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Abstract: Purpose: Energy expenditure is a key parameter in quantifying physical activity. Traditional
methods are limited because they are expensive and cumbersome. Additional portable and cheaper
devices are developed to estimate energy expenditure to overcome this problem. It is essential to
verify the accuracy of these devices. This study aims to validate the accuracy of energy expenditure
estimation by a respiratory magnetometer plethysmography system in children, adolescents and
adults using a deep learning model. Methods: Twenty-three healthy subjects in three groups (nine
adults (A), eight post-pubertal (PP) males and six pubertal (P) females) first sat or stood for six minutes
and then performed a maximal graded test on a bicycle ergometer until exhaustion. We measured
energy expenditure, oxygen uptake, ventilatory thresholds 1 and 2 and maximal oxygen uptake. The
respiratory magnetometer plethysmography system measured four chest and abdomen distances
using magnetometers sensors. We trained the models to predict energy expenditure based on the
temporal convolutional networks model. Results: The respiratory magnetometer plethysmography
system provided accurate energy expenditure estimation in groups A (R2 = 0.98), PP (R2 = 0.98) and
P (R2 = 0.97). The temporal convolutional networks model efficiently estimates energy expenditure
under sitting, standing and high levels of exercise intensities. Conclusion: Our results proved the
respiratory magnetometer plethysmography system’s effectiveness in estimating energy expenditure
for different age populations across various intensities of physical activity.

Keywords: energy expenditure; age; respiratory magnetometer plethysmography; physical activities;
temporal convolutional networks model

1. Introduction

Physical activity (PA) is defined as any bodily movement produced by the contraction
of skeletal muscles that leads to an increase in energy expenditure (EE) above the resting
level of an individual [1]. EE is consequently a key parameter in quantifying PA. PA and in-
creasing EE are associated with reduced morbidity and mortality in many chronic diseases,
including cardiovascular disease, diabetes mellitus and some forms of cancer [2–5].

Several tools exist to measure or estimate EE. Reference techniques such as direct
calorimetry, indirect calorimetry (IC) and doubly labeled water (DLW) provide the most
accurate measurements of EE. However, these methods are limited due to the need for
specific equipment and human expertise and the high cost [1]. To overcome these prob-
lems, researchers have attempted to develop portable devices that are lightweight and
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less expensive for estimating EE. Among these devices, accelerometers are increasingly
more popular and are often used to predict EE [6] due to their low cost, data simplicity
and non-invasive character [7]. However, accelerometers, generally located at the hip,
cannot detect arm movements or, for example, exertion during the lifting or pushing of
objects. This external work could represent a considerable component of the subject’s
lifestyle [8]. Physiological variables, such as heart rate (HR), are also used for estimating
EE [9]. Nevertheless, HR could be increased by emotions such as anxiety, a rise in body
temperature, or as a postexercise response lag without an evident associated increase in
EE [10]. To estimate free-living EE, another physiological variable can be used. Indeed,
Durnin et al. [11] and Ford et al. [12] have shown that minute ventilation (

.
VE) can also

be used as an index of EE estimation. Recent technological advances to estimate
.

VE from
wearable sensors have encouraged researchers to use this physiological variable to estimate
EE [13]. Among these technologies, the respiratory magnetometer plethysmography (RMP)
system has been accepted as a reliable method for estimating

.
VE [14–17]. However, earlier

studies only focused on the adult population.
Yet, there are significant differences between children and adults in terms of an-

thropometric, anatomical and respiratory characteristics. Size influences the ventilatory
response [18]. The dimensions of the rib cage vary with age during growth [19–21]. Respira-
tory muscle strength increases during growth [22]. Finally, several authors have shown that
ventilatory behavior in healthy or pathological adult subjects is complex and compatible
with chaotic dynamics [23], particularly by privileging the study of tidal volume (VT) using
the respiratory plethysmography by inductance (RIP) method [24,25]. Small et al. [26] have
shown that ventilatory behavior in children was also complex and chaotic. Furthermore,
despite more limited information on EE in children compared to adults, there are also some
key differences between children and adults. Children have a higher basal metabolic rate
compared to adults [27]. As children attain maturity, there is a gradual decrease in EE with
increasing age. Finally, the changes in EE appear to be related most closely to changes in
body composition that occur around the time of puberty [28].

Considering the previous differences according to age, the aim of this study was to
validate the RMP system for estimating EE in children, adolescents and adults under resting
and exercise conditions. We hypothesized that the RMP system can accurately estimate EE
regardless of the age of the subjects.

