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Abstract Many animals are organized into social groups and have to synchronize
their activities to maintain group cohesion. Although activity budgets, habitat
constraints, and group properties may impact on behavioural synchrony, little is
known regarding how members of a group reach a consensus on the timing of
activities such as foraging bouts. Game theory predicts that pair partners should
synchronize their activities when there is an advantage of foraging together. As a
result of this synchronization, differences in the energetic reserves of the two players
develop spontaneously and the individual with lower reserves emerges as a
pacemaker of the synchrony. Here, we studied the behavioral synchrony of pair-
living, nocturnal, red-tailed sportive lemurs (Lepilemur ruficaudatus). We observed
8 pairs continuously for ≥1 annual reproductive cycle in Kirindy Forest, Western
Madagascar. During focal observations, one observer followed the female of a pair
and, simultaneously, another observer followed the male. We recorded the location
and behavioral state of the focal individual every 5 min via instantaneous sampling.
Although behavioral synchrony of pair partners appeared to be due mainly to
endogenous activity patterns, they actively synchronized when they were in visual
contact (<10 m). Nevertheless, red-tailed sportive lemurs benefit from
synchronizing their activity only for 15% of the time, when they are close
together. The lack of an early warning system for predators and weak support
for benefits via social information transfer in combination with energetic
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constraints may explain why red-tailed sportive lemurs do not spend more time
together and thus reap the benefits of behavioral synchrony.

Keywords Behavioral synchrony . Coordination . Red-tailed sportive lemurs .

Sociality

Introduction

Many animals are organized into social groups that differ in size from a few
individuals to several millions, as well as in composition, permanence, and cohesion.
Group living implies several benefits, but also costs for individual group members.
Many of the benefits are related to reduced per capita predation risk, e.g., shared
vigilance or predator confusion, whereas costs of group living include increased
intragroup feeding competition (Alexander 1974; Bertram 1978; Fichtel in press). In
general, to reap the benefits of group living, animals need to coordinate their
activities to stay cohesive (Conradt and Roper 2003, 2005). To maintain cohesion
individuals need to synchronize their activities, such as foraging, resting, and
locomotion (Conradt and Roper 2000; King and Cowlishaw 2009; Rands et al.
2008; Ruckstuhl and Neuhaus 2000). Synchronized behavior occurs when
individuals perform the same activity simultaneously. Because individuals differ in
their interests and needs (Altmann 1980; Cheney 1987; Fichtel et al. 2010; King and
Cowlishaw 2009; Rands et al. 2003; Sueur et al. 2010), lower behavioral synchrony
is expected at the group level. In general, activity, habitat and group-related
processes may contribute to patterns of variability in behavioral synchrony at the
group level.

The activity-budget hypothesis suggests that differing physiological demands
among individuals as a consequence of differences in reproductive state, age, or sex
can influence synchrony patterns within groups. This can then result in segregation,
as shown in many ungulates (Barrett et al. 2006; Conradt and Roper 2000; Fischhoff
et al. 2007; King and Cowlishaw 2009; Ruckstuhl 1999). Temporal group-related
processes such as visual or auditory isolation, as a consequence of interindividual
distances, may also result in reduced synchrony due to a reduced opportunity for the
use of socially transmitted information such as signals or cues (group structure
hypothesis: Cortopassi and Bradbury 2006; Dostálková and Spinka 2007; Fichtel
and Manser 2010; King and Cowlishaw 2009). Finally, the habitat-constraints
hypothesis suggests that synchrony breaks down in groups that feed on scattered
food items in a heterogeneous habitat because not all group members are able to
forage together (King and Cowlishaw 2009; Vahl et al. 2007).

Although these hypotheses explain which factors may hamper behavioral
synchrony, little is known of how members of a group reach a consensus on the
timing of activities such as foraging bouts (Rands et al. 2003). A dynamic game
theoretical model of foraging and resting patterns in pairs, the smallest social unit,
suggests that each individual chooses between resting and foraging to maximize its
own survival, but that individuals synchronize their activities when there is an
advantage of foraging together (Rands et al. 2003, 2008). As a result of this
synchronization, differences in the energetic reserves of the two players spontane-
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ously develop and the individual with lower reserves emerges as a pacemaker of
synchrony, suggesting a simple process of how consensus can be reached within
pairs.

