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Abstract
Coarctate reactions are defined as reactions that include atoms at which two bonds are made and two bonds are broken simulta-

neously. In the pursuit of the discovery of new coarctate reactions we investigate the fragmentation reactions of cyclic ketals. Three

ketals with different ring sizes derived from indan-2-one were decomposed by photolysis and pyrolysis. Particularly clean is the

photolysis of the indan-2-one ketal 1, which gives o-quinodimethane, carbon dioxide and ethylene. The mechanism formally corre-

sponds to a photochemically allowed coarctate fragmentation. Pyrolysis of the five-ring ketal yields a number of products. This is in

agreement with the fact that coarctate fragmentation observed upon irradiation would be thermochemically forbidden, although this

exclusion principle does not hold for chelotropic reactions. In contrast, fragmentation of the seven-ring ketal 3 is thermochemically

allowed and photochemically forbidden. Upon pyrolysis of 3 several products were isolated that could be explained by a coarctate

fragmentation. However, the reaction is less clean and stepwise mechanisms may compete.
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Introduction
Pericyclic reactions, according to the original definition, are

characterized by a cyclic array of bond making and bond

breaking [1-3]. At each atom, involved in the reaction, one bond

is made and one bond is broken. However, there are a number

of reactions that include a linear system of atoms, or at least one

atom, at which two bonds are made and two bonds broken sim-
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Scheme 1: Coarctate fragmentation of the spiroozonide derived from methylenecyclopropane.

ultaneously. Nevertheless, their transition states exhibit a cyclic

overlap of basis orbitals. The orbital basis can be derived from

the orbital basis of pericyclic transition states by constriction

(coarctation, Figure 1). Hence, these reactions have been coined

“coarctate” reactions [4,5].

Figure 1: Formal, topological approach to derive coarctate reactions
from pericyclic reactions; p, q: number of atoms or basis orbitals in the
terminator groups T and T’; n: number of orthogonal pairs of basis
orbitals in the transition state of coarctate reactions.

Similar to pericyclic reactions [6], rules were derived to predict

their stereochemistry, and whether they would be thermochemi-

cally or photochemically allowed. The atom (or the linear

system of atoms) at which two bonds are made and broken,

each contribute two basis orbitals to the transition state

(Figure 1, bottom, right). A cyclic array of orbitals is attained if

the linear system of orbital overlap at each end is bound by

terminating groups, e.g. a lone pair, or two atoms to form a

three-ring, or four atoms to a five-ring, etc. Similar to peri-

cyclic reactions, thermochemical coarctate reactions proceed via

Hückel transition states, if the number of delocalized electrons

in the transition state is 4n + 2, and they exhibit Möbius tran-

sition states with 4n electrons. If in a formal, topological trans-

formation a closed ribbon is transformed into a coarctate band,

the two loops T and T’ that are formed are coplanar. The analo-

gous transformation of a Möbius ribbon leads to a band whose

loops are orthogonal with respect to each other (Figure 2).

Figure 2: Stereochemistry of coarctate reactions derived from a
Hückel (top) and a Möbius band (bottom). The terminator loops T and
T’ are coplanar in the coarctate Hückel system and orthogonal in the
coarctate Möbius transition state.

Following the above principle we developed a number of novel

coarctate reactions [7-11], several of which provide synthetic

access to a broad range of heterocycles [12-21]. Synthetically

probably less useful, but suitable to check the coarctate stereo-

chemical rules, is a peculiar fragmentation reaction that we

discovered 15 years ago (Scheme 1) [9,10].

The reaction proceeds spontaneously at temperatures below

−80 °C. Quantum chemical calculations of the parent reaction

predict an activation barrier of 11.3 kcal/mol and a concerted

mechanism. This is in agreement with the stereochemical rule

that a coarctate reaction with eight (4n) electrons should

proceed via a Möbius transition state, with the two terminating

groups orthogonal with respect to each other. The orthogonal

arrangement is provided by the spiro connection of the three-

and the five-membered rings. Following these rules, a Möbius

type coarctate fragmentation with two five-ring terminators

(10 electrons) should proceed as a photochemical reaction, and

a corresponding fragmentation with a seven- and a five-ring

(12 electrons) should be thermochemically activated

(Scheme 2) [22].