2. Materials and Methods
2.1. Ethical Approval and Subjects

The experimental protocol was approved by the committee for protecting the people
of SUD-EST IV of French 1 (CPPID-RCB-2019-A03303–54). Twenty-three healthy volunteers
participated in the study. They were divided into three groups: a group of adults (A)
(four males and five females) aged 28.11 ± 2.93 years, eight post-pubertal (PP) males aged
14.75 ± 0.71 years and a group of six pubertal (P) females aged 11.67 ± 0.52 years. All
subjects were healthy and presented no pulmonary or heart diseases. Their ages and
anthropometric characteristics are displayed in Table 1. The volunteers and their parents
provided written consent after being informed of the study’s procedures and objectives.

Table 1. Pubertal stages, age and anthropometric characteristics.

Groups N Pubertal Stages
(I–V)

Age
(years)

Height
(cm)

BM
(kg)

BMI
(kg/m2)

.
VO2max
(l/min)

A. 9 28.11 ± 2.93 175.67 ± 12.98 70.66 ± 18.51 22.48 ± 2.82 3.16 ± 1.21
PP. 8 IV & V 14.75 ± 0.71 172.06 ± 7.79 56.61 ± 7.61 19.06 ± 1.12 3.29 ± 0.58
P. 6 II & III 11.67 ± 0.52 152.10 ± 4.29 41.65 ± 4.84 18.02 ± 2.29 1.99 ± 0.17

A: adult; PP: post-pubertal; P: pubertal; BM: body mass; BMI: body mass index;
.

VO2max: maximal oxygen uptake.
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2.2. Protocol
2.2.1. Study Design

A physician performed a clinical examination and an electrocardiogram upon the
subjects’ arrival in the laboratory. Anthropometric measurements were taken, and the
pubertal stages of children and adolescents were assessed. Subjects were equipped with a
cardioscope, RMP and gas exchange measurement systems (CardioO2) (Figure 1).
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Figure 1. Subjects equipped with a cardioscope, RMP and gas exchange measurement systems. EE-IC:
energy expenditure measured from indirect calorimetry.

Then, the subjects sat or stood for six minutes (Figure 2—Phase 1). During two
minutes of rest, we adjusted the subjects’ position on the cycle ergometer, and they began
the maximal graded test (MGT) (Figure 2—Phase 2). The testing protocol was conducted in
a silent atmosphere to minimize breathing disturbances.
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2.2.2. Maximal Graded Test

Each subject was asked to perform an MGT while seated on a cycle ergometer (Ex-
calibur Sport 925909, The Netherlands). An electrocardiogram signal was monitored
continuously using a cardioscope (Mortara X12+, Milwaukee, WI, USA), and a continuous
progressive protocol was used. The protocol differed according to the subjects’ age [29]: for
children ≤12 years old, the exercise intensity was increased by steps of 20 W.min−1; for
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children ≥13 years old, exercise intensity was increased by steps of 30 W.min−1.
.

VO2max
was achieved when three of the following criteria were satisfied: (1) a steady HR at a value
close to the theoretical maximal HR (HRmax = 220−age); (2) a respiratory exchange ratio (R)
greater than 1.1; (3) a constant O2 despite the increased exercise intensity; (4) the inability
of a subject to maintain a pedaling rate of 50 rpm [29].

2.2.3. Ventilatory Thresholds

Ventilatory responses differ according to exercise intensity [30]. To determine the first
ventilatory threshold (VTh1) during MGT, we used the respiratory equivalents method [31],
in which VTh1 corresponds to the point at which the respiratory equivalent in oxygen
(

.
VE-IC/

.
VO2) begins to increase while the respiratory equivalent in carbon dioxide (

.
VE-IC/

.
VCO2)

remains stable. The second ventilatory threshold (VTh2) corresponds to the point at which
.

VE-IC/
.

VO2 continues to increase while
.

VE-IC/
.

VCO2 begins to increase (Figure 3). Two
observers determined VTh1 and VTh2 visually and independently.
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2.2.4. Stage of Development

The same physician assessed the degree of pubertal maturation according to pubic
hair growth (Tanner and Whitehouse scale) [32]. This classification divided adolescents
into pubertal (stages II and III) and PP (stages IV and V).

2.2.5. Anthropometric Characteristics

The same researcher measured the height and total body mass according to the techni-
cal recommendations of the International Biology Program [33].

