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Identifying the drug-target interactions (DTIs) plays an essential role in new drug development. However, there still has the limited
knowledge of DTIs and a significant number of unknown DTT pairs. Moreover, the traditional experimental methods have
inevitable disadvantages such as high cost and time-consuming. Therefore, developing computational methods for predicting
DTIs is attracting more and more attention. In this study, we report a novel computational approach for predicting DTI using
GIST feature, position-specific scoring matrix (PSSM), and rotation forest (RF). Specifically, each target protein is first converted
into a PSSM for retaining evolutionary information. Then, the GIST feature is extracted from PSSM and substructure
fingerprint information is adopted to extract the feature of the drug. Finally, combining each protein and drug features to form
a new drug-target pair, which is employed as input feature for RF classifier. In the experiment, the proposed method achieves
high average accuracies of 89.25%, 85.93%, 82.36%, and 73.89% on enzyme, ion channel, G protein-coupled receptors (GPCRs),
and nuclear receptor, respectively. For further evaluating the prediction performance of the proposed method, we compare it
with the state-of-the-art support vector machine (SVM) classifier on the same golden standard dataset. These promising results
illustrate that the proposed method is more effective and stable than other methods. We expect the proposed method to be a

useful tool for predicting large-scale DTIs.

1. Introduction

Identification of drug-target interaction (DTI) plays a vital
role in researching and developing new drugs. Recently,
many researchers have conducted extensive research into
the DTI due to its essential role in seeking new protein to
the target for drug development and promoting the emer-
gence of new drug candidates [1, 2]. However, the knowledge
structure of drug-target is still incomplete, and only a small
portion of target proteins of drugs have been proved as inter-
active. Researchers have carried out a large number of exper-
imental methods to identify drug-target interactions, but
these experimental methods have inevitable shortcomings
such as time-consuming and high cost. It is known that drug
development is a long process, and the whole process of
introducing a new drug to market will take at least more than
ten years and cost more than billions of dollars. The Food

and Drug Administration (FDA) approved only a few of
the drug candidates to reach the market [3, 4], due to many
new drug candidates fail to achieve expected performance
or have harmful side effects in clinical trials. Therefore, it
is becoming increasingly urgent to identify drug-target inter-
actions by developing effective new computational methods
[5] which can reduce the cost and time of the experimental
approach. The reliable computational method could acceler-
ate drug discovery and potentially find some better drug
candidates [6].

With the rapid development of genomics and bioinfor-
matics, the accumulation of drug-target data is increasing. In
order to store and apply data more efficiently, many related
databases such as Therapeutic Target Database (TTD) [7, 8],
Kyoto Encyclopedia of Genes and Genomes (KEGG) [9],
SuperTarget and Matador [10], and DrugBank [11, 12] have
been established. These massive data can provide abundant
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resources for researchers to study drug-target interactions and
develop a novel computational approach.

Up to now, traditional calculation methods are mainly
composed of ligand-based methods [13] and structure-
based methods [14-16]. As for ligand-based prediction
methods, it is mainly used to predict the biological activity
of molecules on specific targets. However, the performance
of the constructed model does not satisfy the expected
requirements if the number of known active molecules of a
specific target is insufficient, and the information of protein
domain is unused. For the structure-based method, molecu-
lar docking is one of the most widely used methods. This
method needs to study the interaction between drug mole-
cules and target proteins through the three-dimensional (3-
D) structure information of known targets. At the same time,
for a given drug or new chemical entity, reverse docking can
be used to predict potential targets with which it interacts
[17-19]. However, it is known that proteins with the 3-D
structure only account for a small part of the whole proteins,
which makes the method difficult to meet the requirements
of experimental methods. Therefore, it is more effective to
develop new protein sequence-based prediction models to
predict drug-target interactions.