To test the above hypothesis, we now investigate the thermo-

chemistry and the photochemistry of the ketals 1 and 3, derived

from indan-2-one and ethylene glycol, and cis-2-butene-1,4-diol

(Scheme 3). The ketal 2, derived from 1,3-propanediol, was

chosen as a reference system that cannot undergo a coarctate

fragmentation.
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Scheme 2: Photochemically and thermally allowed coarctate fragmentations of spiroketals.

Scheme 3: Precursors used in this study.

Figure 3: Difference infrared spectrum, showing the changes in the IR spectrum after photolysis (λexc = 254 nm, 20 min) of 1 in Ar matrix. Except for
the water band, all IR bands pointing downwards belong to 1. Product bands pointing upwards are labelled according to their assignment (XY =
o-xylylene, ET = ethylene, IN = indan-2-one). The intense band pointing upwards at 1109 cm−1 is an artefact due to a subtraction error of a very
intense precursor band.

Results
Photolysis and pyrolysis of the ketals. Photolysis (λexc =

254 nm, Hg low-pressure lamp) of indan-2-one ethylene ketal

(1), matrix-isolated in Ar at 10 K, leads to the formation of CO2

(vs, ν = 2342.1 cm−1), o-xylylene (XY, ν = 1550.4, 1470.8,

1467.4, 873.1, 776.2, 738.7 cm−1) [23], ethylene (ET,

ν = 1438.1, 953.8 cm−1) and indan-2-one (IN, ν = 1761.0

cm−1). Some weak product bands could not be assigned. A

difference IR spectrum (product bands at a very early stage of

the photolysis minus precursor bands) is given in Figure 3.
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Figure 4: Infrared spectrum obtained upon FVP of 1 at T = 1143 K and trapping the pyrolysate in solid argon at T = 10 K.

Figure 3 clearly shows that at least at this early stage of photo-

lysis, practically no CO (ν = 2138.4 cm−1) is formed. At a later

stage of photolysis (20 h, λ = 254 nm), CO is also detected, and

the relative integrals of the CO2 and CO bands yield an esti-

mated ratio of CO2 and CO of 2.5:1. It is noted, however, that

the formation of CO may well be due to photolysis of CO2 due

to hard UV radiation (λ = 185 nm) also emitted by the Hg low-

pressure lamp used [24].

In contrast to the very clean photochemistry of 1, flash vacuum

pyrolysis FVP (T = 870 °C) of 1, followed by trapping of the

reaction products in solid argon, yielded a variety of products

whose identity could only partially be elucidated. The ratio of

CO2/CO being formed in the pyrolysis reaction was different

from the photochemical decomposition of 1. Based on the

integrals of the CO2 and CO bands, it can be estimated as 1:27.

Figure 4 shows an infrared spectrum of the pyrolysis products.

The organic products include formaldehyde (FA), acetaldehyde

(AA), ethene (ET), o-xylylene (XY), benzocyclobutene (BC),

styrene (ST), and indan-2-one (IN). Some peaks could not be

assigned. The assignment of the pyrolysis products is based on

a comparison with literature data (XY) [21], as well as refer-

ence spectra of authentic samples (ET, BC, IN, AA, FA, ST).

By calibrating IR band integrals to calculated (B3LYP/6-

31G(d,p)) IR band intensities of selected bands, a crude

measure of product ratios could be obtained. Relative to

[CO2] = 1.0, the concentrations of the other pyrolysis products

are as follows: [CO] = 27.2, [IN] = 3.8, [ET] = 15.9,

[BC] = 11.4, [XY] = 1.3, [AA] = 3.9 [25]. Formaldehyde is

formed as a minor product only.

The photochemistry of ketals 2 and 3 was investigated as well

by matrix isolation spectroscopy. Unfortunately no product

could be unambiguously identified. The FVP of 2 yielded the

product spectrum shown in Figure 5. Again, both carbon

monoxide and carbon dioxide were formed along with the

organic products. Carbon monoxide was formed in large excess

over carbon dioxide (CO/CO2 = 13.5:1). Organic products

include mostly FA, ET, and IN, as well as BC and XY, but

many peaks have to remain unassigned. Propene was not

formed. Compared to the FVP of 1, the FVP of 2 yields signifi-

cantly increased amounts of 2-indanone and formaldehyde.