2.3. Measurement Systems
2.3.1. Respiratory Gas Exchange and Heart Rate Measurements

Breath-by-breath measurements of gas exchange were made using an indirect calorime-
try system, the Ultima CardioO2 (Medical Graphics, St Paul, Minnesota, USA). Before each
test, the Ultima CardioO2 was calibrated according to manufacturers’ guidelines. EE-IC,
oxygen uptake (

.
VO2), carbon dioxide production (

.
VCO2) and

.
VE were measured and

displayed continuously on the computer screen. Data were collected during each breath
and transferred to a PC for live display. The recorded data were saved in the internal
database of the Ultima CardioO2 for precise performance analysis after the test. HR was
recorded using the cardioscope connected with the Ultima CardioO2.
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2.3.2. RMP System

The RMP system (Nomics s.a., Liège Science Park, Belgium) had been described
by Dumond et al. [16] and Houssein et al. [17]. This device is lightweight (80 g) and
portable (85 mm × 55 mm × 16 mm), with two pairs of electromagnetic coils connected to
a recorder (battery) box. Each pair coil consists of a transmitter and receiver (Figure 4a).
A resonant frequency circuit in the transmitter generates a magnetic field. The magnetic
field is detected by the receiver and converted into a signal. The distance (cm) between the
transmitter and receiver is calculated using magnetic field intensity. Figure 4b shows the
specific position of the sensor transmitters and receivers on the subject using elastic belts.
The first receiver is placed in a posterior position on the spine, opposite the first transmitter.
The second receiver is placed in the anterior position on the midline of the abdomen, just
above the umbilicus, opposite the second transmitter. The RMP system measures four
distances (Figure 4c): the anteroposterior displacement (cm) of the rib cage (RC) and the
abdomen (AB) and the axial displacements of the chest wall (CW) and the spine (SP). The
data were recorded at a sampling rate of 15 Hz. The device recorded and stored signals in
its internal memory. The memory capacity is 16 MB, corresponding to approximately 100 h
of recording. The RMP system is powered by a lithium battery that can be recharged using
a universal serial bus connection. When the battery is fully charged, the autonomy of this
method is sufficient to ensure several nights of recording (minimum 60 h). The recordings
were transferred from the device to the computer using APIOS software.
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2.4. Data Processing
2.4.1. Method for Determining Three Levels of Intensity during the Maximal Graded Test

According to VTh1 and VTh2, we divided MGT into three intensity ranges (Figure 3).
The first range was between rest and VTh1, the second was between VTh1 and VTh2 and the
third was between VTh2 and

.
VO2max.

2.4.2. Window Segmentation and Feature Extraction

Considering that the IC system measured respiratory parameters breath-by-breath,
according to the time of each breathing cycle, the data were recorded individually. Normally,
each breathing cycle consists of 2–4 s [34]. Therefore, to cover at least one breathing
cycle, the slide window was set to five seconds to calculate the mean value. The overlap
of the window is 80%. The Temporal convolutional network (TCN) model extracted
features automatically.

2.4.3. Network Architecture and Training Model
Network Architecture

As a DL model, the TCN model contains residua blocks comprising dilated causal
convolutional neural networks, residual connection and others, illustrated in Figure 5a. The
aim was to predict EE at time t, denoted by EE, t. More precisely, given a prediction model
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M: xT → y , EE,t is predicted by historical temporal features, xi ∈ Rn, only up to the current
time. W represents the effective history; the prediction equation is defined as follows:

ÊE, t = M(xt, xt−1, . . . , xt−w) (1)
Nutrients 2022, 14, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 5. Architecture of the temporal convolutional network model. (a) Process, (b) an example of 
the residual block. EE-RMP: Energy expenditure measured from respiratory magnetometer plethys-
mography. Signals of RMP including four distances: RC, AB, CW, and SP. RC: rib cage; AB: abdo-
men; CW: chest wall; SP: spine. 

