	in	clinical	practice.

We	report	the	performance	of	an	EEG-	based	wearable	
device	 detecting	 absence	 seizures.	 This	 CE-	marked	 de-
vice,	 the	Sensor	Dot	 (SD;	Byteflies),	 is	a	discrete,18	user-	
friendly	 wearable	 that	 makes	 use	 of	 two	 behind-	the-	ear	
channels	 to	 detect	 seizures.	 This	 device	 was	 developed	
during	SeizeIT1	(2016–	2019).	The	current	study	is	an	ex-
tension	of	SeizeIT1	and	part	of	a	larger	multicenter	trial	
in	which	we	focus	on	clinical	validation	of	the	SD	in	peo-
ple	 with	 typical	 absence,	 focal	 impaired	 awareness,	 and	
generalized	 tonic–	clonic	 seizures	 (EIT	 Health:	 SeizeIT2;	
clinicaltrials.gov:	NCT04284072).19

2 	 | 	 MATERIALSANDMETHODS

2.1	 |	 Patients

Patients	 who	 were	 admitted	 to	 the	 epilepsy	 monitoring	
unit	 (EMU)	 for	 24-	h	 routine	 video-	EEG	 monitoring	 to	
investigate	 refractory	 absence	 epilepsy,	 were	 recruited	
at	 University	 Hospital	 Leuven	 (UZ	 Leuven),	 Leuven,	
Belgium,	between	October	23,	2019	and	February	24,	2020.	
Patients	 were	 included	 if	 they	 had	 refractory	 idiopathic	

Significance:Using	the	wearable	SD,	epileptologists	were	able	to	reliably	detect	
typical	absence	seizures.	Our	automated	absence	detection	algorithm	reduced	the	
review	time	of	a	24-	h	recording	from	1-	2 h	to	around	5–	10 min.
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epilepsy,	seizure	detection	algorithm,	seizure	underreporting,	typical	absence	seizures,	
wearable	seizure	detection

KeyPoints
•	 Absence	 seizures	 can	 be	 accurately	 detected	

using	 an	 unobtrusive	 two-	channel	 EEG-	based	
wearable,	the	Sensor	Dot

•	 The	vast	amount	of	recorded	EEG	data	can	be	
reduced	with	an	automated	absence	seizure	de-
tection	algorithm

•	 Implementation	of	this	algorithm	suggests	im-
proved	 performance	 and	 reduces	 time	 needed	
to	review	a	24-	h	EEG	from	1–	2 h	to	5–	10 min
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generalized	epilepsy	with	typical	absences	and	either	the	
patient	or	a	caregiver	could	keep	a	seizure	diary.	Patients	
with	 an	 implanted	 device,	 for	 example,	 a	 vagus	 nerve	
stimulator,	were	excluded	from	this	study	due	to	possible	
interference	 of	 magnets	 with	 the	 SD	 device.	 Written	 in-
formed	consent	was	obtained	from	every	participant.	The	
ethical	committee	of	UZ/KU	Leuven	approved	this	study.

2.2	 |	 Datacollection

Patients	 underwent	 video-	EEG	 monitoring	 (Schwarzer	
EEG	amplifier,	O.S.G.)	using	the	standardized	25-	electrode	
array	 of	 the	 International	 Federation	 of	 Clinical	
Neurophysiology.20	Behind	each	ear,	 two	additional	Ag/
AgCl	cup	electrodes	(Ambu	Neuroline	cup,	Ambu)	were	
attached	 on	 the	 mastoid	 bone	 for	 concomitant	 record-
ing	with	the	SD.	The	closest	corresponding	electrodes	on	
25-	channel	EEG	were	T7	and	T8	for	the	top	electrode	and	
P9	and	P10	for	the	lower	electrode.	The	SD,	a	small	device	
of	24.5 × 33.5 × 7.73 mm	and	6.3 g,	was	attached	on	the	
upper	back	using	a	patch	(Figure	1),	and	two	bipolar	chan-
nels	 were	 created	 by	 connecting	 the	 ipsilateral	 top	 and	
lower	electrode.	 Impedance	was	≤5 kΩ	at	 the	beginning	
and	checked	throughout.	The	sampling	rate	of	the	SD	and	
video-	EEG	was	250 Hz.	Battery	life	and	memory	storage	of	
the	SD	were	24 h	and	2 Gb,	respectively.

During	 their	 24-	h	 EMU	 stay,	 patients	 and	 caregivers	
(for	 pediatric	 patients)	 were	 also	 asked	 to	 report	 experi-
enced	absences	in	a	seizure	diary.

