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ABSTRACT: A conceptual problem of transfer theories that use a semiclassical
description of the electron-vibrational coupling is the neglect of the correlation
between momenta and coordinates of nuclei. In the Redfield theory of exciton
relaxation, this neglect leads to a violation of the principle of detailed balance; equal
“uphill” and “downhill” transfer rate constants are obtained. Here, we investigate how
this result depends on nuclear reorganization effects, neglected in Redfield but taken
into account in the modified Redfield theory. These reorganization effects, resulting
from a partial localization of excited states, are found to promote a preferential
“downhill” relaxation of excitation energy. However, for realistic spectral densities of
light-harvesting antennae in photosynthesis, the reorganization effects are too small to
compensate for the missing coordinate−momentum uncertainty. For weaker excitonic
couplings as they occur between domains of strongly coupled pigments, we find the
principle of detailed balance to be fulfilled in a semiclassical variant of the generalized
Förster theory. A qualitatively correct description of the transfer is obtained with this theory at a significantly lower computational
cost as with the quantum generalized Förster theory. Larger deviations between the two theories are expected for large energy gaps
as they occur in complexes with chemically different pigments.

■ INTRODUCTION

The high efficiency of photosynthetic light harvesting relies on a
directed energy transfer to the photosynthetic reaction center,
where the excitation energy is trapped by primary electron
transfer reactions.1−4 The directionality is achieved by tuning
the excited states of the light-harvesting complexes such that the
low-energy states are located close to the reaction center. These
effects are achieved by exploiting the pigment−pigment as well
as the pigment−protein coupling.5,6

In the photosynthetic apparatus of purple bacteria,7−10 the
number of strongly coupled bacteriochlorophyll a (BChl a)
pigments is increased between the peripheral LH2 and the core
LH1 light-harvesting complex surrounding the reaction center
(RC). Due to the Coulomb coupling between electrons of
different pigments, their motion becomes correlated, and
delocalized excited states (exciton states) are formed with
shifted excitation energies and redistributed oscillator strengths
as compared to isolated or weakly coupled pigments (also
present in LH2 but not in LH1). The larger number of strongly
coupled pigments in LH111−13 than in LH214−16 contributes to
the fact that the low-energy exciton states of LH1 are red-shifted
with respect to those of LH2, providing a driving force for
directed energy transfer. Finally, the excitation energy is trapped

by the special pair, a BChl a dimer in the reaction center. In this
case, nature exploits electron exchange in the special pair,17−19

in addition to the Coulomb coupling, to reach a low enough
excitation energy in order to accept the excitation energy from
the low-energy exciton states of LH1.
In green sulfur bacteria, an outer antenna system (the

chlorosome) is connected to the reaction center complex via the
baseplate and the Fenna−Matthews−Olson (FMO) pro-
tein.20,21 The local excitation energies (site energies) of the
BChl a pigments in the FMO protein are tuned by electrostatic
pigment−protein coupling22−24 such that a site energy funnel
toward the reaction center complex is created.25−27 Due to the
different site energies of the pigments, the exciton states in the
FMO protein are partially localized.25,28 The low-energy exciton
states face the reaction center complex,21,25,26 and hence, the
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relaxation between high- and low-energy exciton states leads to a
spatially directed energy transfer.
The fundamental principle behind the preferential “downhill”

transfer of excitation energy is the detailed balance of rate
constants

k
k

eM N

N M

k T/MN B= ω→

→

ℏ

(1)

for transfer between two states |M⟩ and |N⟩ that are separated by
an energy difference ℏωMN, where kB is Boltzmann’s constant,
and T is the temperature.
The detection of long-lived oscillating signals in 2D electronic

spectroscopy on the FMO protein29,30 and marine cryptophyte
algae31 triggered fundamental questions on the role of quantum
effects in photosynthesis and other biological and chemical
systems.28,32−34 It is understood now that there is a close
analogy between delocalized excited electronic states and
classical coupled electronic harmonic oscillators.35−40 However,
an important quantum aspect concerns the relaxation of
excitons. For weak exciton-vibrational coupling, a classical
treatment of nuclear motion leads to a violation of the principle
of detailed balance.28,39 Equal “uphill” and “downhill” relaxation
rate constants are obtained. This defect of the classical theory
can be traced back to the absent correlation between classical
momenta and coordinates that arise in a quantum theory from
the uncertainty principle.
In the case of strong exciton-vibrational coupling, where

nuclear reorganization effects accompany the energy transfer,
the importance of nuclear quantum effects is less clear. A recent
study by Reppert and Brumer,40 treating the electronic as well as
nuclear degrees of freedom classically, finds that the nuclear
reorganization effects are suppressed, and the principle of
detailed balance is still violated such that the “uphill” is equal to
the “downhill” rate constant, as for weak exciton-vibrational
coupling discussed above. This result contrasts semiclassical
Marcus theory of nonadiabatic electron transfer,41,42 which
strictly fulfills the principle of detailed balance, despite a classical
treatment of nuclear motion. In a semiclassical study by Ishizaki
and Fleming,43 exciton dynamics was investigated in the basis of
localized excited states, and nuclear motion was treated
classically, neglecting nuclear reorganization effects. The authors
justified this neglect by an unphysical Ehrenfest force in the
equations of motion for the nuclear coordinates for intermediate
occupation probabilities of localized excited states (in the case of
exciton delocalization) and suggested that a treatment with
Tully’s surface hopping approach44−46 might lead to the correct
equilibrium population of excited states. There is indeed a long
history of methods44,47−50 that try to find a simple and yet
accurate quasiclassical description of quantum behavior
including the detailed balance condition.45,46,48,51