Here, we studied behavioral synchrony in pair-living, nocturnal red-tailed sportive
lemurs (Lepilemur ruficaudatus). Because most studies of behavioral synchrony
have been conducted in group-living species, we asked whether the activity-budget,
habitat, or group structure hypotheses can account for variation in behavioral
synchrony in a pair-living species. Red-tailed sportive lemurs are an interesting
model species because they are organized into dispersed pairs, which means that a
male and a female occupy and defend a common home range but pair partners
move mostly solitarily throughout their home range, spending only 15% of their
time at <10 m of one another (Zinner et al. 2003). Because red-tailed sportive
lemurs show vigilance (Fichtel 2007) and benefit from the confusion and dilution
effect, we assume that behavioral synchronization might be advantageous. Thus,
red-tailed sportive lemurs should synchronize their behavior to reap benefits of
group living, i.e., reduced individual predation risk.

According to the activity-budget hypothesis, variation in energetic states might be
lowest and less variable at the beginning of their active period, when individuals are
hungry. We predict that red-tailed sportive lemurs’ foraging synchrony is highest
during their first activity bout (activity-budget hypothesis). During the course of the
night, energetic states and hunger levels might be more variable (Limmer and Becker
2007; King and Cowlishaw 2009), resulting in more variable foraging synchrony.
Because group-related processes impact on synchrony when individuals are out of
visual or auditory reach, we predict that synchrony should decrease when pair
partners are out of sight (group-structure hypothesis).

The habitat-constraints hypothesis predicts that scattered food distribution in a
heterogeneous habitat leads to a decrease in synchrony. Because red-tailed sportive
lemurs are folivorous and food is not scattered (Ganzhorn 2002), pair partners
should be able to feed in the same tree, facilitating synchrony. However, Madagascar
is characterized by a pronounced seasonal variation with a short rainy season and a
long dry season in which food is less abundant (Dewar and Richard 2007). Because
feeding competition also plays an important role in folivorous primates (König et al.
1998; Snaith and Chapman 2008), we predict that behavioral synchrony is lower in
the dry season owing to lower food availability.

Finally, red-tailed sportive lemurs are sexually monomorphic and differ in neither
body size nor body mass (Hilgartner et al. 2008). According to the game-theoretical
model, females should emerge as the pacemakers of the synchrony during gestation
and lactation due to higher nutritional demands.

Methods

Study Site

We conducted this study in Kirindy Forest, Western Madagascar, where the German
Primate Center (DPZ) operates a field research station. The local climate is
characterized by pronounced seasonality with a short rainy season from November
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to March, followed by a longer dry season with little or no rain from April to
October (Kappeler and Fichtel 2012; Sorg et al. 2003).

The core area has small trails every 25 m, and is surrounded by additional trails at
50 m along the edges of the core area. Each trail intersection is marked with a plastic
tag for orientation, so that the spatial location of subjects could be assessed easily.
We mapped the entire grid system and determined the coordinates of each
intersection.

Capture and Marking

We caught red-tailed sportive lemurs by hand or by placing a live trap at the tree
hole entrance. We briefly anesthetized them with GM2 (Rensing 1999) and marked
subjects with a unique subcutaneously injected transponder (Trovan, Usling,
Germany). We equipped adult individuals captured within the core area of our
study site with 9-g radio collars (Biotrack, Wareham Dorset, UK), which is <3% of
the individual’s body mass. We removed radio collars at the end of the project.
Capture and marking complied with the current laws of Madagascar.

Data Collection

We collected data from 8 pairs that we observed over 24 mo between 2002 and
2004, for a total of 2080 observation hours. We observed each pair for ≥1
reproductive cycle, including premating (February–April), mating (May–June),
gestation (June–October), and birth/weaning period (November–January)
(Hilgartner et al. 2008). We followed radio-tagged individuals with radio-tracking
equipment from Telonics (Mesa, AZ). We observed the subjects mainly during the
first half of the night (18:00–02:00 h) with the aid of a headlamp and the occasional
use of a strong flashlight and binoculars. R. Hilgartner and a Malagasy field assistant
followed the pair partners simultaneously for 2 h using focal animal sampling
(Altmann 1974). At 5-min intervals, we recorded the exact location, as well as the
behavioral state (foraging, resting, locomotion) of each focal individual (instanta-
neous sampling: Altmann 1974). Observer distance from the focal individuals varied
between 1 and 15 m. We recorded social interactions between pair partners and
among neighbors via all-occurrence sampling.