2.2.1	 |	 Clinical	data analysis

Comparison of SD to 25- channel EEG
BrainRT	 (O.S.G.)	 was	 used	 for	 the	 visualization	 of	 the	
EEG	data.	The	25-	channel	EEG	was	annotated	for	adults	
(W.V.P.)	and	children	(K.J.).	Five	experienced	epileptolo-
gists	(A.V.D.,	C.D.,	E.V.,	L.Se.,	and	W.V.P.)	annotated	the	
two-	channel	SD	EEG	blinded	to	clinical	and	25-	channel	
EEG	data.	In	both	EEG	datasets,	the	onset	and	end	of	all	
3-	Hz	generalized	SWDs,	lasting	3 s	or	more,	were	marked.	
We	will	refer	to	these	annotations	as	"absences".	Examples	
of	absences	on	the	SD	are	shown	in	Figure	2.

First,	 to	 match	 the	 SD	 annotations	 to	 the	 ground	
truth	 EEG	 annotations,	 alignment	 of	 the	 SD	 data	 with	
the	25-	channel	EEG	was	needed.	 In	addition	 to	 the	eas-
ily	 removable	 constant	 offset	 between	 the	 two	 devices,	
clock	drifts	or	jitters	may	cause	nonstable	misalignment.	
Two	 different	 clocks	 on	 the	 devices	 cause	 clock	 drifts.	
Even	 when	 the	 initial	 offset	 is	 removed,	 as	 time	 passes,	
the	difference	between	the	two	clocks	will	result	in	an	in-
crease	in	misalignment.	In	our	case,	the	drift	was	random,	

meaning	that	it	cannot	be	corrected	for.	We	noted	that	the	
maximum	drift	 is	around	3  s/h.	Furthermore,	 jitters	are	
random	variations	in	the	timing	offset	from	measurement	
to	 measurement.	 Instead	 of	 using	 time	 warping	 meth-
ods,21	in	view	of	their	high	complexity,	we	proposed	and	
used	 an	 alternative	 method,	 based	 on	 the	 computation	
of	 the	 cross-	correlation	 of	 the	 two	 signals	 in	 segments.	
After	 resampling	 the	 SD	 at	 the	 same	 frequency	 as	 the	
25-	channel	EEG	and	removing	the	first	5 min	(which	are	
usually	 of	 lower	 quality),	 we	 performed	 the	 alignment	
in	1-	h	segments.	First,	we	removed	the	initial	onset.	The	
cross-	correlation	of	 the	 first	3 h	was	computed,	and	 the	
entire	signal	was	moved	to	obtain	maximal	correlation	for	
this	 segment.	 Then,	 we	 computed	 the	 cross-	correlation	
of	 each	 1-	h	 segment	 with	 the	 respective	 segment	 in	 the	
25-	channel	EEG,	sequentially.	Each	segment	was	moved	
to	obtain	the	maximum	correlation;	all	the	following	seg-
ments	 were	 moved	 with	 the	 same	 number	 of	 samples.	
After	applying	this	method,	the	mean	absolute	misalign-
ment	that	may	occur	over	the	entire	duration	of	the	signal	
was	600 ms.	If	we	segment	the	signal	into	smaller	(<1 h)	
windows,	the	mean	absolute	misalignment	can	be	further	
decreased	at	the	expense	of	computation	time.

Performance metrics: clinical validation
We	 compared	 the	 annotations	 of	 absences	 on	 the	
25-	channel	EEG	and	SD.	Annotation	of	an	overlapping	ab-
sence	on	both	datasets	was	considered	a	true	positive	(TP).	
Annotation	of	an	absence	on	25-	channel	EEG,	but	not	on	
SD	was	considered	a	false	negative	(FN).	Annotation	of	an	
absence	on	SD,	but	not	on	25-	channel	EEG	was	consid-
ered	a	false	positive	(FP).	The	primary	outcomes	were	sen-
sitivity,	precision,	and	F1	score	of	the	SD.	Sensitivity	of	SD	
recordings	evaluates	how	many	seizures	were	successfully	
identified	and	was	calculated	as	follows:	TP	/	(TP	+	FN).	
Precision	of	seizure	detection	was	computed	using	the	fol-
lowing	formula:	TP	/	(TP	+	FP);	this	determines	whether	
a	seizure	detected	on	SD	is	an	actual	seizure.	Finally,	the	
accuracy	of	the	SD	in	comparison	to	the	25-	channel	EEG	
was	measured	using	the	F1	score:	2	×	(precision	×	sensi-
tivity)	/	(precision	+	sensitivity),	giving	a	value	between	0	
(poor)	and	1	(excellent).	This	analysis	was	performed	for	
each	 epileptologist,	 and	 the	 median	 performance	 across	
epileptologists	was	calculated.

To	evaluate	interrater	reliability,	the	intraclass	correla-
tion	 coefficient	 and	 95%	 confidence	 intervals	 were	 mea-
sured,	using	SPSS	version	27	(IBM).	A	mean	rating	(k = 5),	
absolute	 agreement,	 two-	way	 random	 effects	 model	 was	
used.