Until now, a number of computational methods aimed at
identifying new drug-target interactions have been proposed.
For example, Yamanishi et al. [20] proposed a bipartite graph
learning model method, which integrates the chemical space
of drugs, the gene space of proteins, and the topological
information of drug target interaction network into a unified
pharmacological space. Li et al. [21] proposed a novel predic-
tion method using local binary pattern (LBP) and discrimi-
native vector machine (DVM) for predicting DTIs. Liu
et al. [22] proposed a logistic matrix factorization algorithm
based on neighbour regularization, using a neighbour regu-
larization factor to solve the problem of new drug additional.
Nagamine and Sakakibara [23] developed a computational
method which combined the amino acid sequence data, the
chemical structure of the ligand, and mass spectrometry
(MS) as input data and used the support vector machine
(SVM) to build a prediction model. Meng et al. [24] reported
a novel computational method, namely, PDTPS, which is
aimed at predicting drug-target interactions based on protein
sequences and drug chemical structures. Yu et al. [25]
designed a relatively systematic method, which integrates
the chemical, genomic, and pharmacological information of
drugs and targets. Huang et al. [26] proposed a new compu-
tational approach for predicting DTIs. Specifically, the pro-
tein sequence is transformed into a pseudo substitution
matrix representation (Pseudo-SMR) descriptor, which
retained the biological evolutionary information and predict-
ing DT1Is after connecting two vector spaces of drug structure
and protein sequence. In order to handle the problem of
imbalance data, many computational methods [27] have
been proposed which aims to solve the problem for predict-
ing DTIs. For example, Mahmud et al. [28] presented a new
computational model, namely, pdti-EssB, which constructed
a predictive model with XGBoost; the model used data-
balancing techniques to handle the imbalance problem and
adopted a novel feature eliminator for accurate prediction.

BioMed Research International

TaBLE 1: The statistic of four drug-target data.

Dataset Drugs Target proteins Interactions
Enzyme 445 664 2926
Ton channels 210 204 1476
GPCRs 223 95 635
Nuclear receptors 54 26 90

Ezzat et al. [29] proposed a novel method which is focused
on addressing two imbalance problems. The first was solving
the high imbalance ratio between the minority and majority
classes, and the second was aimed at dealing with the
within-class imbalance prevalent; the method is effective for
predicting drug-target interactions.

In our work, we proposed a novel computational method,
which based on drug substructure fingerprints and the infor-
mation of the target protein sequence to predict drug-target
interactions on a large scale. The proposed method com-
bines GIST feature, position-specific scoring matrix (PSSM),
and rotation forest (RF). The method mainly contains three
steps: converting the target protein sequence into PSSM and
adopting molecular substructure fingerprints as the feature
of drugs are the first step, and then GIST feature vectors
are extracted from PSSM. Finally, the GIST feature vectors
would input to the RF classifier and obtain the result of pre-
diction. In order to better evaluate the proposed method, a
five-fold cross validation method is adopted on four golden
datasets, including enzyme, ion channels, GPCRs, and
nuclear receptors. Furthermore, we make a comparison
between the proposed method and the state-of-the-art sup-
port vector machine (SVM) classifier on enzyme dataset,
and we also compare the result of the proposed method
with previous work on four datasets. The promising results
show that our method is efficient and robust to predict
drug-target interactions.

2. Materials and Methods

2.1. Golden Standard Datasets. In this study, four golden
standard datasets, including enzymes, ion channels, GPCRs,
and nuclear receptors were explored by using the proposed
method for evaluating the prediction ability of drug-target
interactions. All these datasets were freely available from
BRENDA [30], DrugBank [11], KEGG BRITE [9], and
SuperTarget [10] databases, and these drug-target datasets
from high-reliability databases are generally considered the
golden standard datasets. The number of drugs known to tar-
get enzyme, ion channels, GPCRs, and nuclear receptors is
445, 210, 233, and 54, respectively. The number of proteins
targeted by the drugs is known to be 664, 204, 95, and 26,
respectively. In these total datasets, 5127 drug-target pairs
were known to interact with each other. These data are dis-
tributed over enzyme, ion channels, GPCRs, and nuclear
receptors, respectively, and the number of them are 2926,
1476, 635, and 90, respectively. Table. 1 summarizes the sta-
tistics of the number of four drug-target datasets.