Data Analysis

We analyzed the spatial data with the Animal Movement extension for ArcView®

(Hoge and Eichenlaub 1997). For the analysis of behavioral synchrony we included
only observation bouts in which both pair partners could be observed, resulting in a
total of 4673 observation bouts. To estimate synchrony between pair partners, we
estimated the probability of pair partners exhibiting the same activity across 2
distance categories: near (<10 m apart) and far (>10 m apart, ranging from 11 to
180 m). The intrapair distance of <10 m was selected as the criterion for
synchronization, because it most likely permits visual contact between partners
(Hilgartner 2006). To assess whether the behavior of the male and female in a pair is
synchronized we compared the observed and expected frequencies of synchrony
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assuming male and female behaviors are independent (Table I). Synchrony is
indicated if the observed frequencies in the diagonal of the table are larger than the
corresponding expected frequencies. Cohen’s κ (Cohen 1960) provides a
measure of the extent to which there is synchrony in the behavior of males and
females; a value >0 indicates more synchrony than is expected purely by chance.

To test whether behavioral synchrony of red-tailed sportive lemurs is influenced
by time, season, and distance between pair partners, we fitted a generalized linear
mixed model (logit link function). Synchrony of activity, i.e., male and female of a
given pair exhibiting the same activity was used as the binomial response term. Time
of night (18:00–19:00, 19:00–20:00, 20:00–21:00, 21:00–22:00, 22:00–23:00,
23:00–24:00, >24:00 h), season (rainy or dry), and distance of the pair partner
(near or far) were used as fixed factors. Pair identity was used as a random factor to
control for potential pair effects. We used maximum likelihood ratio tests to test the
model with fixed factors against the null model including only the intercept and
random factors (Faraway 2006). The GLMM were fitted using R (R Development
Core Team, Vienna, Austria, 2010) with the lme4-package (Zuur et al. 2009). We
entered all predictor variables simultaneously because stepwise procedures lead to
inflated type I error rates (Mundry and Nunn 2009).

To determine which sex emerges as a pacemaker of the synchrony we looked at each
observation point at which both pair partners performed the same behavior and
calculated how often each sex already exhibited this behavior at the observation bout
before, considering this as an initiation of behavioral synchrony. We compared the
number of initiations by sex in each behavioral season (mating, gestation, and lactation)
with an exact binomial test (Agresti 2002). The (2-sided) test was implemented using
the function binom.test of R (R Development Core Team, Vienna, Austria, 2010).

Results

Behavioral Synchrony

Red-tailed sportive lemurs spent most of their time resting, less time foraging, and
the least time locomoting. Females and males showed highly synchronized behavior
throughout their activity period, with an increase in foraging at the beginning of their
active time between 19:00 and 20:00 h (Fig. 1). The Cohen’s κ index revealed that a

Table I Observed frequencies for a single pair in the time interval 20:00–21:00 h and the corresponding
expected frequencies under the hypothesis of independent behavior

Observed frequencies Expected frequencies

Male
resting

Male
foraging

Male
locomoting

Male
resting

Male
foraging

Male
locomoting

Female resting 41 15 4 28.9 24.4 6.8

Female foraging 21 36 9 31.8 26.8 7.4

Female locomoting 2 3 2 3.4 2.8 0.8
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given pair synchronized its behavior more often than expected by chance (Fig. 2).
The observed frequencies of synchronized behaviors were higher than the expected
frequencies in all time intervals (Table II).

The probability that red-tailed sportive lemurs were foraging was higher when the
partner was also foraging close by (<10 m) than when he or she was far away (>10 m;

Fig. 1 Mean percentage of time
spent resting, foraging, and
locomoting for females (N=8)
and males (N=8). The vertical
lines represent approximate 95%
confidence intervals.

Fig. 2 Boxplots of Cohen’s κ; 0 corresponds to independent behavior. Each boxplot summarizes the
coefficients for the 8 pairs in a given time interval. The numbers (2/8, 2/8, …,4/8) represent the number of
pairs for which the hypothesis of independent behavior is rejected at 10% level of significance using
Fisher's test.
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Fig. 3; Table III). In addition, there was a clear pattern during the course of the night,
with the highest probability of foraging synchrony around 19:00 h and the lowest
probability of foraging synchrony around 24:00 h, independent of the partners’
activities at near or far distance (Fig. 3; Table III; females foraging: GLMM: χ2=
287.1, df=10, p<0.001; males foraging: GLMM: χ2=222.26, df=10, p<0.001). The
probabilities of red-tailed sportive lemurs resting or locomoting also varied during the
course of the night and were highest when the partner exhibited the same behavior
when he or she was near (Fig. 3; Table III; females resting: GLMM: χ2=378.12,