In the present work, rather than investigating ways to mimic
the quantum behavior, we introduce potential energy surfaces
(PESs) of delocalized excited states and derive expressions for
rate constants for transitions to different PESs assuming either a
classical or a quantum nuclear motion in the PES of the initial
exciton state. An important point of our model is that the mutual
displacements of excitonic PESs along the coordinate axes are
taken into account as well as their displacement with respect to
the PES of the electronic ground state. In this way nuclear
reorganization effects are included. We investigate exciton
relaxation in domains of strongly coupled pigments and between
such domains with weak interdomain couplings, leading to the

semiclassical modified Redfield theory and semiclassical
generalized Förster theory, respectively.
The theories are applied to the intramonomer exciton

relaxation and the intermonomer excitation energy transfer in
the trimeric FMO protein of green sulfur bacteria, with a
particular focus on the detailed balance condition and the
comparison of the quantum and semiclassical transfer kinetics.

■ THEORY
Hamiltonian. We use a standard Frenkel exciton Hamil-

tonian expanded in the basis of localized electronic states

r m r r r( ) ( ) ( )m m
e

m k
k m

k
g

k
( ) ( )ϕ φ φ⟨ | ⟩ = = ∏ ≠ , where chromophore

m is in the electronic excited state, and all other chromophores k
≠ m are in their electronic ground state; r comprises the
electronic coordinates of the chromophores. The wave function
overlap between different chromophores is assumed to be
sufficiently small such that there is no electron exchange
between them. The Hamiltonian of singly excited states
reads42,52,53

H H H Hex ex vib vib= + +‐ (2)

where the exciton part

H E m m V m n
m

m mnex ∑= | | + | |
(3)

contains the local excitation energies (site energies) Em of the
chromophores and the excitonic couplings Vmn between them.
These quantities are taken at the equilibrium position of nuclei
in the electronic ground state of the complex. The exciton-
vibrational coupling Hamiltonian Hex‑vib takes into account the
variation of the local excitation energies by the vibrations. A
linear dependence is assumed on normal mode coordinates qξ

H g q m m2
m

m
ex vib

3 ( )∑ ∑ ω μ= ℏ | |
ξ

ξ ξ ξ ξ‐
(4)

with the vibrational frequency ωξ, the reduced mass μξ, and the
dimensionless coupling constant gξ

(m) of normal mode ξ. The
vibrational Hamiltonian Hvib is obtained from a normal-mode
analysis of nuclear motion in the electronic ground state of the
complex

H p q
1

2 2vib
2
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jjjjjjj
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Delocalized exciton states M c mm m
M( )| ⟩ = ∑ | ⟩ are introduced as

the eigenstates ofHex with eigenenergies EM. In the exciton basis,
the exciton-vibrational Hamiltonian Hex‑vib reads

H g M,N q M N2 ( )
M N

ex vib
,

3∑ ∑ ω μ= ℏ | |
ξ

ξ ξ ξ ξ‐
(6)

with the dimensionless coupling constant

g M,N c c g( )
m

m
M

m
N m( ) ( ) ( )∑=ξ ξ

(7)

We combine the diagonal part of Hex‑vib with Hex and Hvib and
introduce potential energy surfaces of the exciton states52,53

U q U q g M,M( )
2

( )
2

M M
(0)

2 2

∑
μ ω

ω μ
= + + ℏ

ξ
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i
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where q comprises the vibrational coordinates, and the
minimum of the PES is given as

U E g M,M( )M M
(0) 2∑ ω= − ℏ

ξ
ξ ξ

(9)

The PESs of different exciton states are coupled by the off-
diagonal elements of Hex‑vib in eq 6

V q g q( ) 2MN
3ω μ= ℏ ξ ξ ξ ξ (10)

with the off-diagonal coupling constant

g g M,N( )=ξ ξ (11)

(eq 7, withM≠N), which will be treated in perturbation theory
below.
Semiclassical Rate Constant in the Modified Redfield

Theory. In the modified Redfield theory,54−56 it is assumed that
nuclei, after optical excitation of the complex, relax in the PES of
exciton states, defined above. After this nuclear equilibration,
excitation energy transfer occurs between different PESs. We
split the electronic Hamiltonian into a diagonal part H0 and a
perturbation V

H H V0= + (12)

where the diagonal part contains the PES UM (eq 8) of exciton
states

H U q M M( )
M

M0 ∑= | |
(13)

and V comprises the couplings VMN (eq 10) between different
exciton states

V V q M N( )
M N

M N

MN
,

( )