In our TCN model, feature extraction is carried out in sequential layers with kernel 
dilation for the multi-scale aggregation of input data [35,36]. The process is shown in Fig-
ure 5a. By adding the input x into the residual block x through identity mapping (or 1 *× 
1 convolution in the first residual block if the number of channels is not equal to the re-
sidual function shape), the residual function F(x) was derived. An example of the residual 
block is shown in Figure 5b. Inspired by “ResNet”, the first three dilations were pooled 
into a single residual block in models with an odd number of dilations [37]. After that, 
“ResNet” learns the function across two or three layers. Accordingly, the kernel size k and 
the number of exponential dilations n were used to determine the (causal) receptive field: 𝑅𝐹 = 1 + ሺ𝑘 − 1ሻሺ2 − 1ሻ, (2) 

The features at the last time point t were extracted using the splice function for use 
in the regression network. Thus, a fully connected dense layer and linear activation were 
used to predict EE,t. In our TCN model, we set sixty-four filters, five dilations and two 
residual blocks, and the kernel size was set at 3 s. The system was implemented using 
TensorFlow (2.0.0) [38]. 

Training Model 
The three groups’ results comprised 19865 samples: 7950 samples in group A, 7040 

samples in group PP and 4875 samples in group P. The data of each population group 
were split into three datasets, including a training set, a validation set and a test set. A 
total of 55% of the data was used for training, 20% was used for validation and 25% was 
allocated for testing. The training dataset was used during the learning process. The test 
dataset was used only to test the ability to generalize the trained model. Five-fold cross-
validation was used to evaluate the model’s performance with the validation set to dimin-
ish the over-filtering. The network of the learning rate was 0.001, the batch size was 1024 
and the epochs were 80. The data in the CSV file were processed and analyzed in Python 
(Version 3.7.11 for macOS, Stichting Mathematisch Centrum Inc., Guido van Rossum, 
Netherlands). 

2.5. Statistical Analyses 

Figure 5. Architecture of the temporal convolutional network model. (a) Process, (b) an example of
the residual block. EE-RMP: Energy expenditure measured from respiratory magnetometer plethys-
mography. Signals of RMP including four distances: RC, AB, CW, and SP. RC: rib cage; AB: abdomen;
CW: chest wall; SP: spine.

In our TCN model, feature extraction is carried out in sequential layers with kernel
dilation for the multi-scale aggregation of input data [35,36]. The process is shown in
Figure 5a. By adding the input x into the residual block x through identity mapping (or
1 × 1 convolution in the first residual block if the number of channels is not equal to the
residual function shape), the residual function F(x) was derived. An example of the residual
block is shown in Figure 5b. Inspired by “ResNet”, the first three dilations were pooled
into a single residual block in models with an odd number of dilations [37]. After that,
“ResNet” learns the function across two or three layers. Accordingly, the kernel size k and
the number of exponential dilations n were used to determine the (causal) receptive field:

RF = 1 + (k− 1)(2n − 1), (2)

The features at the last time point t were extracted using the splice function for use in
the regression network. Thus, a fully connected dense layer and linear activation were used
to predict EE,t. In our TCN model, we set sixty-four filters, five dilations and two residual
blocks, and the kernel size was set at 3 s. The system was implemented using TensorFlow
(2.0.0) [38].

Training Model

The three groups’ results comprised 19865 samples: 7950 samples in group A, 7040 sam-
ples in group PP and 4875 samples in group P. The data of each population group were split
into three datasets, including a training set, a validation set and a test set. A total of 55% of
the data was used for training, 20% was used for validation and 25% was allocated for test-
ing. The training dataset was used during the learning process. The test dataset was used
only to test the ability to generalize the trained model. Five-fold cross-validation was used
to evaluate the model’s performance with the validation set to diminish the over-filtering.
The network of the learning rate was 0.001, the batch size was 1024 and the epochs were 80.
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The data in the CSV file were processed and analyzed in Python (Version 3.7.11 for macOS,
Stichting Mathematisch Centrum Inc., Guido van Rossum, The Netherlands).

2.5. Statistical Analyses

The number of windows required to obtain a robust model which will make it possible
to achieve a given percentage of accuracy in the estimation of EE has been analyzed. To
achieve an estimation percentage of 95% with a margin of error of 2% and a confidence level
of 95%, a minimum of 457 windows were required for the analysis (n = z2 × p (1 − p)/m2;
z = 1.96, p = 0.05 and m = 0.02). The analysis of only 5 min of recording per intensity
level and the partition of these 5 min into 5 s windows to calculate the features allow
for the obtention of a total of 120 analyzable windows (5 × 12 × 5 = 120) for a single
subject, i.e., 720 for 6 subjects, 960 for 8 subjects and 1080 for 9 subjects. The Kolmogorov–
Smirnov test was used to test the normal distribution of the data. In the absence of normal
distribution, the data were log-transformed before analysis. To assess the performance of
the models in estimating EE, we compare the mean value of different intensities between
EE-IC and EE-RMP. Graphical representations of EE-RMP versus EE-IC were plotted with
their associated regression line. Bland–Altman analysis with corresponding 95% limits
of agreement was used to assess and visualize differences between EE-IC and EE-RMP.
The values associated with EE-RMP versus EE-IC were presented on a graph. The paired
t-test was conducted to compare the differences between EE-IC and EE-RMP. p < 0.05
was considered statistically significant. The data analysis was conducted in GraphPad
Prism (Version 9.3.0 for macOS, Graphpad Inc., San Diego, CA, USA). The most common
parameters used for the model performance assessment were the root mean square error
(RMSE) and the coefficient of determination (R2).