Relative to [CO2] = 1.0, the concentrations of the other pyro-

lysis products are as follows: [CO] = 13.5, [IN] = 9.1,

[ET] = 15.4, [BC] = 19.4, [XY] = 1.2, [FA] = 12.2.

Flash vacuum pyrolysis of indan-2-one cis-2-butene-1,4-diol

ketal (3) again gave rise to a complex mixture of products

(Figure 6). Among them, the two conformers of 1,3-butadiene

(tBD and cBD) could be assigned based on a comparison with

literature data [26]. Further products include o-xylylene (XY),

benzocyclobutene (BC), indan-2-one (IN), and formaldehyde

(FA). Again, a number of IR peaks have to remain unassigned.
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Figure 5: Infrared spectrum obtained upon FVP of 2 at T = 963 K and trapping the pyrolysate in solid argon at T = 10 K.

Figure 6: Infrared spectrum obtained upon FVP of 3 at T = 1043 K and trapping the pyrolysate in solid argon at T = 10 K.
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Scheme 4: Possible fragmentation pathways in the FVP of 1.

CO2 and CO are formed in a ratio of 1:2.6 in this pyrolysis reac-

tion. Relative to [CO2] = 1.0, the concentrations of the pyro-

lysis products are as follows: [CO] = 2.6, [IN] = 1.0, [tBD] =

7.4, [cBD] = 1.5, [BC] = 6.3, [XY] = 0.4.

Discussion
Flash vacuum pyrolysis of 1 yields a complex mixture, which

contains a variety of fragmentation products derived from both

sides of the spiroketal linkage. The relative ratio of carbon

dioxide and carbon monoxide being formed (CO2/CO = 1:27)

indicates that a coarctate fragmentation of 1 can play a minor

role only, if any. The composition of the product mixture is best

rationalized by a series of stepwise processes, which starts with

either a C–C cleavage (pathway A, more favourable) or a C–O

cleavage (pathways B or C, less favourable). In principle, a

chelotropic elimination of 1,3-dioxol-2-ylidene is also conceiv-

able (pathway D). Scheme 4 shows a possible mechanistic

scenario. While it is questionable whether the biradical inter-

mediates shown in Scheme 4 are in fact true minima or not, we

note that they will be exceedingly short-lived at T = 1143 K in

any event.

As the C–C bond being broken in mechanism A is significantly

weaker than the C–O bonds that need to be cleaved in mecha-

nisms B and C, pathway A is expected to be the most facile

decay mechanism for 1. The primarily formed benzyl-

dialkoxymethyl biradical 4 should undergo a very facile

ring-opening reaction to yield an ester biradical 7, which can

either cleave into ethylene, carbon dioxide and o-xylylene

(XY), or eliminate acetaldehyde (AA) to yield an acyl-benzyl

diradical 9 [27]. The latter can then either undergo ring closure

to form indan-2-one (IN), or decarbonylate to give o-xylylene

(XY). The equilibrium of XY and benzocyclobutene (BC) is

established in the literature [28], as well as the formation of

styrene ST from BC [29]. An alternative mechanism, the

chelotropic elimination of 1,3-dioxolan-2-ylidene is not likely.

This carbene has been generated from a norbornadiene spiro

ketal, and it cleanly fragmented into CO2 and ethylene [30].

Theoretical calculations support the low barrier for fragmenta-

tion [31]. We explain the different reaction behaviour of our

spiroketal 1 by the fact that two energetically unfavourable

products would have to be formed (a quinodimethane and a

carbene), whereas the fragmentation of the norbornadiene ketal

gives benzene and a carbene. The mechanism for the thermal

decomposition of 2 is likely to be similar. The high yield of

formaldehyde in the pyrolysis of 2 is readily explained by the

fact that the ester biradical 13 formed can lose one equivalent of

ethene and formaldehyde to yield the acyl-benzyl type biradical

15 (Scheme 5).

In the FVP of 1 and 2, CO is formed in large excess over CO2.

This excess is far less pronounced in the FVP of 3. This could

possibly indicate that a coarctate fragmentation of 3 (which

would be a concerted version of pathway C in Scheme 3) could
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Scheme 5: Possible fragmentation pathways in the FVP of 2.

