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In the current study, we introduced a unique method for identifying and segmenting oral squamous cell carcinoma 
(OSCC) nuclei, concentrating on those predicted to have significant CAF-1/p60 protein expression. Our suggested 
model uses the StarDist architecture, a deep-learning framework designed for biomedical image segmentation tasks. 
The training dataset comprises painstakingly annotated masks created from tissue sections previously stained with he-
matoxylin and eosin (H&E) and then restained with immunohistochemistry (IHC) for p60 protein. Our algorithm uses 
subtle morphological and colorimetric H&E cellular characteristics to predict CAF-1/p60 IHC expression in OSCC nu-
clei. The StarDist-based architecture performs exceptionally well in localizing and segmenting H&E nuclei, previously 
identified by IHC-based ground truth. In summary, our innovative approach harnesses deep learning and multimodal 
information to advance the automated analysis of OSCC nuclei exhibiting specific protein expression patterns. This 
methodology holds promise for expediting accurate pathological assessment and gaining deeper insights into the 
role of CAF-1/p60 protein within the context of oral cancer progression. 
Introduction 

CAF-1/p60 is a chromatin assembly factor-1 (CAF-1) complex subunit 
involved in DNA replication and repair.1,2 CAF-1/p60 expression levels 
have been reported to be of prognostic value in oral squamous cell carci-
noma (OSCC), as well as in other human solid tumors.1,3–8 High levels of 
CAF-1/p60 in OSCC tissues are associated with poor survival, tumor recur-
rence, and lymph node metastasis.4,7 Moreover, CAF-1/p60 can be detected 
in the peripheral blood of OSCC patients, suggesting a role for CAF-1/p60 
as a potential soluble biomarker of OSCC. The detection and quantification 
of CAF-1/p60 in serum may provide useful information for diagnosing, 
staging, and monitoring OSCC patients.9 The expression and localization 
of CAF-1/p60 in OSCCs and normal oral mucosa tissue samples can be ex-
amined by immunohistochemistry (IHC).10 Deep learning models have 
been increasingly used to predict IHC staining from hematoxylin and 
eosin (H&E)-stained tissue slides.11,12 IHC staining is a widely used tech-
nique to assess the expression of various biomarkers in tissue samples, 
such as estrogen receptors in breast cancer.13 Despite being relatively af-
fordable, the technique is still an extra cost/step that could be avoided. 
Furthermore, IHC staining is often subjective and prone to inter- and 
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intra-observer variability.14,15 Therefore, developing computational 
methods to infer IHC staining from H&E staining can significantly benefit 
clinical diagnosis and research. One of the promising approaches to achiev-
ing this goal is to use deep learning models that can learn complex nonlin-
ear mappings between H&E and IHC images. Deep learning models can 
leverage large-scale datasets of co-registered H&E and IHC slides to train 
end-to-end image translation networks to generate realistic and accurate 
IHC images from H&E  images  .11 For example, de Haan et al.16 proposed a 
supervised learning-based framework to transform H&E-stained tissues 
into special stains, such as Masson's trichrome, periodic acid-Schiff, and 
Jones silver stain, using kidney needle core biopsy tissue sections. They 
showed that their method improved the diagnosis of several non-
neoplastic kidney diseases and achieved comparable quality to histochem-
ically stained slides. Ghahremani et al. presented a multitask deep learning 
framework, DeepLIIF, to infer multiplex immunofluorescence (mpIF) stain-
ing for IHC image quantification from H&E-stained slides.17 

Machine learning approaches have been proposed to predict positivity 
to proliferation markers, such as Ki-67.18 Martino et al. showed a machine 
learning-based analysis to predict the IHC labeling index for the cell prolif-
eration marker Ki67/MIB1 on cancer tissues using morphometrical features
er 2024 
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Fig. 1. Dataset preparation flowchart. To generate the masks used to train the 
StarDist-based model, we used IHC as the ground truth. This was possible due to 
the precise coupling of IHC and H&E staining, aided by the fact that each sample 
was the same section stained both ways. We generated the Train/Validation sets 
with a np.random.RandomState function, randomly assigning images to the Train 
and the Validation set, respectively. We also managed to convert the model into a 
portable format and import it into QuPath. 
extracted from H&E-stained tumor tissue samples. The authors provided a 
fast and quantitative method of identifying the proliferating compartment 
of the tumor on H&E  slides  .18 Martino et al. also proposed a deep learning 
approach for the same task based on a generative network.11 These studies 
demonstrate the potential of machine learning-based models to predict IHC 
staining from H&E staining, which can facilitate faster, cheaper, and more 
objective analysis of tissue samples. However, there are still several chal-
lenges and limitations that need to be addressed, such as the scarcity of 
co-registered H&E and IHC datasets,19 the variability of staining protocols 
and quality across different laboratories,20 the generalization of models to 
unseen tissue types and markers,21 and the validation of model perfor-
mance by expert pathologists.22 