3. Results
3.1. Model Performance

To evaluate the performance of EE estimation for different intensities, we developed
the TCN model with data from the MGT. With this model, we estimated EE and

.
VO2 in

the three groups. In each group, the performance of the TCN model is high, with low
RMSE values and high R2 values (Table 2). The highest R2 (0.985) value was observed in
group PP, and the lowest R2 (0.970) value was observed in group P. RMSE decreases with
age from 0.739 kcal/min in group A to 0.612 kcal/min in group PP and 0.489 kcal/min
in group P. The TCN model also shows good results in the

.
VO2 estimation. The level of

R2 is extremely close in the three groups, ranging from 0.972 in group P to 0.979 in group
PP. The RMSE values are extremely close between groups A (2.094 mL/min/kg) and PP
(2.041 mL/min/kg). The RMSE value for group P is slightly higher (2.244 mL/min/kg).
The predicted value of EE obtained with the TCN model was plotted in Figure 6. Our
results logically showed that the maximal value of EE increased with age. Model estimation
timelines are shown in Figure 7. EE-RMP could illustrate that our result shows EE-IC in all
intensities. However, our results show the differences between EE-IC and EE-RMP, especially
at the beginning of each intensity-increasing phase. As an example, as shown inside the
orange dashed line plotted in Figure 7 group A, when the intensity “Rest-VTh1” changes to
the next intensity (VTh1-VTh2), the estimated error increases as well. In the Bland–Altman
plots (Figure 8), more than 95% of the points lie within the limits of agreement intervals
in the three groups. However, underestimation was observed in groups A and PP (biases
were −0.005 and −0.078, respectively), while overestimation was observed in P (the bias
was 0.057).
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Table 2. TCN model performance for estimating EE and
.

VO2.

EE
.

VO2

Group Samples R2 RMSE R2 RMSE
(Valid/Train) (kcal/min) (ml/min/kg)

A. 1590/6360 0.98 0.74 0.98 2.09
PP. 1408/5636 0.98 0.61 0.98 2.04
P. 975/3900 0.97 0.49 0.97 2.24

A: adult; PP: post-pubertal; P: pubertal; R2: coefficient of determination between measured EE and
.

VO2 and
estimated EE and

.
VO2; RMSE: root mean square error; EE: energy expenditure;

.
VO2: oxygen uptake.
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color represents data from a unique participant.

3.2. Comparison of EE-IC and EE-RMP at Different Intensity Levels

To validate the estimating accuracy of EE-RMP, we compared EE-IC and EE-RMP for
the five intensities and for the three groups. Our results (Table 3) showed, for each group,
that EE increased with increasing intensity. When comparing EE-RMP to EE-IC, our results
showed significantly (p < 0.05) higher values of EE-IC for the “standing” intensity in group
A and significantly (p < 0.001) higher values of EE-RMP for the “standing” intensity in group
P. Our results also showed significantly (p < 0.01) higher values of EE-IC for the “Rest-VTh1”
intensity in group PP. No other significant differences were observed.

Table 3. Estimated (EE-RMP) and measured (EE-IC) energy expenditure mean values for each group
and each intensity level.

Group Intensity EE-IC ± SD EE-RMP ± SD Mean Differences

Kcal/min Kcal/min (EE-RMP–EE-IC) ± SD

A. Sitting 1.19 ± 0.43 1.14 ± 0.44 −0.05 ± 0.09 NS
Standing 1.15 ± 0.41 1.09 ± 0.40 −0.06 ± 0.08 *
Rest-VTh1 4.44 ± 2.00 4.42 ± 2.00 0.06 ± 0.13 NS
VTh1-VTh2 10.22 ± 4.15 10.28 ± 4.07 0.14 ± 0.25 NS

VTh2 −
.