∑= | |
≠

(14)

The electronic wave function φ(r,q,t) of the complex is
expanded with respect to the stationary states of H0

r,q,t a t r,q( ) ( ) ( )e
N

N N
i U q/ d ( ( ))t

N0∑φ ϕ= τ τ− ℏ ∫

(15)

where the time dependence of the electronic energy of state |N⟩
is given by the PES UN(q(τ)) and will be described by using a
classical description of nuclear motion. Perturbation theory in
the coupling V is used to obtain the coefficients aN(t)≈ aN

(0)(t) +
aN
(1)(t). It is assumed that the exciton is initially in state |M⟩.
Hence, in zeroth-order in the inter-PES coupling we have

a t( )N M N
(0)

,δ= (16)

From the electronic Schrödinger equation

H V r,q,t i
t

r,q,t( ) ( ) ( )0 φ φ+ = ℏ ∂
∂ (17)

taking into account the orthogonality of different excitonic states
and the zeroth-order coefficient aN

(0) above, the time-derivative of
the first-order coefficient is obtained as

a t
i

V q( ) ( )eN NM
i U q U q(1) / d ( ( ( )) ( ( ))t

M N0̇ = −
ℏ

τ τ τ− ℏ ∫ −
(18)

The probability of finding the system, that was initially in state
|M⟩, at time t in state |N⟩ is given as |aN

(1)(t)|2, and the long-time
limit of the transition probability per time, that is, the rate
constant kM→N, follows as

57

k
t

a tlim
1

( )M N
t

N
(1) 2= ⟨| | ⟩→

→∞ (19)

where ⟨...⟩ denotes an average over thermally distributed initial
coordinates and momenta of nuclei. With the integral of eq 18
and its complex conjugate, the rate constant becomes

k
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2 0
1 1
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where

F t t X( , )
1

d ( )MN
t

t

1 2
2

1∫ τ τ=
ℏ (21)

with the energy gap between the final and the initial state

X U U( ) ( ) ( )N Mτ τ τ= − (22)

Changing the integration variables in eq 20 to t1′ = t1 − t2 and t2
for t1 > t2 and to t1′ = t2− t1 and t2 for t1 < t2, taking into account
the Jacobian determinant |∂(t1′, t2)/∂(t1, t2)| = 1, gives
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The time dependence of the inter PES coupling VMN(t) and
energy gap X(t) entering the function FMN(t1, t2) is determined
by the equilibrium fluctuations of nuclei q(t) in the initial state
|M⟩. In thermal equilibrium, the averages in the above integrals
do not depend on the absolute time t2. Setting t2 = 0 in these
expressions and using a substitution t1′→−t1′ in the second line
result in

k
t

t V V

V V
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d ( ) ( ) (0)e
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d ( ) (0)e

M N
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(24)

The coupling VNM(τ) is given in eq 10, and the function FMN(0,
τ) is obtained from eqs 21 and 22 and the PES of the two exciton
states in eq 8, where we set the origin of the qξ-axis to the
minimum position of the PES UM(q) of the initial state |M⟩, as

F
E

f(0, ) ( )MN NM MNτ ω τ= +
ℏ

+λ
(25)

with the transition frequency between the minima of the PES of
the initial and the final exciton states |M⟩ and |N⟩, respectively,
ωNM = (UN

(0) − UM
(0))/ℏ and the reorganization energy Eλ that

follows from the mutual displacement of the two PES

E g 2∑ ω= Δ ℏλ
ξ

ξ ξ
(26)

containing the difference in diagonal exciton-vibrational
coupling constants between the two states

g g M,M g N,N( ) ( )Δ = −ξ ξ ξ (27)

The function f MN(τ) in eq 25 reads
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f g q( )
1

2 d ( )MN
3

0
∫∑τ ω μ τ τ=

ℏ
Δ ℏ ′ ′

ξ
ξ ξ ξ

τ

ξ
(28)

A classical treatment of nuclear motion (q̇ξ = ∂/∂pξHvib, ṗξ =
−∂/∂qξHvib with the Hvib in eq 5) in the harmonic PES of the
initial state |M⟩ (setting the origin of the qξ axis to the minimum
position of UM(q)) results in

q q t
p

t( ) cos( ) sin( )(0)
(0)

τ ω
μ ω

ω= +ξ ξ ξ
ξ

ξ ξ
ξ

(29)

with the initial values qξ
(0) and pξ

(0) of coordinates and momenta,
respectively. Please note that this dynamics follows the
Ehrenfest theorem, since it holds that q̈ξ = −∂/∂qξ⟨M|H0|M⟩ =
−∂/∂qξUM(q), with the electronic Hamiltonian H0 in eq 13 and
taking into account that the system is initially in exciton state |
M⟩. The reorganization effects are described correctly, since
only a single exciton state is excited initially.43

The rate constant kM→N follows from eqs 24, 10, 25, and 28 as

k A
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where the function A(τ) reads