Scheme 6: Possible fragmentation pathways in the FVP of 3.

possibly also contribute to the product distribution (Scheme 6).

A chelotropic reaction forming 4,7-dihydro-1,3-dioxepine-2-

ylidene as discussed in the fragmentation of 5-ring spiroketal 1

cannot be excluded. It is known that the sulfur analogue

4,7-dihydro-1,3-dithiepine-2-yldidene cleanly fragments into

carbon disulfide and butadiene [32]; however, 4,7-dihydro-1,3-

dioxepine-2-ylidene does not give carbon dioxide and buta-

diene [33].

Conclusion
In agreement with predictions, spiroketals derived from indan-

2-one undergo photochemical coarctate fragmentation, if both

terminators are 5-membered rings, and thermal coarctate frag-

mentation, if both a 5-ring and a 7-ring terminator are present.

In the latter case, the experimental evidence suggests that the

thermal coarctate fragmentation competes with stepwise

processes.
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Experimental
General: Matrix-isolation experiments were performed using

standard matrix-isolation techniques [34]. For sample deposi-

tion, the slow-spray-on technique was used. Sample tempera-

tures for deposition were ambient temperature (1), ca. 40 °C (2),

and ca. 60 °C (3). The argon used was of 99.999% purity. In

pyrolysis experiments, the length of the pyrolysis zone was ca.

5 cm. Reference IR spectra of benzocyclobutene, styrene,

indan-2-one, acetaldehyde, formaldehyde, ethene and propene

in Ar matrices were independently measured. IR spectra were

recorded with a resolution of 0.5 cm−1. The outer matrix

window used for photolysis was from Suprasil quartz specified

for transmission down to λ = 190 nm.

Ketal 1 was synthesized according to a published procedure

[35]. Ketals 2 and 3 were prepared analogously, starting from

indan-2-one and propane-1,3-diol and cis-2-butene-1,4-diol,

respectively.

Indan-2-one ethylene ketal (1): IR (Ar, 10 K) ν: 3109.2 (vw),

3084.4 (vw), 3057.7 (vw), 3034.8 (w), 2993.3 (w), 2989.6 (w),

2962.3 (w), 2928.9 (vw), 2898.5 (w), 2894.8 (w), 2878.1 (w),

2834.1 (vw), 1598.6 (vw), 1485.5 (m), 1472.5 (vw), 1465.1

(vw), 1421.1 (vw), 1342.4 (vw), 1331.9 (m), 1305.9 (vw),

1292.9 (s), 1233.4 (m), 1222.9 (w), 1200.0 (w), 1160.9 (vw),

1136.8 (m), 1110.3 (vs), 1074.2 (w), 1051.9 (vw), 1033.3 (s),

1027.8 (m), 1019.7 (w), 944.4 (w), 867.0 (vw), 785.9 (vw),

741.7 (s), 715.7 (m), 597.7 (vw), 590.5 (vw), 536.8 (vw) cm−1.

Synthesis of 2: Indan-2-one propane-1,3-diol ketal (2) was

prepared as described for the synthesis of 1, with the exception

of the use of toluene rather than benzene as solvent. Indan-2-

one (2.0 g, 0.015 mol) and 1,3-propanediol (1.4 g, 0.018 mol)

were heated under reflux in 100 mL toluene together with

20 mg p-toluenesulfonic acid. The mixture was heated under

reflux for 12 h, during which time the water formed was

distilled off as an azeotrope with toluene. The toluenic solution

was then washed twice with aq NaHCO3 and once with water.