We herein present an approach aimed at predicting CAF-1/p60-positive 
OSCC nuclei based on subtle morphological and colorimetric H&E cellular 
characteristics by a deep learning model trained on H&E-masks pairs with 
segmentation masks obtained from IHC specific to detect CAF-1/p60 ex-
pression on tissue slides. 

Our model is based on StarDist23,24 and was constructed by making 
whole slide image (WSI) pairs first stained with H&E and restained with 
anti-CAF-1/P60 IHC. Future research directions include expanding the 
scope of this model approach to more tissue types and markers, improving 
the quality and availability of co-registered H&E and IHC datasets, and val-
idating the clinical utility of deep learning models by expert pathologists. 

Methods 

Tissue slide preparation 

We built our dataset with nine WSIs of OSCCs and a tissue microarray 
(TMA) with 55 OSCC cores. All the tissue samples came from the archives 
of the Pathology Unit of “Federico II” University of Naples. TMA was ob-
tained as previously described .10,18 We finally used tumor tissue samples 
from 64 patients. Tissue WSI and TMA slides were stained with standard 
H&E staining and then scanned using a Leica Aperio AT2 scanner with a 
40× magnifier (pixel size: 0.25 μm). After slide scanning, we use a hot 
plate and forceps to remove a coverslip from a slide. The slides were then 
soaked two times in a xylene bath to remove any remaining adhesive and re-
hydrated to decrease ethanol concentrations and remove the eosin stain. 
After destaining, the slides were rinsed in tap water, allowed to dry in the 
fume hood, and immunostained with the antibody anti-CAF-1/p60. IHC 
staining was performed on a Ventana Benchmark Ultra (Ventana Medical 
Systems Inc., Tucson, AZ, USA) using the rabbit monoclonal antibody anti-
CAF-1/p60 (clone ab8133 AbCam, Cambridge, UK) as described in Morra 
et al.2 Briefly, sections were heated at 55 °C for 60 min, 
deparaffinized, and processed for antigen retrieval by microwaving in 1% 
sodium citrate buffer, pH 6.0. Non-specific binding was blocked with 1.5% 
non-immune mouse serum (1:20; Dakopatts, Hamburg, Germany), and en-
dogenous peroxidase and alkaline phosphatase activities were quenched 
with dual endogenous enzyme block (0.5% H2O2 in methanol and deter-
gent). Sections were then incubated with the primary antibody followed 
by the secondary antibody, and the reaction was detected using 3,3′-diami-
nobenzidine (Vector Laboratories, Burlingame, CA, USA); nuclei were coun-
terstained with Mayer's hematoxylin. The new IHC-stained slides were then 
digitized using a Leica Aperio AT2 scanner with a 40× magnifier (pixel size: 
0.25 μm). The positivity for CAF-1/p60 was evaluated on immunostained 
samples on the basis of the presence of DAB in a binary mode (positive/neg-
ative) for each tumor cell considered. The nine WSIs were used as a training/ 
validation set, and the 55 TMA cores were used as a test set. The agreement 
between primary and secondary IHC in the quality control process was per-
formed by Pearson correlation test in SPSS software (IBM Corp. Released 
2013. IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY, USA). 

Dataset preparation 

The model described was generated using tiles extracted from full-
resolution images exported from the previously prepared and digitized 
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WSI. We superimposed the anti-p60 IHCs images on the corresponding 
H&E-stained images by SIFT registration in ImageJ (v. 1.54f).25 The aligned 
pairs were re-imported in QuPath26 project and used to generate the 
dataset. Annotations were generated using QuPath cell detection 
algorithm.26 Our project was carried out in the QuPath (v. 0.4.3) version. 
We subsequently classified the detected objects based on DAB intensity. Fol-
lowing thevisual checkby twoexpert pathologists (SS andFM), thewhole set 
of objects was exported by IHC in .geojson format and reimported on H&E 
images. We finally used a tiling script to export 256 × 256 px H&E tiles 
and the relative label image. Below is the groovy script used for the cell detec-
tion, the classification based on the intensity of staining with DAB, and the 
subsequent cleaning of the detections to obtain a mask that only highlights 
positive cells. We compiled groovy scripts modifying the ones available on 
the QuPath documentation web page [“https://qupath.readthedocs.io/en/ 
stable/“last access: 10/09/2023) The full script is available in Supplemen-
tary 2 subsection of Supplementary material [Supplementary Code 1]. 