A V V( ) ( ) (0)eNM MN
if ( )MNτ τ= ⟨ ⟩τ

(31)

with the VNM(τ) from eqs 10 and 29, and the f MN(τ) from eqs 28
and 29. The thermal average over initial coordinates and
momenta in eq 31 is defined as
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with the Boltzmann factors
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Gaussian integrations result in
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By using a short-time approximation for the cosine function in
the exponent, that is, cos( ) 1 /22 2ω τ ω τ≈ −ξ ξ′ ′ , the function
A(τ) can be written as

A k T g
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(36)

with the reorganization energy of the diagonal parts of the
exciton-vibrational coupling Eλ (eq 26). The second term on the
right-hand side of eq 36 contains higher-order exciton-
vibrational couplings resulting from the correlation between
the diagonal (eq 27) and the off-diagonal (eq 7 with M ≠ N)
contributions. Neglecting these correlations and performing the
time-integration in eq 30 with the first term on the right-hand
side of eq 36 result in the semiclassical modified Redfield rate
constant
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which will be applied and analyzed in detail below.

■ SEMICLASSICAL RATE CONSTANT IN THE
GENERALIZED FÖRSTER THEORY

Next, we turn to the generalized Förster theory58−60 that is used
to describe exciton transfer between domains of pigments with
strong intradomain and weak interdomain excitonic couplings.
In this case, the exciton Hamiltonian is expanded in terms of the
delocalized exciton states of the domains

H E M M V M N
a M

M a a
a b M N

M N a bex
,a

a

a b

a b
∑ ∑ ∑ ∑= | | + | |

≠

(38)

with the coupling between exciton state |Ma⟩ in domain a and
|Nb⟩ in domain b.
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m
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n
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,
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a
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b
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(39)

where Vm na b
is the excitonic coupling between pigment ma in

domain a and pigment nb in domain b, and cm
M( )
a

a and cn
N( )
b

b are the
coefficients of these two pigments in the respective exciton states
|Ma⟩ and |Nb⟩. As before, the exciton-vibrational coupling is
taken into account by introducing PESU q( )Md

of exciton states
(eq 8), and the overall Hamiltonian (eq 12) is split into a partH0
and a perturbationV.H0 contains the PES of exciton states of the
different domains d

H U q M M( )
d M

M d d0

d

d
∑ ∑= | |

(40)

and V the interdomain excitonic couplings

V V M N
a b M N
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≠ (41)

A simplifying feature with respect to the semiclassical modified
Redfield theory treated above is that VM Na b

(eq 39) does not
depend on the nuclear coordinates. Otherwise, the derivation of
the rate constant goes along the same lines as above, and the rate
constant k M Na b→ is obtained as

k
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with the energy difference U UN M N M
(0) (0)

b a b a
ωℏ = − between the

minima of the PES of the initial state |Ma⟩ and that of the final
state |Nb⟩, the reorganization energy Eλ given by eq 26 with
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and the function

f g q

p

( )
2

sin( )

2
(cos( ) 1)

M N,
(0)

(0)

a b
∑τ

ω μ
ω τ

ω μ
ω τ

= Δ
ℏ

−
ℏ

−

ξ
ξ

ξ ξ
ξ ξ

ξ ξ
ξ ξ

i

k

jjjjjjj
y

{

zzzzzzz
(44)

Performing the average over the thermal distribution of initial
coordinates and momenta yields

e e eif
k T
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(1 cos( )) /Ma Nb,

B 2
B

2 2
⟨ ⟩ = ≈τ ω ω τ τ− ∑ ℏ Δ − − ℏξ

ξ ξ ξ λ (45)

where in the last step a short-time approximation for cos(ωξτ)
was used and the reorganization energy Eλ in eqs 26 and 27, with
M =Ma andN =Nb, was introduced. Finally, the time integration
in eq 42 results in the semiclassical Förster theory rate constant
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ℏ λ

ω
→
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(46)

which is formally identical to the Marcus theory rate constant of
nonadiabatic electron transfer41,42 and was recently derived by
considering the high-temperature limit of the quantum
expression of this rate constant.61 It is notable that the
semiclassical generalized Förster theory rate constant strictly
fulfills the principle of detailed balance, k k/M N N Ma b b a→ → =

e k T/MaNb Bωℏ .
In the limit of uncorrelated site energy fluctuations of the

pigments, the reorganization energy Eλ, in the present case,
where the excited pigments contributing to the exciton states
|Ma⟩ and |Nb⟩ are located in different domains, is given as the
sum of the reorganization energies of the two exciton states

E E EM N( ) ( )a b= +λ λ λ with E c E( )K
k k

K( ) ( ) 2 locd

d d
d= ∑λ λ where the local

reorganization energy Eloc
λ of the pigments is defined as

E g( )loc loc 2∑ ω= ℏλ
ξ

ξ ξ
(47)

We have assumed the same local coupling constant g loc
ξ for all

pigments.
The rate constant k M Na b→ in eq 46 can then be expressed as
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a b∫π ω ω ω=
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∞

(48)

containing the familiar overlap integral42 between the
normalized line shape functions of the emissive transition Ma
→ 0 of the donor domain
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with the 0−0 transition energy Ma
ω of exciton state |Ma⟩ and the

absorptive transition 0 → Nb of the acceptor domain
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The nuclear reorganization effects are seen as a Stokes shift

E EM N( ) ( )a b+λ λ between the absorption maximum of the acceptor
and the emission maximum of the donor, in case their 0−0
transition energies are equal ( M Na b

ω ωℏ = ℏ ).