Patient	 self-	reporting	of	 seizures	 in	a	 seizure	diary	was	
analyzed	in	relation	to	seizure	detection	on	25-	channel	EEG.	
Sensitivity,	precision,	and	F1	score	of	self-	reporting	were	cal-
culated.	If	the	patient	reported	an	event	within	5 min	after	
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the	actual	seizure,	this	was	defined	a	TP.	A	Mann–	Whitney	
U	test	was	performed	for	nonnormally	distributed	data.

2.2.2	 |	 Automatic	analysis with machine 
learning algorithm

We	also	propose	a	personalized	semiautomatic	seizure	
detection	algorithm	for	detecting	absences	on	SD	EEG.	
The	data	with	the	algorithm-	flagged	regions	were	pre-
sented	to	the	epileptologists,	who	only	needed	to	decide	

whether	 the	 flagged	segment	was	an	actual	 seizure	or	
an	 FP,	 leading	 to	 a	 reduction	 in	 review	 time	 (Figure	
1).	 The	 machine	 learning	 (ML)	 algorithm	 was	 imple-
mented	 in	 MATLAB	 2017	 and	 the	 built-	in	 function,	
therein,	 for	 the	 training	 of	 support	 vector	 machines	
(SVMs).

Performance metrics: Validation of algorithm
The	following	metrics	were	applied	to	determine	the	per-
formance	 of	 the	 seizure	 detection	 algorithm	 (following	
the	definitions	in	Vandecasteele	et	al.22):

FIGURE1  Concept	of	the	Sensor	Dot	(SD)	used	as	a	wearable	to	detect	absence	seizures.	(1)	Four	electrodes	(in	orange)	are	placed	behind	the	
ears	of	the	patient	and	connected	to	the	mobile	electroencephalographic	(EEG)	device,	the	SD,	which	is	attached	to	the	upper	back	via	an	adhesive	(in	
blue).	An	enlarged	image	of	the	SD	is	given	in	the	circle.	(2)	After	24	h	of	recording,	the	SD	is	placed	in	the	docking	station,	which	allows	recharging	
of	the	battery.	In	addition,	when	the	SD	is	in	the	docking	station,	the	SD	EEG	data	are	automatically	uploaded	to	the	cloud	via	a	Wi-	Fi	connection.	(3)	
Afterward,	the	absence	detection	algorithm	analyzes	the	data	and	flags	segments	of	interest	(in	red).	(4)	Finally,	the	flagged	data	are	sent	back	to	the	
treating	neurologist,	who	can	then	review	the	flagged	SD	EEG	data	in	a	short	time.



   | 2745SWINNEN et al.

1.	 Detection	 sensitivity:	 TP/TP	 +	 FN.	 A	 seizure	 was	 de-
tected	correctly	(TP)	if	the	detection	occurred	between	
the	 EEG	 onset	 and	 end	 of	 the	 seizure.

2.	 FP	per	hour.	FPs	within	10 s	of	each	other	were	counted	
as	one	FP.

We	will	not	report	specificity	measures,	because	for	
all	 cases	 the	 specificity	 was	 >99%,	 due	 to	 the	 highly	
imbalanced	 classes	 (the	 class	 of	 background	 EEG	 is	
dominant	compared	to	the	class	of	seizure	segments).

Subsampling for balancing the classes
As	a	basis	for	designing	our	algorithm,	the	algorithm	pro-
posed	by	Kjaer	et	al.23	was	used,	which	is	one	of	the	very	
few	 algorithms	 designed	 for	 single	 channel	 absence	

seizure	detection.	We	noticed	that	this	algorithm	suffered	
from	 stability	 issues,	 as	 the	 standard	 deviations	 of	 the	
sensitivity	 and	 the	 false	 alarm	 rate	 were	 high,	 mainly	
arising	 from	 the	 random	 selection	 of	 background	 sam-
ples	 for	 balancing	 the	 classes.	 We,	 therefore,	 exploited	
different	 undersampling	 approaches	 and	 opted	 for	 the	
use	of	an	adapted	version	of	the	cluster-	based	undersam-
pling	approach	proposed	by	Yen	and	Lee.24	The	number	
of	background	samples,	Nk,	selected	from	each	cluster	k	
was	 equal	 to	Nk =mSs

Sbk
Sb

.	 We	 defined	 m	 as	 the	 ratio	 be-

tween	the	background	and	seizure	samples	we	aimed	to	
obtain	in	our	training	set,	K	as	the	number	of	clusters	on	
which	 we	 clustered	 all	 the	 background	 samples,	 and	
Ss, Sb, Sbk	as	the	total	number	of	seizure	samples,	the	total	
number	 of	 background	 samples,	 and	 the	 number	 of	

F I G U R E  2  Examples	of	3-	Hz	spike-	and-	wave	discharges	visible	on	the	two-	channel	Sensor	Dot	during	an	absence	seizure	in	(A)	a	pediatric	
patient	and	(B)	an	adult	patient.	A	high-	pass	filter	of	.53	Hz,	a	low-	pass	filter	of	35	Hz,	and	a	notch	filter	were	applied.	Sensitivity:	100	µV/cm.	Time	
base:	10 s.	Absences	lasting	8 s	(A)	and	5 s	(B)	were	marked.	Ch1#1,	left;	Ch2#1,	right
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background	samples	in	the	k	cluster,	respectively.	A	de-
tailed	 analysis	 on	 how	 the	 selection	 of	 the	 number	 of	
clusters,	K,	affected	the	performance	of	the	subsampling	
can	be	found	in	Yen	and	Lee.24	In	this	study,	m	was	set	
equal	to	25	and	K = Ss.