The Groovy script we provided is a sequence of commands for the 
QuPath software used for digital pathology image analysis. 

‘runPlugin(‘qupath.imagej.detect.cells. WatershedCellDetection’, 
…)‘: This command runs the Watershed Cell Detection algorithm on 
an image. The parameters inside ‘…‘control the algorithm's behavior. 
For example, ‘“sigma”:6.0′ sets the sigma parameter of the Gaussian fil-
ter used in the algorithm, and ‘“minArea”:100.0′ and 
‘“maxArea”:1000.0′ set the minimum and maximum allowed cell areas. 
‘setDetectionIntensityClassifications(“Nucleus: DAB OD mean”, 
3)‘: This command classifies detected cells into three intensity classes 
based on the mean optical density (OD) of DAB staining in the nucleus. 
‘selectObjectsByClassification(“Negative”)‘: This command selects 
all cells that were classified as “Negative” in the previous step. 
‘clearSelectedObjects(true)‘: This command deletes all currently 
selected objects. 
‘clearSelectedObjects()‘: This command clears the selection, leaving 
no objects selected. Fig. 1 illustrates the dataset preparation flowchart. 

From the paired WSIs (H&E and IHC), we exported tumor-rich 
areas that we aligned using SIFT registration (Fig. 2). The aligned IHCs

https://qupath.readthedocs.io/en/stable/
https://qupath.readthedocs.io/en/stable/
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Fig. 2. Some representative examples showing registered image pairs, H&E, and IHC (Scale bar: 100 μm). 
were used as ground truth to construct the segmentation masks on H&Es 
(Fig. 3). 

Model training 

The StarDist-based model was generated by modifying the scripts dis-
tributed on the official page of StarDist [“https://github.com/stardist/ 
stardist“, last access: 04/09/2023)]. StarDist uses a light-weight neural net-
work based on U-Net.27 The StarDist-based model predicts a star-convex 
polygon for every pixel; for each pixel with index i, j, a regression of the dis-

tances has been done rk i,j 
n 

k 1 
to the boundary of the object to which the 

pixel belongs, along a set of n predefined radial directions with equidistant 
angles. The model also separately predicts for every pixel whether it is part 
of an object so that it only considers polygon proposals from pixels with 
Fig. 3. An example of tiles and corresponding segmentation masks as exported from QuP
identified on IH C.

3

sufficiently high object probability di,j.  An  over-complete  set  of  candidate  
polygons is produced for a given input image by training a model to densely 
predict the distances (r) to the object border along a specific  set  of  rays  and  
object probabilities (d). Non-maximum suppression (NMS) of these candi-
dates yields the final result.23 

The model was trained using a Google Colab virtual machine with a 
V100 GPU 16GB VRAM and 51GB of RAM. All code and statistical analysis 
have been performed using Python 3.10. 

StarDist −0.8.5 csbdeep −0.7.4 configparser −6.0.0. 

funcsigs −1.0.2 gputools −0.2.14 mako−1.2.4. 

pyopencl −2023.1.2 pytools −2023.1.1 reikna −0.8.0. 

Listing 1: Package Version. The list shows the version of specific  pack-
ages used for model training.
ath after annotation alignment. The mask represents “CAF-1/p60-positive” nuclei as 

https://github.com/stardist/stardist
https://github.com/stardist/stardist
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Table 1 
Dataset random split into training and validation set. 

Number of images 9661 

Training 8212 
Validation 1449

Table 2 
List of abbreviations used in the article. 