■ APPLICATION
We apply the present theories to the Fenna−Matthews−Olson
(FMO) protein of green sulfur bacteria of Prosthecochloris
aestuarii.62 The excitation energy collected by the outer
chlorosome antenna enters the FMO protein via the baseplate
and relaxes from the high-energy exciton states with
contributions from the high-energy pigments via those with
intermediate excitation energy to the low-energy exciton state
with major contributions from BChls 3 and 4 located at the
bottom of the complex (Figure 1A). Afterward, the excitation
energy equilibrates between the three monomers of the trimeric
complex (Figure 2A) and is transferred to the reaction center
complex.21 The FMO protein has been an important model
system for the development of experimental and theoretical
techniques to study photosynthetic pigment−protein com-
plexes, as reviewed recently.28 This review came to the
conclusion that the most important nuclear quantum effect for
the function of this complex is related to the dissipation of the
excess energy of excitons. Here, we investigate, whether or not
this conclusion also holds, if nuclear reorganization effects are
taken into account, and considering also the intermonomer
equilibration of excitation energy. Exciton relaxation in the
monomeric subunit (Figure 1A) is described by the semiclassical
modified Redfield theory (eq 37) and excitation energy transfer
between the monomeric subunits (Figure 2A) by the semi-
classical generalized Förster theory (eq 46). All calculations are
performed assuming a physiological temperature (T = 300 K).

Intramonomer Exciton Relaxation in the FMO Protein.
We start by reproducing the earlier results28 obtained with the
standard Redfield theory and its semiclassical variant, in which
only the electronic motion is described quantum mechanically,
whereas nuclei move according to Newton’s classical equations
of motion. The initial population of exciton states was obtained
by taking into account incoherent energy transfer from the
baseplate. Please find the details of this description63 as well as
the parameters (site energies, excitonic couplings, static
disorder) in the Supporting Information of ref 28. The spectral
density of the local exciton-vibrational coupling of the pigments

J g( ) ( ) ( )loc 2∑ω δ ω ω= −
ξ

ξ ξ
(51)

was extracted from fluorescence line narrowing spectra and a fit
of the temperature dependence of the absorption spectrum.64 It
has a maximum around 30 cm−1 and an asymmetric shape
extending up to 400 cm−1 (Figure 1F), resulting in a local
reorganization energy Eλ

loc (eq 47) of 45 cm−1. As expected, the
quantum treatment of nuclear motion leads to a preferential

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.1c01479
J. Phys. Chem. B 2021, 125, 6406−6416

6410

pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.1c01479?rel=cite-as&ref=PDF&jav=VoR


population of low-energy exciton states (Figure 1B), whereas the
semiclassical theory gives equal populations of all exciton states
(Figure 1C) after exciton relaxation. The semiclassical modified

Redfield theory, developed here (eq 37), provides a small
preference to the equilibrium population of the low-energy
exciton state (Figure 1D), but these populations are much closer
to the classical Redfield limit than to the correct quantum result.
Increasing the local reorganization energy significantly enhances
the population of the lowest exciton state obtained in the
semiclassical modified Redfield theory (Figure 1E). For Eλ

loc =
500 cm−1, this population reaches 80% of the value resulting
from the principle of detailed balance.

Intermonomer Excitation Energy Transfer in the FMO
Protein. Intermonomer excitation energy transfer in the FMO
protein was recently shown to occur with a time constant of
about 10 ps at room temperature, which is about 2 orders of
magnitude slower than intramonomer exciton relaxation.61

Taking into account fast intramonomer exciton equilibration
(assuming a correct thermalization), the rate constant between
monomers a and b is obtained as

k f M k( )a b
M N

a M N
,a b

a b
∑=→ →

(52)

Figure 1. (A) Arrangement of BChl a pigments in the monomeric
subunit of the FMO protein of P. aestuarii62 in an orientation with the
baseplate at the top and the reaction center complex at the
bottom.21,25,26 Pigment contributing to high-, intermediate-, and low-
energy exciton states are encircled in blue, green, and red, respectively.
The blue and red arrows illustrate the flow of excitation energy.
Graphics generated using VMD.65 (B) Population of high-,
intermediate-, and low-energy exciton states after incoherent transfer
from the baseplate, obtained from the Redfield theory using a quantum
description of nuclear motion. (C) Same as in part B but using a
classical description of nuclear motion. (D) Same as in parts B and C
but using modified Redfield theory with a classical treatment of nuclear
motion. (E) Ratio between equilibrium populations of the lowest
exciton state obtained with semiclassical modified Redfield theory
(P1

eq(cl)) and a quantum description of nuclear motion (P1
eq(qu)) as a

function of the local reorganization energy Eλ
loc (eq 47) of the pigments.