Time interval Observed Expected Difference

18–19 188 160 28

19–20 434 338 96

20–21 433 380 53

21–22 452 438 14

22–23 394 352 42

23–24 311 288 23

24– 367 346 21

Table II Number of times that
the female and male displayed the
same behavior (summed over all
8 pairs), the expected frequencies
under the hypothesis of indepen-
dent behavior, and the differences
between the observed and
expected frequencies

Fig. 3 Probabilities of female and male red-tailed sportive lemurs resting, foraging, or locomoting when
the partner did the same or not, respectively, within 10 m or when the partner did the same or not when
they were far (>10 m) away during the rainy and the dry season.
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Table III Estimate, SE, and p-value for each model describing the probability that a red-tailed sportive
lemur is resting, foraging, or locomoting as a function of time of the night and the partner’s activity and
season at the 2 distance classes

Fixed effects Estimate (SE) p-value Estimate (SE) p-value

Model for foraging Females Males

Intercept 0.16 (0.21) 0.44 0.23 (0.21) 0.26

19:00–20:00 h 0.37 (0.14) 0.008 0.16 (0.14) 0.23

20:00–21:00 h −0.17 (0.14) 0.23 −0.18 (0.14) 0.19

21:00–22:00 h −0.43 (0.14) 0.002 −0.46 (0.14) 0.001

22:00–23:00 h −0.46 (0.15) 0.002 −0.46 (0.15) 0.002

23:00–24:00 h −0.50 (0.16) 0.001 −0.48 (0.16) 0.002

24:00+h −0.52 (0.15) <0.001 −0.64 (0.16) <0.001

Dry season −0.50 (0.07) <0.001 −0.45 (0.07) <0.001

Partner foraging
far (>10 m)

−0.14 (0.17) 0.42 −0.37 (0.17) 0.03

Partner not foraging
near (<10 m)

−1.18 (0.20) <0.001 0.20 (0.20) <0.001

Partner not foraging
far (>10 m)

−0.51 (0.17) 0.002 0.17 (0.17) <0.001

Model for resting Females Males

Intercept 0.70 (0.19) <0.001 0.68 (0.17) <0.001

19:00–20:00 h −0.41 (0.13) 0.002 −0.25 (0.13) 0.06

20:00–21:00 h 0.17 (0.14) 0.21 0.19 (0.14) 0.16

21:00–22:00 h 0.42 (0.14) 0.002 0.41 (0.14) 0.002

22:00–23:00 h 0.53 (0.14) <0.001 0.39 (0.14) 0.006

23:00–24:00 h 0.57 (0.15) <0.001 0.38 (0.15) 0.009

24:00+ h 0.61 (0.15) <0.001 0.60 (0.15) <0.001

Dry season 0.53 (0.07) <0.001 0.52 (0.07) <0.001

Partner resting
far (>10 m)

−0.64 (0.12) <0.001 −0.60 (0.12) <0.001

Partner not resting
near (<10 m)

−1.24 (0.18) <0.001 −1.29 (0.18) <0.001

Partner not resting
far (>10 m)

−1.08 (0.13) <0.001 −1.03 (0.12) <0.001

Model for locomoting Females Males

Intercept −1.46 (0.46) 0.001 −1.35 (0.42) 0.001

19:00–20:00 h 0.19 (0.24) 0.43 0.25 (0.22) 0.25

20:00–21:00 h −0.07 (0.25) 0.78 −0.08 (0.23) 0.72

21:00–22:00 h −0.10 (0.25) 0.69 −0.03 (0.22) 0.88

22:00–23:00 h −0.46 (0.28) 0.09 0.03 (0.23) 0.9

23:00–24:00 h −0.47 (0.29) 0.11 0.03 (0.24) 0.89

24:00+h −0.67 (0.30) 0.03 −0.24 (0.23) 0.33
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df=10, p<0.001; males resting: GLMM: χ2=316.43, df=10, p<0.001; females
locomoting: GLMM: χ2=36.72, df=10, p<0.001; males locomoting: GLMM: χ2=
35.89, df=10, p<0.001). Thus, red-tailed sportive lemurs appear to synchronize their
behavior when they are close together, but their activity patterns appear to be
controlled by time of the night, i.e., most likely by a strong endogenous activity
rhythm.