CAF Chromatin Associated Factor 
DDR DNA Damage Response 

fn False negative 
fp False positive 

H&E Hematoxylin and Eosin 
HR Homologous Recombination 
IHC Immunohistochemistry 
IoU Intersection over Union 

NMS Non-maximum suppression 
OSCC Oral squamous cell carcinoma 
PARP Poly (ADP-ribose) polymerase 
SIFT Scale-invariant feature transform 
TMA Tissue micro array 
WSI Whole slide image

Fig. 4. Representative high-resolution tif images exported from WSI. The red overlays s
and the ground truth, i.e., “CAF-1/p60-positive” nuclei assessed by IHC and detected by
show the original H&E and corresponding IHC, respectively. (Scale bar: 100 μm). (For in
the web version of this article.)

4

To train our model, we used 9661 256 × 256 px tiles. The dataset has 
been structured as shown in Table 1. The randomness of the dataset split en-
sures that the training and test datasets represent the overall distribution of 
the data. 

The dataset split strategy was coded by the following (see full code in 
Supplementary 3): 

assert len (X) 1, " not enough training data " 
rng = np . random . RandomState(42) 

ind = rng . permutation (len (X)) 

n_val = max(1, int (round (0.15 ∗ len (ind))) )
ind_train, ind_val = ind [: −n_val], ind[−n_val:] 

X_val, Y_val = [X[i] for i in ind_val], [Y[i] for i in 

ind_val] 

X_trn, Y_trn = [X[i] for i in ind_train], [Y[i] for i in 

ind_train] 

print (‘number of images: %3d’ % len (X)) 

print (’ − training: %3d’ % len (X_trn ))
print (’ − validation: %3d’ % len (X_val ))

This code splits the dataset into training and validation sets. 
In particular:
how the predicted “CAF-1/p60-positive” nuclei on H&E-stained images (third row) 
 the “positive cell detection” QuPath script (fourth row). The first and second rows 
terpretation of the references to colour in this figure legend, the reader is referred to 
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Fig. 5. The figure shows a representative core out of the 55 that made up the TMA used both for destain and for primary immunostaining: (A) Primary immunostaining with 
anti-CAF-1/p60. (B) H&E staining on a tissue section different from A. (C) IHC performed on the same section as in B, following destaining. The comparison between the two 
IHCs shows that the immunostaining of the restained section is comparable to that of the primitive one (Scale bar: 250 μm). 

Fig. 6. The scatter plot compares the quantification of the percentage of tumor cells positive for the marker between the primary IHC and the IHC secondary to destaining. The 
Pearson correlation test returned a value of 0.77 (Axis values indicates the % of positive tumor cells).

Fig. 7. An example of tile image with corresponding mask.

5
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Fig. 8. Prediction label compared to the ground truth on a representative tile.

 

’rng = np.random.RandomState(42)’:  This  line  defines a random num-
ber generator that may generate numbers based on a seed (42 in this case). 
The seed ensures that the same random integers are generated each time 
the code is execute d.

’ind = rng.permutation(len(X))’: This line creates a random permuta-
tion of indices from the dataset ‘X'. 

′nval max 1, int round 0 15∗len ind ′:  This  line  multiplies  the
number of validation samples by 15% of the total number of samples in 
the dataset. The ‘max' function guarantees at least one validation sample.

’indt rain, indval ind − nval , ind − nval ’: This line separates the 
indices into training (‘ind_train’) and validation (‘ind_val’). The final 
‘n_val’ indices are utilized for validation, whereas the remainder are used 
for train ing.

′Xval, Yval X  i  foriinindval , Y  i  foriinindval ′. This line generates the 
validation datasets ‘X_val’ and’Y_val’ from the validation in dices.

′Xtrn, Ytrn X  i  foriinindt rain , Y  i  foriinindt rain ′. This line generates 
the training datasets ‘X_trn’ and’Y_trn’ from the training in dices.

The code assures that the training and validation sets are chosen 
randomly and that the same split is used each time the code is run. This is 
important for evaluating the performance of various models on the same 
dataset split. 

The model is based on StarDist2D and has been trained for 800 epochs 
at 100 steps per epoch. 

Dataset Matching was obtained with the matching function in stardist. 
matching module. 

matching(y_true, y_pred, thresh = 0.5, criterion=’iou’, report_matches 
= False): calculate detection/instance segmentation metrics between 
6

ground truth and predicted label images. “iou” stands for “intersection 
over union” .

The following metrics are implemented: ‘fp’ (false positive), ‘tp’ (true 
positive), ‘fn’ (false negative), ‘precision’, ‘recall’, ‘accuracy’, ‘f1’, ‘criterion’, 
‘thresh’, ‘n_true’, ‘n_pred’, ‘mean_true_score’ (the mean intersection over 
unions (IoUs) of matched true positives but normalized by the total number 
of Ground Truth objects), ‘mean_matched_score’ (the mean IoUs of matched 
true positives), ‘panoptic_quality’.28 

A full list of abbreviations is in Table 2.