VO2max 14.64 ± 5.85 14.76 ± 5.62 0.12 ± 0.35 NS
PP. Sitting 1.25 ± 0.20 1.25 ± 0.20 −0.01 ± 0.04 NS

Standing 1.31 ± 0.28 1.35 ± 0.28 0.03 ± 0.04 NS
Rest-VTh1 4.53 ± 1.47 4.37 ± 1.42 −0.17 ± 0.11 **
VTh1-VTh2 10.30 ± 2.18 10.10 ± 1.96 −0.19 ± 0.30 NS

VTh2 −
.

VO2max 15.23 ± 2.62 15.03 ± 2.41 −0.20 ± 0.40 NS
P. Sitting 0.96 ± 0.16 0.98 ± 0.18 0.02 ± 0.06 NS

Standing 0.99 ± 0.25 1.10 ± 0.25 0.11 ± 0.03 ***
Rest-VTh1 3.17 ± 0.66 3.18 ± 0.65 0.00 ± 0.09 NS
VTh1-VTh2 6.16 ± 0.41 6.22 ± 0.32 0.06 ± 0.16 NS

VTh2 −
.

VO2max 8.77 ± 0.87 8.90 ± 0.67 0.13 ± 0.24 NS

A: adult; PP: post-pubertal; P: pubertal; EE-IC: energy expenditure measured from indirect calorimetry; EE-RMP:
energy expenditure measured from respiratory magnetometer plethysmography; VTh1: first ventilatory threshold;
VTh2: second ventilatory threshold;

.
VO2max: maximal oxygen uptake; NS: no significant difference p > 0.05;

*: significant difference: p < 0.05; **: significant difference: p < 0.01; ***: significant difference: p < 0.001.
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4. Discussion

Our study was based on that of Gastinger et al. [13], who already validated the RMP
system for estimating EE in adults under resting and moderate exercise conditions using
linear regression. Our objective was to validate the RMP system for assessing EE in children,
adolescents and adults under resting and different exercise intensity conditions using a
DL model.

Direct and indirect calorimetry are both valuable and accurate techniques for assessing
EE under laboratory and field conditions [39]. The direct calorimetry technique is the gold
standard for assessing EE in healthy and diseased subjects [39]. The subject is placed in a
thermally isolated chamber, and the total heat loss from the body is recorded accurately and
measured precisely [40]. Due to the complexity of the equipment required, it is the most
expensive and least practical way to measure EE [41]. The indirect calorimetry is the most
widely employed method to measure

.
VCO2 and

.
VO2 [40]. In some situations, this indirect

calorimetry technique has advantages compared to the direct calorimetry technique. For
instance, metabolism increases in direct proportion to exercise intensity during exercise,
and

.
VO2 reaches a steady state within one to two minutes [42]. The indirect calorimetry

can respond faster for assessing the oxidative heat. In contrast, the direct calorimetry is
a more delayed response because it is not paralleled by a similarly rapid increase in heat
loss [43]. However, when using the indirect calorimetry, it is crucial to attach the face mask
properly and calibrate the equipment before collecting data in order to obtain high-quality
EE data. In addition, the battery of these indirect techniques consists of two or three hours
and is also expensive. DLW is also a gold standard technique for measuring EE, with
low error rates over seven to fourteen days [41]. However, this technique cannot record
minute-by-minute information like indirect calorimetry. Thus, the DLW technique cannot
be used in some exercises that monitor EE per minute. Additionally, the high price of
DLW is also a limitation for researchers. Therefore, research is increasingly focusing on
lightweight, low-cost portable devices for EE estimation.