Preprocessing and feature calculation
Each	 SD	 channel	 was	 filtered	 with	 a	 bandpass	 filter	 (1–	
25 Hz).	Subsequently,	the	data	were	segmented	in	2-	s	win-
dows	with	50%	overlap	and	features	were	calculated	for	each.

We	tried	to	improve	the	performance	obtained	from	the	
features	used	in	Kjaer	et	al.23	by	adding	the	features	used	in	
Vandecasteele	et	al.22	(and	the	use	of	the	aforementioned	
subsampling	method).	To	select	the	subset	of	the	features	
used	in	Vandecasteele	et	al.,22	we	performed	a	feature	selec-
tion	with	random	forests.25	Features	1,	3,	and	11	represent	
the	extra	features	added	to	those	of	Kjaer	et	al.23	The	cross-	
correlation	Features	2	and	10	were	not	normalized	 to	 lag	
0	(contrary	to	those	used	in	Kjaer	et	al.23),	because	we	no-
ticed	that	this	normalization	decreased	their	discriminative	
power.	Our	final	feature	set	is	given	in	Table	1.

The	 13	 different	 features	 were	 extracted	 from	 each	
window	and	each	channel	separately.	Due	to	the	subject-	
dependent	differences	 in	the	amplitude	of	 the	EEG	over	
time,	normalization	of	the	features	was	needed	to	achieve	
optimal	 detection	 of	 seizure	 events.	 We	 have	 used	 the	
median	 decaying	 memory	 as	 the	 optimal	 normalization	
method	for	line	length	features.26

Classification of seizure segments
A	weighted	SVM	with	a	radial	basis	function	kernel	was	
used	 as	 classifier.	 Although	 a	 cluster-	sized	 subsampling	
method	was	used	 for	balancing	 the	clusters,	 the	ratio	m	
was	not	set	to	1	but	equal	to	25,	which	is	why	the	weighted	
version	 of	 the	 classifier	 was	 used.	 The	 weights	 given	 to	
each	nonseizure	and	seizure	data	point	were	N +Ss

2∗N
and

N +Ss
2∗SS

,		
respectively,	 with	 N	 being	 the	 number	 of	 background	
samples	selected	during	the	subsampling	and	Ss	the	total	
number	of	seizure	points.	The	number	of	seizures	per	pa-
tient	 (for	 the	 majority)	 was	 not	 enough	 to	 allow	 having	
both	 a	 training	 set,	 to	 employ	 cross-	validation	 with	 k-	
folds,	and	a	separate	test	set.	When	partitioning	the	avail-
able	data	into	three	sets	(test,	validation,	and	training),	the	
number	 of	 seizures	 that	 could	 be	 used	 for	 learning	 the	
model	would	have	been	drastically	 reduced,	and	 the	 re-
sults	might	be	highly	affected	by	the	random	choice	of	the	
pair	of	(train,	validation)	sets.	Hence,	we	opted	for	nested	
k-	fold	cross-	validation.27,28	The	cross-	validation	approach	
used	was	leave-	one-	seizure-	out,	if	the	subject	had	a	maxi-
mum	number	of	10	seizures.	For	10–	19	seizures,	we	cre-
ated	folds	with	two	seizures	each;	for	20–	29	seizures,	we	
created	folds	with	three	seizures	each,	et	cetera.	The	fold	

splits	were	set	exactly	in	the	middle	of	the	nonseizure	data	
between	two	seizures.

The	 hyperparameters	 were	 optimized	 per	 fold.	 The	
values	of	the	hyperparameters	of	the	SVM	model	(C	and	
gamma)	 were	 selected	 using	 a	 fivefold	 cross-	validation	
of	 the	 “fold-	training	 set”	 (in	 a	 nested-	cross	 validation	
scheme).	The	values	 that	 resulted	 in	 the	maximum	sen-
sitivity	 were	 selected	 (in	 our	 use-	case,	 we	 were	 looking	
for	maximum	sensitivity	to	mark	all	possible	events,	after	
which	 they	 were	 reviewed	 by	 an	 epileptologist).	 Hence,	
the	hyperparameter	search	is	not	likely	to	overfit	the	data-
set,	as	it	is	only	exposed	to	a	subset	of	the	dataset	provided	
by	 the	outer	cross-	validation	procedure.	 In	 the	“inner	k-	
fold	split”	we	optimized	the	hyperparameters,	and	in	the	
“outer	k-	fold	split”	we	estimated	the	generalization	error.