The vertical dashed line marks the reorganization energy of the
pigments in the FMO protein, obtained with the spectral density shown
in panel F. For the other reorganization energies, the same functional
form of J(ω) was assumed, and the amplitude was adjusted accordingly.
(F) Local spectral density of the pigments J(ω) (eq 51) in the FMO
protein, extracted from fluorescence line narrowing spectra and the
temperature dependence of the linear absorption spectrum.64

Figure 2. (A) Structure of the trimeric FMO protein of P. aestuarii62

viewed normal to the membrane from the direction of the reaction
center complex,21,25,26 protein shown in ribbon style, pigments shown
in ball and sticks mode in different colors (BChl 1, red; BChl 2, blue;
BChl 3, green; BChl4, purple; BChl 5, orange; BChl 6, yellow; BChl 7,
black; BChl 8, gray). The phytyl tails of the pigments have been
truncated for better visibility. Graphics generated with VMD.65 (B)
Illustration of the exciton level structure of the three monomers. The
energy levels of monomer 1 are downshifted byΔE in the calculation of
the intermonomer transfer times in panel C. (C) Histograms of inverse
intermonomer rate constants k2→1

−1 (left half) and k3→1
−1 (right half) as a

function of the energy differenceΔE between themonomers, illustrated
in panel B. The quantummechanical treatment of nuclear motion in the
upper parts is compared with a classical treatment in the lower part.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.1c01479
J. Phys. Chem. B 2021, 125, 6406−6416

6411

https://pubs.acs.org/doi/10.1021/acs.jpcb.1c01479?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.1c01479?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.1c01479?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.1c01479?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.1c01479?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.1c01479?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.1c01479?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.1c01479?fig=fig2&ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.1c01479?rel=cite-as&ref=PDF&jav=VoR


w i t h t h e B o l t z m a n n f a c t o r f ( M a ) =
E k T E k Texp( / )/ exp( / )M N NB Ba a a

− ∑ − and the semiclassical

generalized Förster theory rate constant k M Na b→ (eq 48). For a
comparison, we also calculate the quantum rate constant that is
obtained by replacing the Gaussian line shape functions for
donor emission and acceptor absorption in eqs 49 and 50,
respectively, by their quantum analogues53,60 that will be
discussed in detail later.
Since both the semiclassical and the quantum generalized

Förster theory rate constants fulfill the principle of detailed
balance, we compare the time scale on which the equilibrium
populations are obtained in the two theories. In order to obtain
additional information on the performance of the semiclassical
theory, we downshifted all exciton states of one of the three
monomers (monomer 1) by a certain energy ΔE (Figure 2B)
and studied the histogram of inverse rate constants k2→1

−1 and
k3→1
−1 resulting from different realizations of static disorder in site
energies of the pigments in dependence onΔE (Figure 2C). The
two transfer processes behave differently with respect to changes
in ΔE. The transfer from monomer 2 to monomer 1 becomes
faster for decreasing (more negative) ΔE between 0 and −200
(−300) cm−1 and slows down for ΔE = −400 and −500 cm−1,
reaching similar time constants for ΔE = −50 cm−1 and ΔE =
−500 cm−1. This behavior is reminiscent of the “normal”,
“activationless”, and “inverted” regions of the Marcus theory of
electron transfer, respectively.41,42 Qualitatively similar behavior
is obtained for quantum and classical treatments of nuclear
motion. The largest deviations occur for ΔE = 0, where the
average classical time constant is about 25% smaller than the
quantum value.
The transfer from monomer 3 to 1 is relative insensitive to

lowering the energy of monomer 1 between ΔE = 0 and −200
cm−1 and significantly slows down from an average time
constant of 10 ps at ΔE = −300 cm−1 to 15 and 25 ps at ΔE =
−400 cm−1 and −500 cm−1, respectively. In this case, only the
“activationless” and “inverted” regions of the reaction are
observed. When the energy is lower, the distribution function of
time constants becomes broader. The quantum behavior is
almost quantitatively reproduced by the classical theory of
nuclear motion.

■ DISCUSSION

In the limit of vanishing nuclear reorganization energy, Eλ → 0,
the present semiclassical modified Redfield rate constant (eq 37)
becomes equal to the semiclassical Redfield rate constant28

k
k T

glim
2

( ( ) ( ))
E

M N NM NM
0

B 2∑π
ω δ ω ω δ ω ω{ } =

ℏ
+ + −

ξ
ξ ξ ξ ξ

→
→

λ

(53)

In this case, equilibration leads to equal occupation probabilities
of all exciton states, independent of their energies.
In order to see, which particular aspect of classical nuclear

motion gives rise to this defect, we examine the transition from
the quantum Redfield rate constant to the above expression. In
the quantum case, the Redfield rate constant is obtained as
k C ( )M N MN MNω= ̃→ w i t h t h e F o u r i e r t r a n s f o r m