Season also influenced synchrony patterns: the probability of foraging was lower
in the dry season than it was in the rainy season (Fig. 3; Table III). Again, activity
patterns during the course of the night influenced the probability of foraging,
independent of partners’ activities across distance categories. Similarly, probabilities
that red-tailed sportive lemurs were resting were higher in the dry season than in the
rainy season (Fig. 3; Table III).

Pacemaker

Because red-tailed sportive lemurs actively synchronized their behavior when they
were within 10 m, we used the exact binomial test to test the hypothesis that a given
behavior was as likely to be initiated by the female as it was by the male (Table IV).
We could not reject this hypothesis during any of the 3 periods: mating (p=0.125),

Table III (continued)

Fixed effects Estimate (SE) p-value Estimate (SE) p-value

Dry season −0.36 (0.13) 0.005 −0.37 (0.10) <0.001

Partner locomoting
far (>10 m)

−0.78 (0.42) 0.06 0.56 (0.42) 0.18

Partner not locomoting
near (<10 m)

−0.85 (0.40) 0.04 −0.01 (0.40) 0.01

Partner not locomoting
far (>10 m)

−0.85 (0.38) 0.02 −0.63 (0.38) 0.09

The reference categories are for time: 18:00−19:00 h, for season: rainy season, partner’s activity: resting,
foraging or locomoting near (<10m).

Estimates of the variance for the random effects are: foraging females (0.040), foraging males
(0.018), resting females (0.072), resting males (0.007), locomoting females (0.158), and locomoting
males (0.029).

Season Females Males

Mating 21% (6) 3% (1)

Gestation 17% (2) 25% (3)

Lactation 17% (5) 17% (5)

Table IV Percentage (number)
of initiations of foraging, resting,
or locomotion when both pair
partners were at a range
of <10 m
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gestation (p=1.000), and lactation (p=1.000). Thus there is no evidence to support
the notion that either sex acted as pacemaker of the synchrony.

Discussion

The results of this study show that overall behavioral synchrony in red-tailed
sportive lemurs is high, suggesting that synchrony might be triggered mainly by
endogenous activity rhythms. As predicted by the activity-budget hypothesis,
foraging synchrony was highest during the first activity bout around 19:00 h. In
addition, as predicted by the group-structure hypothesis, behavioral synchrony was
higher when pairs were in visual contact than when they were far away. In contrast
to the habitat-constraints hypothesis, seasonal differences in food abundance
influenced red-tailed sportive lemurs only insofar as they exhibited lower
probabilities of foraging synchrony during the dry season when food is less
abundant but higher probabilities of resting synchrony in comparison to the rainy
season. Thus, seasonal changes merely influenced the distribution of activity patterns
but not behavioral synchrony. Finally, in contrast to the predictions of the game-
theoretical model and the activity-budget-hypothesis, females did not emerge as
pacemakers of the synchrony during gestation and lactation due to higher nutritional
demands. Because we recorded the behavior of red-tailed sportive lemurs only every
5 min, it is likely that this time interval was too long to detect any pacemaker;
shorter time intervals between observation bouts might have been more appropriate
for this question. The sample sizes available for testing this hypothesis were also
rather small and our analyses therefore lacked statistical power.

Although behavioral synchrony in red-tailed sportive lemurs seems to be due
mainly to an endogenous activity rhythm, they nevertheless appear to synchronize
their behavior actively when they are close. However, pairs spent only 15% of
observation time within 10 m (Hilgartner 2006). Hence, the question arises: If
behavioral synchrony is beneficial, why do red-tailed sportive lemurs not spend
more time close together to reap its benefits? In particular, the shift from a solitary to
a pair-living life style entails the highest benefits in terms of individually reduced
predation risk through shared vigilance (Caro 2005; Elgar 1989; Lima 1995),
predator confusion, and dilution effect (Hamilton 1971; Miller 1922). Advantages of
reduced individual predation risk have also been suggested to be one of the driving
forces in the evolution of social monogamy (van Schaik and Kappeler 2003).

Because red-tailed sportive lemurs are nocturnal and might be constrained in their
ability to detect predators reliably due to reduced visibility at night, one may argue
that vigilance may be less beneficial in nocturnal species. However, studies of
antipredator strategies in red-tailed sportive lemurs and another nocturnal primate,
gray mouse lemurs (Microcebus murinus), demonstrated that they do increase the
rate of vigilance after presentation of predator calls or alarm calls (Fichtel 2007;
Rahlfs and Fichtel 2010), suggesting that vigilance may also provide benefits in
nocturnal primates. Thus, in theory, the benefits of vigilance and the confusion and
dilution effects should drive red-tailed sportive lemurs to spend more time together.
Because red-tailed sportive lemurs do not rely on early warning of predators and
produce alarm calls only when predators directly attack them (Fichtel 2007), lacking
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benefits of early warning of predators may outweigh the benefits of vigilance and the
confusion and dilution effects.