Postprocessing
We	tested	two	versions	of	the	algorithm.	In	the	first	version,	
an	alarm	for	seizure	detection	was	given	when	two	consecu-
tive	windows	were	noted	as	seizures.	In	the	second	version,	
an	alarm	for	seizure	detection	was	given	when	three	consec-
utive	windows	were	noted	as	seizures.	Furthermore,	in	the	
second	version	(hereinafter	called	“postprocessed	version”),	
whenever	two	seizures	(of	three	windows	each)	were	sepa-
rated	only	by	one	nonseizure	window,	they	were	merged.

Clinical validation
Six	 epileptologists	 (A.V.D.,	 C.D.,	 J.M.,	 L.Se.,	 E.V.,	 and	
W.V.P.)	reviewed	the	files	containing	the	labels	made	by	
the	 postprocessed	 version	 of	 the	 algorithm,	 and	 perfor-
mance	was	again	calculated.

T A B L E  1 	 Feature	set	of	the	machine	learning	algorithm

Time	domain (1)	Zero	crossings

(2)	Cross-	correlation	between	two	
consecutive	windows

(3)	Root	mean	square	error	amplitude

Frequency	domain (4)	Power	of	the	signal	in	frequency	
band	1–	30 Hz

(5)	Relative	power	of	the	signal	between	
bands	3–	12 Hz	and	1–	30 Hz

Log-	sum	of	wavelet	transform	after	
resampling	at	128 Hz:	(6)	32–	64 Hz,	
(7)	16–	32 Hz,	(8)	8–	16 Hz,	(9)	2–	4 Hz

(10)	Cross-	correlation	of	same	window	
in	two	different	bands,	3–	12 Hz	and	
1–	30 Hz

(11)	Dominant	phase

(12)	Mean	phase	variance

(13)	Mahalanobis	variance	between	
each	point	of	the	3–	12-	Hz	band	and	
1–	30 Hz
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3 	 | 	 RESULTS

3.1	 |	 Studycharacteristics

We	 included	 12	 patients	 with	 typical	 absence	 seizures,	 of	
whom	 eight	 were	 adult	 and	 four	 were	 pediatric	 patients	
(median	age	=	21 years,	range	=	8–	50 years,	seven	female).	
Further	patient	details	are	given	in	Table	2.	Total	recording	
time	was	237 h,	11 min,	and	21 s.	The	median	recording	time	
for	a	patient	was	20 h,	28 min,	and	22 s	(range	=	13:36:05–	
21:38:47).	In	these	12	patients,	we	recorded	284	absences	on	
25-	channel	EEG	(Table	S1).	We	obtained	a	median	of	13	ab-
sences	(range	=	2–	81),	and	a	median	seizure	duration	of	5 s	
(range	=	3–	22 s).

3.2	 |	 Reviewof full SD EEG  
recording

We	 report	 median	 performance	 across	 five	 epileptologists	
presented	in	an	ascending	order	based	on	their	score.	A	me-
dian	sensitivity	of	.81	(range	=	.52–	.84)	and	median	precision	
of	 .89	(range	=	.53–	.97)	was	obtained.	Ultimately,	a	median	
F1	score	of	.73	(range	=	.63–	.90)	was	obtained.	Sixteen	occur-
rences	of	correctly	annotated	absences	on	SD	were	present	on	
25-	channel	EEG	but	not	annotated.	After	revision	by	an	epi-
leptologist	(W.V.P.),	we	corrected	the	25-	channel	EEG	annota-
tion	and	rated	the	SD	annotation	as	TP.	The	majority	of	FPs	on	
SD	were	due	to	chewing	artifacts	(in	72%	of	all	cases;	Figure	
3A).	 Alternatively,	 seizures	 were	 usually	 missed	 because	 of	
signal	distortion	due	to	muscle	artifacts	and	poor	EEG	quality	
(Figure	3B,C).

3.2.1	 |	 Interrater	reliability

An	 intraclass	 correlation	 coefficient	 of	 .642	 with	 a	 95%	
confidence	interval	of	.564–	.709	was	obtained,	which	cor-
responds	to	moderate	interrater	reliability.

3.2.2	 |	 SD	performance	metrics	of	seizures	
with	a	duration	of	≥4 s

We	observed	that	a	large	number	of	seizures	lasting	3 s	on	the	
25-	channel	EEG	had	a	shorter	duration	on	the	SD	and	hence	
were	missed	(Figure	S1).	We	removed	all	seizures	of	3 s	and	
recalculated	the	performance	metrics	to	observe	potential	in-
fluence.	A	median	sensitivity	of	.86	(range	=		.56–	.88),	precision	
of	.88	(range	=	.51–	.97),	and	F1	score	of	.76	(range	=	.64–	.92)	
was	obtained.