Generally speaking, we usually consider a drug-target
interaction network as a bipartite graph in which nodes
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describe drug molecules or target proteins and edges repre-
sent the relationship between the nodes. It was very sparse
of the initial bipartite graph of drug-target interactions for
which only a small fraction of the real drug-target interac-
tions edges have been validated by experimental method or
other ways. Take the enzyme dataset as an example, and there
are 295,480 (445 x 664) connections in the corresponding
bipartite graph in total. However, only 2926 initial edges
which account for only 1.00% of the total connections were
known drug-target interactions. These known interaction
pairs were treated as positive samples (2926) which were
obviously less than the possible number of negative samples
(295,480 — 2926 = 292,554). There exists a bias problem
caused by the unbalance samples. In order to deal with this
problem, the number of negative samples was selected ran-
domly as much as the positive samples. It would know that
the real interaction negative samples we have chosen is quite
small or even can be ignored when study a large-scale of DTI.
As a result, the negative samples of enzyme, ion channels,
GPCRs, and nuclear receptors datasets were 2926, 1476, 635,
and 90, respectively.

2.2. Molecular Substructure Fingerprint of Drug. Many kinds
of research have shown that drug compounds could be repre-
sented as different types of descriptor such as constitutional,
topological, quantum chemical properties and geometrical.
Here, molecular fingerprints are being employed to represent
drug compounds [31] which structure information can be
effectively described by molecular fingerprints. Moreover,
the calculation of molecular fingerprint only needs two-
dimensional structure, which not only reduces the workload
of molecular descriptor calculation and screening but also
avoids the error transfer and accumulation in the process of
molecular descriptor calculation. According to detecting the
existence of specific structural segments in the molecular
structure of drug compounds, these fragments then are
encoded on the corresponding bits of the corresponding
binary string through a substructure pattern of a predefined
dictionary, and the molecular structure is transformed into
an orderly digital fingerprint sequence. Specifically, the
specific structural segment exists in the given drug mole-
cules; the corresponding bit of the vector is set to 1, or
0 would be set. In this work, the chemical structure finger-
prints set can be downloaded from the PubChem website
(https://pubchem.ncbi.nlm.nih.gov/). There are 881 sub-
structure information recorded in drug fingerprint. As a
result, the molecular feature of the drug is 881 binary vectors.

2.3. Position-Specific Scoring Matrix. There exist many effec-
tive methods to transform protein sequences into multidi-
mensional feature vectors such as using physicochemical of
amino acids [32, 33] and using statistical distributions of
amino acids [34, 35]. In this work, we adopt position-
specific scoring matrix (PSSM) [36], which was adopted for
exploring distantly related protein. PSSM is also widely
adopted in previous work such as protein secondary struc-
tural prediction, protein binding site prediction, and protein
subcellular localization. Through using a Position-Specific
Iterated Basic Local Alignment Search Tool (PSI-BLAST)

[37] to search and compare the homologous sequence of each
target protein sequence, the homologous information of
alignment sequence can be expressed as PSSM which con-
struct is an M x 20 score matrix, where M rows are the total
number of amino acid sequence and 20 columns represent
the number of 20 amino acid. Here, a PSSM can be obtained
according to the following formula:

PSSMp = (M}, My, ==+, My, +++, Myg), (1)

where M;= (M, ;,M,;, -, M, My,)", (i=1,2,-,20).
X denotes the length of an amino acid sequence, and M,,; is
the mutation score which represents the probability of amino
acid i residue to change into amino acid j in the process of
biological evolution. In this experiment, the PSI-BLAST tool
was employed to transform each protein sequence into a
PSSM. For obtaining highly homologous sequence, the
parameter of critical value of e value is set to 0.001 and max-
imum number of iterations is 3; other parameters were set to
default values. For details on the use of PSI-BLAST can be
obtained at https://BLAST.ncbi.nlm.nih.gov/BLAST cgi.

2.4. GIST Feature Descriptor. The GIST feature which is a
biological heuristic feature was first proposed by Oliva et al.
[38]. The GIST feature can extract global feature information
which plays an important role in scene image classification
[39], and it has been proven to be feasible in objective recog-
nition [40, 41] as well. In GIST algorithm, the processes
mainly contain the following two steps to extract GIST
feature:

(1) Creating Gabor Filters. In image processing, the Gabor fil-
ter can extract a feature from the gray-level images directly.
In spatial domain, the two-dimensional Gabor filter is a
Gaussian kernel function modulated by complex sinusoidal
plane wave. The definition is as follows:

x" +y2y'2 x'
G(x,y) =exp (—T> exp (i <2n7 +w>>, (2)