After drying over anhydrous Na2SO4, the toluene was removed

on a rotary evaporator. Purification of the crude product thus

obtained was achieved by distillation in high vacuum. Yield

1.2 g (42%) after distillation. bp 93–97 °C (0.01 mbar); mp

44 °C; 1H NMR (CDCl3, 400 MHz) δ 7.14 (m, 4H), 3.97 (t, J =

5.5 Hz, 4H), 3.28 (s, 4H), 1.78 (m, 2H) ppm; 13C NMR

(CDCl3, 100 MHz) δ 139.68, 126.65, 124.71, 109.23, 61.52,

42.54, 25.56 ppm; IR (Ar, 10 K) ν: 3111.7 (vw), 3084.8 (vw),

3076.7 (vw), 3060.8 (vw), 3050.1 (w), 3039.8 (w), 3035.7 (w),

2993.7 (w), 2983.8 (m), 2980.1 (m), 2972.7 (m), 2962.7 (m),

2949.8 (m), 2943.1 (m), 2930.7 (m), 2908.2 (w), 2899.4 (w),

2891.9 (w), 2884.6 (m), 2879.0 (m), 2876.1 (m), 2858.9 (m),

2849.9 (w), 2727.6 (vw), 2717.7 (vw), 1620.4 (w), 1612.1 (vw),

1592.5 (vw), 1572.9 (vw), 1488.3 (m), 1477.1 (w), 1464.8 (w),

1433.4 (w), 1425.9 (w), 1381.5 (w), 1369.9 (w), 1333.7 (m),

1305.7 (vw), 1298.5 (w), 1284.5 (vs), 1254.1 (m), 1237.4 (w),

1215.2 (w), 1170.3 (vw), 1150.9 (vs), 1135.6 (vs), 1133.0 (vs),

1117.7 (s), 1111.0 (vs), 1081.2 (w), 1045.9 (s), 1032.9 (s),

1024.0 (m), 966.3 (w), 937.6 (w), 868.8 (w), 734.8 (s), 678.9

(vw), 607.2 (vw), 594.3 (vw), 555.4 (vw) cm−1; EIMS m/z: M+

190 (100), 176, 161, 132 (68), 104 (80), 91, 77, 51; Anal. calcd

for C12H14O2: C, 75.8; H, 7.4; found: C, 75.3; H, 7.2.

Indan-2-one cis-2-butene-1,4-diol ketal (3) was prepared analo-

gously. Due to the limited thermal stability of 3, benzene had to

be used as solvent, and the product could not be distilled.

Instead, a sample of the solid dark brown crude product was

purified by sublimation in ultra-high vacuum (10−6 mbar), using

matrix-isolation equipment. Colourless crystals, mp 78 °C;
1H NMR (CDCl3, 400 MHz) δ 7.16 (m, 4H), 5.73 (t, J = 1.5 Hz,

2H), 4.31 (d, J = 1.5 Hz, 4H), 3.25 (s, 4H) ppm; 13C NMR

(CDCl3, 100 MHz) δ 139.84, 129.53, 126.63, 124.64, 113.31,

62.93, 44.07 ppm; IR (Ar, 10 K) ν: 3078.6 (vw), 3058.5 (vw),

3046.1 (w), 2986.4 (vw), 2966.8 (vw), 2952.9 (w), 2949.1 (w),

2945.8 (w), 2926.2 (w), 2920.9 (w), 2912.3 (w), 2908.0 (w),

2865.0 (w), 2838.8 (vw), 2718.3 (vw), 1622.9 (w), 1612.3 (vw),

1607.9 (vw), 1592.9 (vw), 1589.4 (vw), 1573.0 (vw), 1487.9

(m), 1465.8 (w), 1449.2 (w), 1425.2 (w), 1390.2 (w), 1363.3

(w), 1330.3 (m), 1306.4 (w), 1284.9 (s), 1227.6 (m), 1220.9

(w), 1201.7 (m), 1167.6 (w), 1155.8 (w), 1123.8 (vs), 1115.4

(w), 1102.2 (vw), 1090.2 (s), 1078.3 (m), 1044.6 (s), 1026.9

(m), 1009.9 (m), 951.9 (vw), 946.6 (vw), 920.8 (vw), 879.4

(vw), 872.8 (vw), 817.4 (vw), 732.5 (s), 684.8 (vw), 667.8 (vw),

641.8 (m), 619.4 (m), 617.4 (m), 595.8 (w), 559.1 (vw), 527.5

(vw) cm−1; EIMS m/z: M+ 202 (55), 176, 161, 149, 148, 147,

132, 104 (100), 91, 78, 54 (95), 51, 39; Anal. calcd for for

C13H14O2: C, 77.2; H, 7.0; found: C, 77.5; H, 7.0; HRMS–ESI

(m/z): [M]+ calcd for C13H14O2Na, 225.0898; found, 225.0891.
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