3.3	 |	 Resultsand review of algorithm- 
labeled files

The	three	automated	absence	detection	algorithms	(Kjaer	
et	al.,	our	initial,	and	our	postprocessed	version	of	the	algo-
rithm)	were	tested	on	the	data	of	the	12	subjects.	Results	of	
these	algorithms	for	each	subject	are	presented	in	Table	S2.	
Every	algorithm	ran	30	times.	Kjaer’s	algorithm	had	a	sensi-
tivity	of	.9503	and	FPs/h	of	3.1281.	The	initial	version	of	the	
algorithm	outperformed	it	both	in	sensitivity	and	in	FPs/h	
rate,	with	.9967	and	2.3929,	respectively.	The	postprocessed	
version	significantly	decreased	the	FPs/h	rate	to		.9138	with	
a	concomitant	small	drop	in	sensitivity	to	.983.

Because	 the	 postprocessed	 version	 detected	 >98%	 of	
absences	on	the	SD	EEGs,	with	approximately	62%	fewer	
FP	 detections	 in	 comparison	 with	 the	 first	 version,	 we	
selected	 this	 algorithm	 for	 further	 study.	 We	 presented	
the	algorithm-	labeled	SD	EEG	files	to	the	epileptologists	
for	visual	review	of	seizures.	A	median	sensitivity	of	 .83	
(range	=	.77–	.88),	precision	of	.89	(range	=	.70–	.99),	and	
F1	score	of	.87	(range	=	.73–	.89)	was	obtained.	Although	
the	 medians	 of	 sensitivity	 and	 precision	 did	 not	 change	
considerably,	the	ranges	were	narrower	due	to	fewer	lower	
scores.	 The	 average	 time	 to	 review	 a	 24-	h,	 algorithm-	
labeled	SD	EEG	file	was	5–	10 min,	in	comparison	to	1–	2 h	
for	full	EEG	review	without	automated	annotations.

3.4	 |	 Performanceof patient self- reporting

Self-	reporting	by	patients	or	caregivers	in	seizure	diaries	
was	 compared	 to	 the	 seizures	 detected	 on	 25-	channel	
EEG.	 Seizure	 diary	 data	 were	 missing	 for	 one	 patient.	
Seven	of	11	patients	reported	zero	absence	seizures	during	
the	24-	h	recording,	although	they	had	on	average	19	ab-
sences.	Only	three	of	11	reported	absences,	of	whom	two	
were	pediatric	patients	and	seizure	reporting	was	done	by	
a	caregiver.	Patients	or	caregivers	reported	6%	of	the	3-	Hz	
SWDs	lasting	between	3	and	6 s	and	14%	of	the	3-	Hz	SWDs	
lasting	longer	than	6 s	(Figure	4).	Seizures	that	were	re-
ported	 had	 a	 significantly	 longer	 duration	 (7  s,	 range	 =	
3–	15  s)	 than	 unreported	 seizures	 (5  s,	 range	 =	 3–	22  s;	
p = .001).	Over	11	patients,	a	sensitivity	of	.08,	precision	of	
1.00,	and	F1	score	of	.15	were	obtained.

4 	 | 	 DISCUSSION

We	showed	that	typical	absence	seizures	can	be	accurately	
detected	(F1	score = .73)	using	an	unobtrusive	EEG-	based	
wearable	with	only	 two	behind-	the-	ear	channels.	Visual	
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review	of	the	SD	EEG	files,	annotated	with	our	automated	
absence	detection	ML	algorithm,	suggested	an	even	better	
result	(F1	score = .87)	with	a	review	time	of	only	5–	10 min.

The	situation	of	patients	with	refractory	absence	epi-
lepsy	may	be	improved	by	optimizing	antiepileptic	drugs.	
However,	 the	 current	 basis	 for	 therapeutic	 decision-	
making,	 namely	 the	 seizure	 diary,	 lacks	 objectivity.	
Because	of	the	ability	to	accurately	quantify	3-	Hz	SWDs,	
the	benefits	of	long-	term	EEG	monitoring	to	document	the	

response	to	absence	treatment	had	already	been	reported	
more	 than	25 years	ago.29,30	Long-	term	EEG	monitoring	
using	 current	 equipment	 is	 obtrusive,	 usually	 limited	 to	
24 h,	and	often	performed	in	the	hospital.	Currently,	the	
SD	 may	 allow	 for	 long-	term	 unobtrusive,	 user-	friendly	
monitoring	at	home	and	offers	a	new	and	complete	frame-
work	 to	 ensure	 clinical	 adoption,	 as	 is	 shown	 in	 Figure	
1.	Although	the	accuracy	is	not	perfect,	absences	usually	
occur	very	frequently,	and	therefore	it	seems	that	this	will	