Real part : G(x, y)
12 2 12 li
X"+ yly x (3)
=exp (—T) cos <2n7 +1//>,

Imaginary part : G(x, )

12 5 12 i 4
e <%> in <zﬂ"7 +w>, @

where x' =x cos 0+ ysin @ and y' = —xsin 6 + y cos 0, o is
the standard deviation of Gauss function, ¥ represents the
phase shift, A is the wavelength which value is specified in
pixels, and 0 is the direction of the parallel strips. Here, 32
Gabor filters were generated by adopting four scales and
eight orientations.
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(2) Obtaining GIST Feature. Given a training sample T which
size is a x b. A sample X is divided into n, x n;, blocks; each
block is of equal size which construction can be defined as
a* x b*, where a* =a/n,and b* = b/n;,. Each block is proc-
essed by employing a set of filter banks that contain 32 Gabor
filters, and the processed features are combined to form the
block feature, which is called a block GIST feature. The fea-
ture vectors of a block processed by each filter are averaged,
and these feature vectors are combined into a row vector,
which are connected in series to obtain the final GIST feature,
we can be defined as follows:

G

vector —

GGy G Gy (5)

where G;=(1/(a* xb*))YG,(x,y) and the dimension of
Guector 18 32 x a* x b". These feature vectors summarize the
gradient information such as scale and orientation for differ-
ent parts of a given sample [42, 43].

In this paper, each PSSM is divided into 16 regions 4 x 4
grids, using 32 Gabor filter banks with four scales and eight
directions to extract the GIST feature of PSSM of each pro-
tein sequence. Finally, a 512 (16 x 32) dimensional GIST fea-
ture of each PSSM is obtained by connecting the 16 (4 x 4)
average values of all 32 features maps.

2.5. Rotation Forest (RF) Classifier. The rotation forest algo-
rithm was proposed by Rodriguez et al. [44]. This algorithm
was based on the idea of feature transformation and focuses
on improving the difference and accuracy of the base classi-
fier. The sample set is randomly divided into K subsets before
each subset is drawn, and the principal component analysis
(PCA) method is used to perform feature transformation
on the divided subsets which is aimed at maintaining the
effective of data. It not only makes each subset different but
also plays a certain role in data preprocessing. Hence, the
rotation forest can further improve the diversity in the
ensemble and enhance the accuracy of the base classifier.
Suppose that w = [w, w,,"--,w,| contains n features of
a sample. Let W be the training sample set which size is
N xn, where N denotes the number of samples. Let H be
the feature set, and the corresponding label be the Y =

[y,, Y3+, ". The feature set is randomly divided into K
equal subsets. Suppose the number of decision trees is L,
which can be denoted as T, T,, -+ T, respectively. The con-
struction steps of the rotation forest classifier are as follows:

(1) Select the suitable parameter K, the feature set H is
randomly divided into K subsets, each subset con-
tains (n/K) features

(2) Let Hj; denote the jth subfeature set of the training
set, which is used to train the ith classifier T,. For
each subset, a new training set W;j is generated after

a bootstrap resampling with 75 percent of training
set W
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(3) Apply principal component analysis (PCA) on W,{j to

produce the coeflicients in matrix P;;, which is a

ij
matrix of M x 1. P;; can be represented as bl(jl), R
™M)
by’
(4) The coefficients obtained in the matrix P;; are con-

structed a sparse rotation matrix S;, which is shown

as follows:
b)), o, b 0 0
- 0 by, b0 0
1 M
0 0 PR A e

(6)

During the prediction period, given a sample w, let d;;

(wS?) be the probability which predicted whether w belongs
to y; by the classifier T;. Then, calculate the confidence of the
class by means of the average combination, and the formula
is as follows:

Aj(w) = %2% (ws?). (7)

The test sample w will be assigned the category with the
greatest possible.