Other benefits of group-living species are joint resource defense and increasing
foraging benefits through transmission of social information (Alexander 1974;
Bertram 1978; Valone 2007). Although joint territorial defense has not been
observed (Hilgartner 2006), red-tailed sportive lemurs may nevertheless benefit from
both pair partners defending the territory independently. Another advantage of
sociality is the acquisition of socially transmitted information about locations and
qualities of food resources by foraging at the same time and by monitoring foraging
success of others. Because female red-tailed sportive lemurs park their infants in the
vegetation during the first months of life while they themselves are foraging
(Kappeler 1998), social learning of food items may not play such a prominent role as
in diurnal primates that carry their infants during the first months of life (Jaeggi et al.
2010; van Schaik 2010). Although future studies are required to understand the
extent to which social learning is important for nocturnal primates, the ontogenetic
perspective suggests that social information of food resources may not play may an
important role in these infant-parking nocturnal primates. In principle, competition
over food resources may explain avoidance of pair partners. However, red-tailed
sportive lemurs show overall low rates of aggression, and aggression occurred only
in 2% of the observations during foraging (Hilgartner 2006), indicating that feeding
competition does not compensate for spending more time together.

In support of the activity-budget hypothesis, we found that, independent of
season, red-tailed sportive lemurs foraging synchrony was highest after they have
become active around 19:00 h and decreased throughout the night. In contrast,
synchrony in resting increased steadily throughout the night. Because, in general,
red-tailed sportive lemurs need a relatively large proportion of resting to sustain the
slow processes of leaf fermentation and detoxification of the highly folivorous diet
in specialized digestive tracts (Schmid and Ganzhorn 1996), resting synchrony might
be a pseudo-synchrony resulting from physiological factors rather than an active
synchrony to reach a consensus.

Interestingly, red-tailed sportive lemurs exhibit the lowest metabolic rates among
mammals (Schmid and Ganzhorn 1996), suggesting that energy constraints may
hamper behavioral synchrony because adjusting the endogenous activity rhythm to
that of the partner might be too costly. Because such constraints of variation in
individual activity budgets affect behavioral synchrony in several ungulates and
primates (King and Cowlishaw 2009; Michelena et al. 2006; Ruckstuhl 1999), it is
important to incorporate such costs into future models to bridge the gap between
theoretical and empirical work on group coordination and decision making (Kerth
2010; Pyritz et al. 2010).

In summary, we found mixed evidence for the game-theoretical model and the
activity-budget, group-structure, and habitat-constraints hypotheses. Behavioral
synchrony in pair-living red-tailed sportive lemurs appears to be due mainly to
endogenous rhythms, supporting the activity-budget hypothesis. Seasonal differ-
ences influenced only the distribution of activities but not synchrony per se, and thus
provide no direct support of the habitat-constraints hypothesis. In support of the
game-theoretical model and group structure hypothesis, red-tailed sportive lemurs
actively synchronized their behavior when they were near one another, although they
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spent only 15% of time in close contact. The lack of an early warning system against
predators, which may outweigh benefits of other antipredator behaviors, and weak
support for benefits via social information transfer in combination with energetic
constraints, may have led to red-tailed sportive lemurs not spending more time
together to reap the benefits of behavioral synchrony.

Finally, synchrony may be triggered either by environmental processes, where
similar ecological constraints result in individuals exhibiting similar behaviors
independently (Engel and Lamprecht 1997), or by social processes. In chacma
baboons (Papio ursinus), social mechanisms promoting stronger group cohesion
resulted in higher levels of behavioral synchrony (King and Cowlishaw 2009),
suggesting that social processes play an important role in triggering synchronization.
Because red-tailed sportive lemurs are organized into dispersed pairs whereas other
nocturnal pair-living primates such as avahis (Avahi laninger) or tarsiers (Tarsius
spp.) spent more time together (Gursky 2000; Norscia and Borgognini-Tarli 2008),
comparative studies of these primates may provide important insights into the
evolution of behavioral synchrony and sociality (Fichtel and Hilgartner in press).
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