F I G U R E  3  Common	reasons	for	
a	false	positive	(FP)	or	false	negative	
(FN)	annotation	on	Sensor	Dot.	(A)	
Chewing	artifact,	characterized	by	2-	Hz	
slow	waves	with	superimposed	muscle	
artifacts,	which	were	often	mistaken	for	
seizures	(FPs).	(B,	C)	Commonly	missed	
absences	due	to	the	presence	of	chewing	
artifacts	(B)	and	muscle	artifacts	(C).	A	
high-	pass	filter	of	.53	Hz,	a	low-	pass	filter	
of	35	Hz,	and	a	notch	filter	were	applied.	
Sensitivity:	100	µV/cm.	Time	base:	10 s.	
Ch1#1,	left;	Ch2#1,	right
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not	significantly	influence	the	outcome.	Furthermore,	our	
algorithm	requires	confirmation	by	a	physician.	Although	
some	neurologists	might	not	prefer	this	approach,	others	
like	 to	visually	 interpret	 the	EEG	and	propose	a	 therapy	
based	on	seizure	frequency	as	well	as	waveform.	By	con-
trast,	 implementing	 a	 fully	 automated	 seizure	 detection	
would	 require	 an	 algorithm	 with	 a	 low	 computational	
power	 that	 can	 run	 locally	 on	 the	 SD,	 which	 is	 not	 yet	
feasible.

Typical	 absence	 seizures	 are	 characterized	 by	 abrupt	
impaired	 awareness	 and	 brief	 interruption	 of	 activities,	
with	 generalized	 3-	Hz	 SWDs	 on	 EEG.	 In	 our	 study,	 we	
defined	an	absence	as	having	the	latter	characteristics	on	
EEG	for	at	least	3 s.	This	was	done	for	research	purposes	
only,	 considering	 that	 we	 aimed	 to	 study	 whether	 these	
typical	EEG	patterns	would	be	equally	recognizable	using	
only	two	channels.	A	3-	s	3-	Hz	SWD	might	not	always	have	
a	 clinical	 correlate.	 Guo	 et	 al.31	 found	 that	 3-	Hz	 SWDs	
with	impaired	behavior	had	on	average	a	longer	duration	
than	3-	Hz	SWDs	without	impaired	behavior	(7.9 ± 6.6 s	
vs.	3.8 ± 3.0 s).	It	was	actually	the	power	on	EEG	and	func-
tional	magnetic	resonance	imaging,	and	thus	the	intensity	
of	physiological	changes,	at	seizure	onset	that	was	associ-
ated	with	impaired	behavior.	This	means	that	shorter	3-	Hz	
SWDs	may	also	have	a	clinical	correlate,	and	that	it	is	not	
possible	 to	 determine	 whether	 an	 absence	 was	 present	
merely	based	on	3-	Hz	SWD	duration.

In	 this	 study,	 we	 confirmed	 the	 well-	known	 issue	 of	
absence	seizure	underreporting.	Even	patients	with	3-	Hz	
SWDs	lasting	7 s	or	longer	underreported	their	absences	
in	 86%	 of	 all	 cases.	 Unreported	 seizures	 typically	 had	 a	
shorter	duration	(5 s)	than	seizures	that	were	picked	up	by	
patients	or	caregivers	(7 s),	which	is	in	line	with	the	obser-
vation	by	Guo	et	al.31	that	seizures	with	impaired	behavior	
usually	have	a	longer	duration.	Interestingly,	the	precision	

of	reported	absences	was	100%;	that	is,	none	of	the	patients	
reported	an	absence	without	concomitant	3-	Hz	SWD	on	
EEG.	 From	 our	 data,	 the	 reason	 for	 this	 underreporting	
is	unclear	and	warrants	 further	 study.	 In	contrast	 to	 the	
seizure	diary,	the	SD	clearly	reflected	more	accurately	the	
actual	 seizure	 occurrence.	 As	 shorter	 absences	 arguably	
do	 not	 have	 a	 clinical	 correlate,	 patient	 underreporting	
remains	 a	 major	 issue	 even	 when	 absences	 lasted	 long	
enough	to	probably	change	behavior	and	consequently	be	
picked	up	by	someone.	Because	the	SD	EEG	is	an	objective	
measure	of	3-	Hz	SWD	frequency	and	duration,	it	will	by-
pass	several	of	the	problems	with	seizure	diaries,	such	as	
unawareness	of	seizures,	noncompliance,	and	inaccurate	
sensitivity.