C t C t( ) d e ( )MN
i t

MN∫ω̃ = ω
−∞

∞
of the correlation function

C t V t V( ) ( ) (0)MN NM MN
1

2= ⟨ ⟩
ℏ

where VNM is the coupling

between exciton states that depends linearly on the normal
mode coordinates (eq 10); the time dependence is given by the

Hvib in eq 5, and the ⟨...⟩ denotes an expectation value with
respect to the equilibrium statistical operator of the vibrations
Weq = exp(−Hvib/kBT)/Tr{exp(−Hvib/kBT)}. Please note that,
in the Redfield theory, the mutual displacements between
excitonic PESs are neglected; that is, no nuclear reorganization
effects upon exciton relaxation are taken into account. Using eq
10 and introducing creation and annihilation operators of
vibrational quanta of the ξth normal mode Cξ

† and Cξ,

respectively, as C q i p/(2 ) (2 ) 1/2μ ω μ ω= ℏ − ℏξ ξ ξ ξ ξ ξ ξ
† − and

C q i p/(2 ) (2 ) 1/2μ ω μ ω= ℏ + ℏξ ξ ξ ξ ξ ξ ξ
− , the correlation func-

tion becomes C t c c C t( ) ( ) ( ) ( )MN m m
M

m
N( ) 2 ( ) 2= ∑ , with the

correlation function C(t) of the local energy gap of the pigments
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(54)

The expectation value in front of the cosine term in the third line
⟨Cξ

†Cξ + CξCξ
†⟩ is proportional to ⟨qξ

2⟩ whereas that in front of
the sine term in the fourth line ⟨CξCξ

†− Cξ
†Cξ⟩ is proportional to

⟨qξpξ⟩. In a classical world, it holds that ⟨qξpξ⟩ = ⟨qξ⟩⟨pξ⟩ = 0,
whereas in a quantum world the uncertainty principle between
coordinates andmomenta leads to a correlation between the two
that leaves ⟨qξpξ⟩ and thereby the imagery part of C(t) nonzero.
With the help of the commutator relation [Cξ,Cξ

†] = 1, we obtain
the last line of eq 54 containing the mean number of vibrational
quanta that are excited at a given temperature T (Bose Einstein
distribution function)

n C C( )
1

e 1k T/ B
ω = ⟨ ⟩ =

−ξ ξ ξ ω
†

ℏ ξ (55)

The correlation function C(t) resulting for the present spectral
density (Figure 1F) is shown in the upper part of Figure 3. The
major part of the correlation function decays in less than 50 fs.
The amplitude of the imaginary part of the correlation is smaller
than that of the real part but clearly not zero.
The semiclassical Redfield theory rate constant in eq 53

follows by neglecting the imaginary part and by using a high-
temperature approximation for the Bose−Einstein distribution
function n(ω) ≈ kBT/(ℏω). The former approximation is
responsible for the equal “uphill” and “downhill” rate constants.
Without these approximations, the quantum Redfield rate
constant is obtained

k g n

n

2 (1 ( )) ( )

( ) ( )

M N MN NM

NM NM

2∑π ω ω δ ω ω

ω δ ω ω

= { + +

+ − }

ξ
ξ ξ ξ

ξ

→

(56)

which fulfils the principle of detailed balance. This result gave
rise to our earlier conclusion that28 “..., in a world, where the
behavior of electrons is governed by the fundamental equations
of quantummechanics and that of the nuclei by classical physics,
there would be no preferential ‘downhill’ energy flow.”
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The present semiclassical modified Redfield rate constant (eq
37) demonstrates that a classical treatment of nuclei can lead to a
preferential downhill energy transfer, if Eλ ≠ 0. Additional
insight can be obtained by expressing this Eλ (eq 26), using eqs 7
and 27, as

E c c E(( ) ( ) )
m

m
M

m
N( ) 2 ( ) 2 2 loc∑= −λ λ

(57)

with the reorganization energy Eλ
loc (eq 47) of the local electronic

transition of the chromophores, where we have neglected the
correlations in site energy fluctuations between different
pigments. This approximation is justified for pigment−protein
complexes by a normal-mode analysis of the spectral density of
the FMO protein.66,67 For completely delocalized excited states,
the probability (cm

(M))2 of finding chromophorem excited is equal
for all exciton states. Therefore, in this limit the reorganization
energy Eλ vanishes, and the modified Redfield rate constant in eq
37 becomes the Redfield rate constant in eq 53 with the
consequence that there is no preferential downhill energy
transfer. This result is consistent with the finding of Ishizaki and
Fleming that a neglect of the local nuclear reorganization effects
leads to equal equilibrium excited state populations of the
pigments in an Ehrenfest-type semiclassical treatment.43