QuPath integration of the generated model 

Following model training, we converted it into portable formats. The 
Keras H5 generated model was converted into portable formats, such as . 
pb and ImageJ-compatible zip formats. We used the QuPath StarDist exten-
sion and the Fiji StarDist extension23,26 to test the model. Model conversion 
has been performed in an Anaconda virtual environment using TensorFlow 
1.15 and tfonnx. 

We used the StarDist groovy script for QuPath to infer the model on the 
test images. (Fig. 4).

Results 

Quality check of IHC obtained from H&E slides 

Before collecting patches necessary to train and validate our model, we 
tested the quality of the “converted” anti-CAF-1/p60 IHC, comparing it
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Fig. 9. Three representative TMA cores, out of 55, to show the result of p60 positivity prediction on H&E stained WSI compared with IHC. Detection was performed in 
QuPath: (A, E, I), H&E-stained TMA cores. (C, G, K), CAF-1/p60 IHC on the same cores as in A, E, I, respectively. (B, F, J), Overlay on H&E pointing predicted positive 
nuclei as determined by the model. (D, H, L), overlay of IHC showing p60 positive cells as determined by cell detection/classification QuPath script described in materials 
and methods (Scale bar: 250 μm). 
with “primary” IHC obtained by staining a tissue section directly. The test 
was carried out on a TMA tissue block sections (Fig. 5). Agreement between 
primary and secondary IHC was performed in QuPath by classification of 
positive tumor cells. The data were plotted in a scatter plot and analyzed 
with a Pearson correlation test, which returned a value of 0.77 (Fig. 6). 
Considering that the comparison was carried out between two IHCs on 
two different sections, in light of the visual analysis of the sample (Fig. 5), 
we considered the secondary IHC valid.
Fig. 10. Scatter plot showing the concordance between p60 positive cell detections on IH
returned a p-value <0.0001. Each dot in the graph is a core of the TMA.

7

Model building 

9661 tiles 256 × 256 px in size were generated together with the corre-
sponding segmentation masks. Then, the dataset was loaded into the 
Google Colab virtual machine runtime in a compiled notebook for model 
training. Fig. 7 shows a representative tile with the corresponding label.

We randomly split the dataset into train and validation sets (8212 and 
1449 images, respectively). We trained the model for 800 epochs at 100
C and p60 positivity prediction on H&E. Pearson test value was 0.6. The paired t-test 
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steps per epoch. All the configuration parameters are listed in the Supple-
mentary 4 subsection of Supplementary Materials. Fig. 8 shows the predic-
tion label on a representative tile, compared to the corresponding ground 
truth label image (Fig. 8).

Following threshold optimization, the model ended up with the follow-
ing optimized values: prob_thresh = 0.354425, nms_thresh = 0.5. 

The dataset matching values for the calculated threshold were obtained 
based on the IoU parameter. Results are shown in detail in Supplementary 
Table S1. 

Prediction on TMA test set 

To predict the CAF-1/p60 positivity on H&E-stained WSI, we tested our 
model on the OSCC TMA to compare the prediction to the IHC restained 
section. The paired t-test of the two ranges (55 TMA cores, H&E  vs
p60IHC) returned a p-value <0.0001. Fig. 9 shows the visual results of the 
prediction. Following the model run in QuPath, we exported TMA measure-
ments on both H&E and corresponding IHC. The correlation analysis is 
shown in Fig. 10. We demonstrated that a detection and segmentation 
model, based on StarDist2D, can easily be deployed on WSI in a user-
friendly manner to predict CAF-1/p60 tissue marker expression directly 
on H&E-stained tissue slides.