3. Results and Discussion

3.1. Evaluation Criteria. Evaluation criteria play an effective
role in evaluating the computational method. In this paper,
we adopted the following criteria which include accuracy
(Acc.), precision (Prec.), sensitivity (Sen.), and Matthews
correlation coefficient (MCC). The definition is as follows:

TN + TP
Acc. = , 8
= TN+TP+FN + EP ®)
TP
Prec.= — 9
= TP )
TP
Sen.= - . 10
= TP EN (10)

N TN x TP-FN x FP
/(IN+EN) x (TP + FP) x (IN + FP) x (EN + TP)

(11)

where true negative (TN) represents the number of drug-
target pairs that are classified as noninteracting pairs cor-
rectly, true positive (TP) denotes the count of drug-target
pairs that are classified as interacting pairs correctly, false
negative (FN) represents the number of samples that are clas-
sified as noninteracting pairs incorrectly, and false positive
(FP) is the count of samples that are classified as interacting
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TaBLE 2: 5-fold cross-validation results were generated through the proposed method on the enzyme dataset.

Testing set Accuracy (%) Precision (%) Sensitivity (%) MCC (%) AUC AUPR
88.89 89.70 87.86 80.24 0.9570 0.8579

2 89.66 91.07 88.14 81.45 0.9450 0.8920

3 88.63 88.87 88.10 79.85 0.9444 0.8803

4 89.91 91.97 87.20 81.83 0.9538 0.8728

5 89.15 91.88 86.13 80.62 0.9391 0.8788

Average 89.25+0.53 90.70 +£1.37 87.48 +£0.85 80.80 +0.83 0.9479 + 0.0074 0.8763 +£0.0125

TaBLE 3: 5-fold cross-validation results were generated through the proposed method on the ion channel dataset.

Testing set Accuracy (%) Precision (%) Sensitivity (%) MCC (%) AUC AUPR
85.59 86.76 84.12 75.33 0.9292 0.8435

2 86.95 87.63 86.15 77.30 0.9431 0.8686

3 87.63 88.18 87.29 78.31 0.9323 0.8633

4 85.59 83.16 87.59 75.31 0.9370 0.8056

5 83.90 86.01 81.73 72.96 0.9146 0.8287

Average 85.93+1.44 86.35 +1.96 85.38 +2.45 75.84 +2.07 0.9312 +0.0107 0.8419 +0.0258

TaBLE 4: 5-fold cross-validation results were generated through the proposed method on the GPCR dataset.

Testing set Accuracy (%) Precision (%) Sensitivity (%) MCC (%) AUC AUPR
83.86 81.89 85.25 7291 0.8853 0.7820

2 81.89 79.37 83.33 70.29 0.8894 0.7493

3 78.74 84.75 73.53 66.35 0.8660 0.8154

4 85.04 88.29 79.67 74.34 0.8998 0.8591

5 82.28 82.48 84.33 70.71 0.8992 0.7993

Average 82.36 +£2.39 83.35+3.36 81.22 +4.79 70.92 +3.04 0.8879 + 0.0138 0.8010 + 0.0407

TaBLE 5: 5-fold cross-validation results were generated through the proposed method on the nuclear receptor dataset.

Testing set Accuracy (%) Precision (%) Sensitivity (%) MCC (%) AUC AUPR
75.00 76.92 62.50 60.78 0.7688 0.6444

2 80.56 78.95 83.33 68.62 0.8148 0.7007

3 69.44 81.25 61.90 56.69 0.8254 0.8484

4 72.22 60.00 85.71 58.61 0.8442 0.7507

5 72.22 72.00 85.71 56.06 0.7524 0.7053

Average 73.89 +4.21 73.82 +8.45 75.83 +12.48 60.15 +5.08 0.8011 +0.0389 0.7299 + 0.0762

pairs incorrectly. Meanwhile, we computed the receiver oper-
ating characteristic (ROC) curve, the precision-recall (PR)
curve, the area under a ROC curve (AUC), and the area
under precision-recall curve (AUPR) for evaluating the per-
formance of the proposed method visually. Due to the imbal-
anced dataset, it is more significantly to evaluate the
proposed by employing AUPR in this study.