Using a lightweight and portable device, our results show that EE values increased
with increasing intensity for each group, regardless of the measurement system used
(Table 3, Figure 6), which seems to agree with the literature. In adults aged 27 ± 5 years
old, Westerterp et al. [44] monitored total EE (TEE) using the DLW technique. The PA
level (PAL) was obtained as the TEE/REE ratio, with REE corresponding to resting EE
(REE). PAL increased from 1.52 (lying, sitting and standing) to 2.04 (housework, gymnastics
and sport). Chowdhury [45] measured EE, in adults aged 27 ± 6 years old using indirect
calorimetry (Cosmed’s K4b2) during different types of 10 min PAs. EE increased with
increasing exercise intensity from 1.51 ± 0.39 kcal/min (typing) to 4.03 ± 1.07 kcal/min
(sweeping), 4.12 ± 0.97 kcal/min (walking at 4 km/h), 7.44 ± 1.42 kcal/min (cycling at
75 W for females and 100 W for males) and 9.90 ± 2.01 kcal/min (running at 8.4 km/h).
Adamakis et al. [46] measured EE, using indirect calorimetry, in healthy boys (aged
15.00 ± 2.29 years old) and girls (aged 16.55 ± 1.70 years old). Adolescents participated
in overground walking (5.89 ± 0.62 km/h) and submaximal running (11.25 ± 1.52 km/h),
1200 m each. Boys expended 62.94 ± 12.93 kcal for walking and 74.60 ± 16.20 kcal for
running, while girls expended 58.82 ± 10.34 kcal for walking and 69.51 ± 10.89 kcal for
running. Steenbock et al. [47], used accelerometers to estimate EE in children aged 3 to
6 years old during vigorous intensities of PAs. EE increased with increasing exercise in-
tensity from drawing (4.2 ± 0.9 kJ·min−1) to regular walking (8.2 ± 2.4 kJ·min−1) and
tricycling (13.4 ± 3.8 kJ·min−1). Lee et al. [48] measured EE, using indirect calorimetry
(Cosmed’s K4b2), in children aged 10- to 13-years-old, who performed a series of PAs of
different intensities. The EE values measured in boys and girls gradually increased from
resting (boys: 1.12± 0.38 kcal/min; girls: 1.06± 0.27 kcal/min) to running at 4 km/h (boys:
3.66 ± 1.08 kcal/min; girls: 3.68± 1.14 kcal/min) and 8 km/h (boys: 7.46 ± 1.80 kcal/min;
girls: 7.99 ± 2.04 kcal/min).

Table 3 shows very similar EE values between groups A and PP for each intensity.
Lopez et al. [49], using indirect calorimetry, observed similar trends for measured EE
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between adolescents (15.3 ± 0.7 years old) and adults (37.7 ± 9.8 years old) during sitting
(1.6 vs. 1.5 METs), standing (1.8 vs. 1.6 METs), walking slow (4.0 vs. 3.5 METs) and running
(8.2 vs. 10.8 METs) PAs. Table 3 and Figure 6 also show that EE values seem lower in group
P than in the other two groups, regardless of the level of intensity and the measurement
system used. Ekelund et al. [50] showed that, during different PAs, the PAEE measured by
accelerometry was significantly higher in adolescents aged 17.6 ± 1.5 years old than it was
in children aged 9.6 ± 0.3 years old, and Bitar et al. [51] showed a significant increase in
exercise-related EE in pubertal boys compared to prepubertal boys. Therefore, EE values
are lower in children than they are in adolescents, both in boys and girls [52]. Indeed,
even though children expend more energy per kilogram of body weight than adults in
performing PAs of a given intensity, their lower body weight leads to a smaller overall EE
compared to older subjects [53].

Based on the relationship between EE and
.

VE [11–13], Gastinger et al. [13] vali-
dated the RMP system in estimating EE in adults during various PAs (sitting, stand-
ing and walking at 4, 5, 6 km/h). They showed that EE-IC was significantly correlated
with EE-RMP (EE-IC = 0.295 + 0.936 × EE-RMP, r2 = 0.91). The differences between EE-IC and
EE-RMP ranged from +0.60 to −0.54 kcal/min at rest (sitting and standing) and from +1.48
to −1.43 kcal/min for walking activities (4, 5 and 6 km/h). In their study, Gastinger
et al. [15] used an equation to estimate

.
VE-RMP from the four distances measured by the

RMP system. After that, according to the relationship between EE and
.

VE, a linear re-
gression was applied to estimate EE-RMP from

.
VE [13]. In our study, we directly input

the four distances to the TCN model. Indeed, taking into account the perpetual vari-
ations in thoracic and abdominal dimensions with respiration, Konno and Mead [54]
proposed a respiratory inductive plethysmography (RIP) method to estimate

.
VE accord-

ing to the movement of the chest wall and rib cage. Considering the relationship be-
tween

.
VE and

.
VO2 (

.
VO2 =

.
VE × [FIO2 − FEO2]) and the relationship between

.
VO2 and

EE (EE-IC =
.