We	 showed	 that	 typical	 absence	 seizures	 can	 be	 de-
tected	using	the	SD,	with	a	sensitivity	of	.83;	that	is,	17%	
of	3-	Hz	SWD	lasting	3 s	or	longer	on	the	25-	channel	EEG	
were	missed	on	SD	EEG	and	represented	FNs.	Common	
reasons	for	FNs	were	artifacts.	When	using	only	two	EEG	
channels,	the	presence	of	artifacts	might	distort	the	entire	
signal,	whereas	on	25-	channel	EEG	patterns	might	still	be	
visible	on	the	remaining	leads.	Another	reason	for	not	an-
notating	absences	on	SD	EEG	was	the	location	of	the	elec-
trodes	behind	the	ear.	We	choose	this	location	to	make	the	
device	as	unobtrusive	as	possible.	However,	the	best	loca-
tion	to	record	3-	Hz	SWDs	is	in	the	frontal	regions.32,33	The	
duration	of	3-	Hz	SWDs	on	SD	EEG	was	frequently	some-
what	shorter	compared	to	the	25-	channel	EEG,	which	also	
covered	the	frontal	regions	(Figure	S1).

Furthermore,	 typical	 absences	 were	 detected	 with	 a	
precision	 of	 .89;	 that	 is,	 only	 11%	 of	 3-	Hz	 SWDs	 lasting	
3  s	 or	 longer	 annotated	 on	 SD	 were	 not	 present	 on	 the	
25-	channel	EEG	and	represented	FPs.	The	majority	of	FPs	
were	due	to	chewing	artifacts,	which	resemble	the	SWD	
pattern.	However,	this	chewing	artifact	is	distinguishable	

F I G U R E  4  Percentage	of	seizures	(defined	in	this	study	as	a	discharge	lasting	3 s	or	longer)	of	different	duration	reported	by	the	
patients	themselves	or	by	caregivers	for	children.	(A)	Each	duration	separately.	(B)	Grouped	into	shorter	and	longer	duration	in	relation	to	
the	findings	by	Guo	et	al.31	EEG,	electroencephalographic



   | 2751SWINNEN et al.

from	3-	Hz	SWD	by	its	frequency	(around	2 Hz),	with	su-
perimposed	muscle	artifacts.

The	SD	data	were	read	blindly	twice	by	several	neurol-
ogists,	first	the	full	SD	EEG	file	and	second	the	algorithm-	
labeled	SD	EEG	file.	We	noticed	 that	both	sensitivity	and	
precision	increased	when	the	data	were	reviewed	a	second	
time,	which	in	our	view	reflects	a	 learning	curve	 in	read-
ing	behind-	the-	ear	SD	EEG.	We	speculate	that	it	is	a	matter	
of	familiarization	with	the	signals	and	that	overall	perfor-
mance	will	increase	as	readers	gain	more	experience	in	re-
viewing	SD	data.	It	is	also	possible	that	the	data	reduction	
implemented	by	the	automated	algorithm	allowed	a	shorter	
and	more	focused	review,	leaving	less	room	for	human	error.

The	 proposed	 algorithm	 exhibited	 a	 significant	 differ-
ence	in	sensitivity	to	Kjaer’s	algorithm,23	which	was	mainly	
due	 to	 the	 cluster-	size	 subsampling	 method	 used	 for	 the	
balancing	of	the	classes.	We	have	shown	that	the	use	of	a	
seizure	detection	algorithm	is	timesaving	in	reviewing	24-	h	
SD	EEG	files	of	patients	with	typical	absences.	Our	algo-
rithm	 is	 patient-	specific,	 and	 hence	 data	 from	 each	 new	
patient	are	needed	to	retrain	the	algorithm.	Practically,	the	
first	phase	will	consist	of	routine	monitoring	in	the	EMU,	
after	which	these	data	can	be	used	to	train	the	algorithm.	
The	patient	can	then	wear	the	SD	at	home.	We	argue	that	
the	time	needed	for	annotating	the	hospital	data	is	limited	
compared	to	the	time	needed	for	annotating	extensive	re-
cordings	 in	 the	 home	 environment.	 Furthermore,	 we	 be-
lieve	 that	 the	 increased	 performance	 of	 a	 patient-	specific	
approach	justifies	the	time	needed	to	annotate	a	small	por-
tion	of	the	hospital	data	of	each	patient.

According	to	the	standards	for	testing	and	clinical	val-
idation	 of	 seizure	 detection	 devices,34	 our	 study	 is	 clas-
sified	as	a	Phase	2	study,34	because	the	SD	was	validated	
in	12	in-	hospital	patients	(although	we	recorded	284	sei-
zures)	at	only	one	center	with	subsequent	offline	analysis.	
We	plan	a	Phase	4	study,	in	which	the	accuracy	and	usabil-
ity	of	the	SD	in	a	home	environment	will	be	investigated	
in	a	multicenter	trial	(EIT	Health:	SeizeIT2;	clinicaltrials.
gov:	NCT04284072).19

The	 wearable,	 unobtrusive	 SD	 has	 the	 potential	 to	
become	a	game-	changing	medical	device	in	the	manage-
ment	and	research	of	patients	with	typical	absences.
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