3.2. Performance of the Proposed Method. To better verify the
performance of the proposed method in this study, we adopt
the five-fold cross-validation method on different types of
protein target datasets: enzyme, ion channel, GPCRs, and
nuclear receptor. Specifically, the whole dataset would be sep-
arated into five parts that four datasets are used for training

and one dataset is used for testing. By doing this, five training
models would be generated for training datasets, and GIST
feature vectors and the corresponding label would be the
input data of the prediction model. Finally, the prediction
score could be obtained for evaluating the interaction
between drug and target protein. In addition, for the sake
of fairness for all experiments in this work, the corresponding
parameters K and L of the rotation forest-based classifier
were set the same. The parameter K is set to be 10, and L is
set to be 12. Here, L denotes the number of decision trees
and K means the number of feature subsets. The prediction
results of the proposed method by using the five-fold cross-
validation method of enzyme, ion channel, GPCRs, and
nuclear receptor datasets are listed in Tables 2-5.
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FIGURE 1: The curves obtained by the proposed method on the enzyme dataset: (a) ROC curves and (b) PR curves.
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FIGURE 2: The curves obtained by the proposed method on the ion channel dataset: (a) ROC curves and (b) PR curves.

When our method is used to predict DTI of the enzyme
dataset, the results of average accuracy, precision, sensitivity,
MCC, and AUC are 89.25%, 90.70%, 87.48%, 80.80%, and
0.9479, respectively. The standard deviations of these pre-
dicted results are 0.53%, 1.37%, 0.85%, 0.83%, and 0.0074,
respectively. When employing our method to predict DTI
of the ion channel dataset, the results of average accuracy,
precision, sensitivity, MCC, and AUC come to be 85.93%,
86.35%, 85.38%, 75.84%, and 0.9312 and the standard devia-
tions are 1.44%, 1.96%, 2.45%, 2.07%, and 0.0107, respec-
tively. When exploring the GPCRs dataset, the prediction
result of the average accuracy, precision, sensitivity, MCC,
and AUC are 82.36%, 83.35%, 81.22%, 70.92%, and 0.8879,

respectively. The standard deviations come to be 2.39%,
3.36%, 4.79%, 3.04%, and 0.0138, respectively. When predict-
ing the interactions of the nuclear receptor dataset, we
achieved the average result of accuracy, precision, sensitivity,
MCC, and AUC of 73.89%, 73.82%, 75.83%, 60.15%, and
0.8011, respectively. It is noteworthy that the prediction
result yields high standard deviations due to the samples of
nuclear receptor dataset is only 90 which is smaller than the
other three datasets, the standard deviations were 4.21%,
8.45%, 12.48%, 5.08%, and 0.0389, respectively. Furthermore,
the values of AUPR were computed on enzyme, ion channel,
GPCRs, and nuclear receptor, which achieved the result of
0.8763,0.8419, 0.80101, and 0.7299, respectively. Meanwhile,
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FIGURE 4: The curves obtained by the proposed method on the nuclear receptor dataset: (a) ROC curves and (b) PR curves.

the ROC curves and the PR curves of the proposed method of
four datasets are shown in Figures 1-4 in order to better ana-
lyse the feasibility of the proposed method.

3.3. Comparison between RF Classifier and SVM Classifier. In
order to further evaluate the prediction performance of the
proposed method, we conducted the performance compari-
son between the RF classifier and the state-of-the-art support
vector machine (SVM) classifier [45] by using the same fea-
ture descriptor vectors. We employed the five-fold cross-
validation method for better analysis at the same time. The
LIBSVM tool [46] was adopted to implement classification.

We got the optimized parameters of the SVM classifier, and
the parameter c is set to 15 and g is set to 30. The classifica-
tion result of the enzyme dataset between the RF classifier and
SVM classifier is listed in Table 6. It can be seen that the
result of SVM classification of average accuracy, precision,
sensitivity, MCC, and AUC of 81.83%, 83.34%, 79.54%,
70.23%, and 0.8836, and these standard deviation comes to
be 0.64%, 0.78%, 1.16%, 0.83%, and 0.0059, respectively.
From Table 6, we can see that the average results of the
SVM classifier are lower than the performance of the pro-
posed method. The prediction result also shows that the per-
formance of the RF classifier is better than the performance
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TaBLE 6: 5-fold cross-validation results were generated by using the proposed RF classifier and SVM classifier on the enzyme dataset.