VO2 (L) × 4.825), we propose to directly use the changes in the thoracic and
abdominal distances (RC, AB, CW, SP) to estimate EE. The differences between EE-IC and
EE-RMP (+1.439 to −1.429 kcal/min) in adults (Figure 8 group A) are consistent with those
of Gastinger et al. [15]. Furthermore, Figure 8 shows that more than 95% of the points
lie within the limits of agreement intervals in the three groups. These results, therefore,
appear to validate the estimation of EE directly from changes in the rib cage and abdominal
distance in children, adolescents and adults.

Comparing EE-RMP and EE-IC values, our results show that the RMP system seems
to be effective in estimating EE, irrespective of the age of the subjects and the intensity of
exercise (Table 3, Figures 6 and 8). Our results even showed lower values of EE-RMP for the
“standing” intensity in group A (−6%) and for the “Rest-VTh1” intensity in group PP (−4%)
and a higher value of EE-RMP for the “standing” intensity in group P (+10%). These differ-
ences, even if they are significant, seem acceptable in terms of the literature. Indeed, Lopez
et al. [49] used the multisensory device SenseWear Armband Mini (Body Media, Pittsburgh,
PA, USA) to estimate EE in children (10.5 ± 0.7 years old), adolescents (15.3 ± 0.7 years old)
and adults (37.7 ± 9.8 years old) during PAs such as sitting, walking, running, basketball
and biking. They reported a slightly higher mean absolute percent error of estimate EE
under sitting and standing (23–32%) compared to walking and running (8–20%).

The overall results of our study also seem to validate the choice of a DL model to
estimate EE from the RMP system. In adults, Zhu et al. [27], using a triaxial accelerometer
and cardiofrequencemeter, estimated EE for walking, standing and climbing upstairs or
downstairs. They evaluated the DL model convolutional neural network (CNN) and ML
model artificial neural networks (ANN) in estimating EE values. Their results showed
lower RMSE values with the CNN model (1.12 kcal/min) compared to the ANN model
(1.73 kcal/min). Ni et al. [55] estimated EE in adults from the electrocardiogram (ECG) and
inertial measurement unit (IMU) using a deep multibranch two-stage regression network
(DMTRN) model during the Bruce treadmill test, carried out until exhaustion. Their results
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showed a close correlation between the estimated EE and the reference EE measured by
an indirect calorimeter (R2 = 0.97, RMSE = 0.71 kcal/min). Our results (Table 2) in adults
(R2 = 0.984, RMSE = 0.739 kcal/min) thus seem to agree with those of previous studies, such
as those of Farrahi et al. [56], which show that the use of a DL model improves the accuracy
of EE estimation. Using an accelerometer and a CNN model, Chowdhury et al. [48],
estimated EE in eight preschool children (5.23 ± 0.75 years old) during 10 simulated free-
living activities ranging in intensity from sedentary to vigorous. Their results showed
that the CNN models provide efficient EE prediction (RMSE = 0.54 kcal/min). To our
knowledge, our study is the first to use the TCN model to estimate EE. As a variation of
the CNN model, the TCN model can extract temporal information from the data, which
can improve the model’s performance [57]. Our results agree with the literature and show
the interest in using a DL model to estimate EE in children, adolescents and adults under
various conditions of rest and exercise intensities. Regression performance depends on the
feature’s quality, which requires professional knowledge [58]. With DL models, raw sensor
data can extract salient features without relying on laboriously handcrafted features [59].
However, our results show that when one intensity changes to the next intensity, the
estimation error in the TCN model increases as well (Figure 7). Amelard et al. [60] indicated
that the estimation error in the TCN model is likely due to the blindness of point-wise
predictors to previous states. As a result, the TCN model could not learn the relationship
between inputs and outputs during on-and-off transitions.

Concerning the limitations, enough datasets including various ages and anthropo-
metric characteristics (age, sex, health, etc.) are essential for improving the accuracy of
predicting EE. Indeed, it would be interesting to increase the number of subjects in each age
group and also increase the age groups by adding, for example, a group of elderly people
whose ventilatory responses differ from those of younger people [61]. It would also be
interesting to test the RMP system on overweight or obese subjects to evaluate the ability
of this system in the estimation of EE. The development of specific algorithms would then
be necessary to consider the soft tissues present at the abdomen level [13].

5. Conclusions

Our results show that using a DL model and the RMP system seems efficient for
estimating EE in children and adolescents under resting and exercise conditions. The
findings of this study represent an essential step in the search for measurement methods
and DL models for estimating EE in various subject populations.
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