Discussion 

Chromatin remodeling proteins are crucial for DNA replication and 
repair and the growth and development of several human malignant tu-
mors. They also play a crucial part in genome maintenance activities. 
During the DNA synthesis phase of the cell cycle, the “histone chaper-
one” CAF-1 transports newly produced H3/H4 dimers to the replicative 
fork .29 The p48 component of the heterotrimeric protein CAF-1 works 
with the Retinoblastoma protein (Rb),30 whereas the p150 and p60 sub-
units are engaged in DNA replication and repair activities. It is notewor-
thy that during the past 20 years, p60 has been shown to have a 
significant role in maintaining the proliferative activity of cells in several 
malignancies.10,31–33 

We have already demonstrated the validity of the CAF-1/p60 subunit 
as a prognosis marker for OSCC. Further, we showed that the combined 
assessment of the p60 and p150 subunits may be particularly useful in 
stratifying the prognostic classes of OSCC.2 Additionally, we demon-
strated that CAF-1/p60 and p150 subunits are involved in HR-DDR, sug-
gesting the potential to induce a radiosensitizing synthetic lethality 
mechanism by administering PARP inhibitors to tumor cells that have 
been pharmacologically inhibited for CAF-1/p60 and p150 in OSCC pa-
tients with a poorer prognosis.2 

Although CAF1 p60 can be measured in the serum of patients with 
OSCC,9 the best approach to date to evaluate its expression is to test its pres-
ence by IHC on sections of neoplastic tissue.7,10 

The IHC technique is a valuable and widely used tool in biomedical 
research and diagnostics to detect and localize specific  antigens  in  the  
context of intact tissue samples. However, IHC also has some limitations 
that need to be considered, such as variability in tissue fixation and pro-
cessing, antigen retrieval methods, antibody quality and specificity, de-
tection systems, and interpretation and quantification of results. 
Therefore, optimizing and standardizing the IHC techniques for each ap-
plication and using appropriate controls and validation methods is 
essential.34 

Numerous approaches have been described that address the problem of 
making predictions on the mutational status or expression of specific  tumor  
cell markers by analyzing H&E images at different level s.35 For our model, 
we chose to work with a single-cell segmentation model. Our approach was 
aided by conversion techniques from basic H&E staining to IHC. IHC has 
proved to be a convenient way to make annotations22,36 but, as we know, 
the immunostained slide, although very similar, is never pixel-wise aligned 
to the corresponding H&E counterparts, and annotation process still re-
quires a lot of effort. In our workflow, by converting a former H&E-stained 
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tissue to IHC, we can provide a pixel-wide aligned IHC-to-H&E image. 
We previously described this technique18 that we have now improved by 
using registration techniques. We optimized the workflow by combining 
several image processing tools, from QuPath to ImageJ to Python coding. 
We obtained a reliable single-cell ground truth, demonstrating that 
the IHC staining we made by destaining a H&E  is  comparable  to
primary IH C.

One of the main reasons AI models do not find widespread use in rou-
tine is the difficulty of using codes on diagnostic material daily with 
ease.37 QuPath represents a valid solution for WSI visualization. Over 
time, the platform has been enriched with extensions that allow for a (rela-
tively) easy implementation of artificial intelligence models.26 The 
workflow chosen to build a classification/segmentation model capable of 
predicting positivity to a marker on sections stained with H&E  was  StarDist  
because we believe it is a valid approach for building nuclear segmentation 
models and because we have been able to take advantage of a fairly simple 
integration flow that will now allow us to implement the model in the clin-
ical routine. As shown in Fig. 9, prediction of CAF-1/p60 positivity on H&E 
is fairly good and visually corresponds to the immunostain. AI-assisted pre-
diction allows us to categorize tumor samples in low/high expression as we 
use to do following regular IHC. 

Because we are dealing with distinguishing cells in H&E  based  on  subtle  
differences not appreciable to the naked eye, we did not expect much better 
metrics than those obtained. Like any AI model applied to pathological 
anatomy, we believe this model should also be understood as a diagnosis as-
sistance tool to be used by specialists in the field. The model's performance 
is enormously enhanced if the use, as it should always be done, is entrusted 
to personnel with specific domain knowledge. However, we are working to 
design a better strategy to improve metrics and prediction capability (e.g., 
working on multiclass models) .

In conclusion, our work demonstrates that with the right contribution of 
the wet lab and a workflow designed around the needs of the average pa-
thologist, with the tools that the community of developers makes available 
to computational pathologists, it is possible to generate predictive models 
with which we can maximize the information obtainable from H&E stains, 
all so that pathologists can easily integrate the tool into the diagnostic rou-
tine. Predicting the expression of a promising prognostic marker such as 
CAF-1 p60 directly from H&E-stained sections paves the way to numerous 
potential applications. Maximizing the information obtainable from H&E 
could help recover information from exhausted samples, for which there 
is no possibility of cutting out sections for IHC or making the best use of 
cryostat sections. 
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