Testing set Accuracy (%) Precision (%) Sensitivity (%) MCC (%) AUC
PSSM+GIST+RF
1 88.89 89.70 87.86 80.24 0.9570
2 89.40 89.90 88.98 81.05 0.9450
3 88.63 88.87 88.10 79.85 0.9444
4 89.91 91.97 87.20 81.83 0.9538
5 89.15 91.88 86.13 80.62 0.9391
Average 89.20 £0.49 90.46 +£1.39 87.65 £ 1.07 80.72 £ 0.76 0.9479 £0.0073
PSSM+GIST+SVM
1 81.11 82.85 78.46 69.32 0.8794
2 82.65 83.65 81.53 71.31 0.8895
3 82.22 83.94 79.31 70.71 0.8901
4 81.28 82.23 79.24 69.53 0.8820
5 81.88 84.02 79.19 70.29 0.8770
Average 81.83 £0.64 83.34£0.78 79.54+1.16 70.23 +0.83 0.8836 + 0.0059
1 TaBLE 7: Comparison of the AUC values between the proposed
0.9 method and other four existing methods on four datasets.
08 Our Mousavian
0.7 Dataset method NetCBP et al. Liet al. RFDTI
2061 Enzyme 0.9479 08251 09480 09288 09172
z 2i Ion channels 09312 0.8034  0.8890  0.9171 0.8827
< 0'3 GPCRs 0.8879 0.8235 0.8720 0.8856 0.8557
02 igg;fr . 0.8011 0.8394 08690 09300 0.7531
O'(l) Average AUC = 0.8836

0 01 02 03 04 05 06 0.7 08 09 1
1 - specificity

1st-fold (AUC = 0.8794)

2nd-fold (AUC = 0.8895)
—— 3rd-fold (AUC = 0.8901)
—— 4th-fold (AUC = 0.8820)
— 5th-fold (AUC = 0.8770)

FiGure 5: The ROC curves performed by SVM classifier on the
enzyme dataset.

of the SVM classifier when employing the same feature vec-
tors as the input data. Furthermore, the parameter optimiza-
tion of the RF classifier is more convenient than the SVM
classifier. Meanwhile, the ROC curves of the SVM classifier
are displayed in Figure 5.

3.4. Comparison with Other Methods. Until now, numerous
computational methods have been proposed for predicting
the DTL In our study, we made a performance comparison
between the proposed method and the other four existing
methods that include NetCBP [47], Mousavian et al.’s [48],
Li et al’s [21], and RFDTI [49]; these methods were also
employed the five-fold cross-validation on enzyme, ion chan-
nel, GPCRs, and nuclear receptor dataset, respectively. The
differences of them were the different feature extractions
and classifiers adopted. These comparison results are listed

in Table 7. It can be seen from Table 7 that the results we
obtained were improved than those previously proposed
methods; the increases of average AUC values on ion channel
and GPCRs datasets were 0.0141, and 0.0023, respectively.
However, average AUC value of the enzyme and nuclear
receptor datasets are little lower than previous works, which
mainly caused by the scale of prediction samples and extrac-
tion method. Generally, the comparison results demon-
strated that GIST feature extraction combined with the
rotation forest classifier could improve the prediction perfor-
mance of drug-target interactions effectively.

4. Conclusions

In this article, we reported a novel computational approach
combines GIST feature, position-specific scoring matrix
(PSSM), and rotation forest (RF) based classification to infer
unknown DTIs on a large-scale. For further evaluating the
prediction ability of the proposed method, we adopted the
five-fold cross-validation method on golden standard data-
sets. When performing on enzyme, ion channel, GPCRs,
nuclear receptors, the proposed method yielded the average
accuracy of 89.20%, 85.93%, 82.36%, and 73.89%, respec-
tively. In order to further assess the performance of the pro-
posed model, we made a comparison between the proposed
method and the state-of-the-art support vector machine clas-
sifier. We also compare with the previous models which were
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based on the same golden standard datasets. These extensive
experimental results further illustrate that the proposed
method is effective and robust in predicting drug-target
interactions. We expect this proposed method to be a useful
tool when predicting DTIs. In future work, we plan to use
more advanced feature extraction method to improve the
prediction ability of DTIs.

Data Availability

The data code can be obtained at https://github.com/
TensorflowZhan/Program-Availability
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