If there is partial localization of excited states, e.g., by different
local transition energies of the chromophores, Eλ ≠ 0, and it
holds that kM→N/kN→M > 1 for ℏMN > 0. Therefore, the
equilibrium population of low-energy exciton states is higher
than that of the high-energy states. If the nuclear reorganization

energy Eλ is large compared to the vibrational quanta ℏωξ of the
exciton-vibrational coupling, the semiclassical modified Redfield
rate constant in eq 37 becomes

k
k T
E

V
lim

4
eE M N

E k TEB ( ) /4NM
2

B
π

{ } =
ℏω

λ

λ ω
≫ℏ →

− ℏ +
λ ξ

λ λ

(58)

where the reorganization energy Vλ of the off-diagonal exciton
vibrational coupling (eq 7 with M ≠ N) was introduced as
V g 2ω= ∑ ℏλ ξ ξ ξ . In this limit, the rate constant fulfills the

principle of detailed balance (eq 1), despite the classical
treatment of nuclear motion.
However, in photosynthetic pigment−protein complexes,

ℏωξ is in the same range as Eλ. A typical example for the spectral
density J(ω) of these complexes is shown in Figure 1F. J(ω)
extends up to vibrational energies of 400−500 cm−1 and results
in a local reorganization energy Eλ

loc of only 45 cm−1.
Consequently, the equilibrium populations obtained with the
semiclassical modified Redfield theory (Figure 1D) are much
closer to the equal populations obtained in the classical Redfield
theory (Figure 1C) than to the realistic values of the quantum
Redfield theory (Figure 1A). In order to reach 80% of the
quantum population of the lowest exciton state with the classical
theory of nuclear motion, the reorganization energy would have
to be increased by an order of magnitude (Figure 1E). Such high
reorganization energies are not observed for photosynthetic
light-harvesting complexes. Hence, we conclude that the
uncertainty principle between nuclear coordinates and momen-
ta is essential for the preferential population of low-energy
exciton states of strongly coupled pigments in photosynthetic
antennae. The reorganization of nuclei during exciton relaxation
that can be captured by a classical theory of nuclear motion is not
strong enough to have a significant influence on the equilibrium
population of excitons.
This situation changes if the excitonic couplings between

pigments become weaker, a situation encountered in all
photosynthetic complexes at some length scale, where a
nonhomogeneous distribution of pigments, bound to the same
or to different subcomplexes, is observed like, e.g., in the
photosynthetic supercomplexes of plants and algae.67 In this
case, excitons delocalize in certain domains of strongly coupled
pigments, and interdomain exciton transfer occurs incoherently.
In this case, both the quantum and the classical treatment of
unclear motion lead to the correct equilibrium population of
exciton states.
In order to understand why in this case the uncertainty

between nuclear momenta and coordinates is less important, we
start by discussing the quantum expression for the rate constant
in the generalized Förster theory. We have to replace the
semiclassical emission and absorption line shape functions in eqs
49 and 50 by their quantum mechanical counterparts reading

D t( )
1

2
d e e e eM i t i X t f t t

E
( ) / ( ) /a Ma Ma Ma0∫ω

π
= ω γ τ

−∞

∞
− − ⟨ ⟩ ℏ −| |

(59)

and

D t( )
1

2
d e e e eN i t i X t f t t( ) / ( ) /b Nb Mb Nb0∫ω

π
=α

ω γ τ

−∞

∞
− ⟨ ⟩ ℏ −| |

(60)

respectively, where X M0 a
and XN 0b

denote the energy gap
between the final and the initial state of the optical transition.
Please note that, in eqs 59 and 60, the off-diagonal elements of
the exciton-vibrational coupling (eq 6withM≠N) are treated in

Figure 3. Upper part: real (solid line) and imaginary part of the
correlation function C(t) (eq 54) of the local energy gap of the
pigments obtained for the spectral density J(ω) in Figure 1F. Lower
part: function eγ(t) relevant for the calculation of optical line shapes,
where γ(t) (eq 62) is related to the functionC(t) in the upper part by eq

61. The short-time approximation e t( )clγ (red solid line), with the γcl(t)
in eq 63, leading to the semiclassical line shape function is compared to
the quantum result that contains an imaginary (black dotted line) and a
real (dashed dotted line) part. In addition, the amplitude eReγ(t) of the
quantum result (solid black line) is shown.
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secular approximation53,61 and lead to the exciton relaxation
induced dephasing times Ma

τ and Nb
τ , which are determined by

the Redfield rate constants k M Nd d→ ,53 kM N M N
1 1

2d d d d
τ = ∑−

→ . The

diagonal elements were treated here with a second-order
cumulant expansion42,68 that is exact for the present harmonic
PES and relates the line shape function to the energy gap
correlation function of the pigments C(t) (eq 54).
The expectation value ⟨...⟩ has to be taken with respect to the

equilibrium statistical operator of the vibrational degrees of

freedom of the initial state, f c( )K m m
K( ) 4

d d d
d= ∑ , and γ(t) is given

as

t t C( ) d ( ) ( )
t

0
∫γ τ τ τ= − −

(61)

with the correlation function C(τ) in eq 54. The origin of the
coordinate axis is conveniently put at the minimum position of
the PES of the initial state, and the expectation values of the
energy gap to the final state with a shifted PES are obtained as

X EM M
M

0
( )

a a
aω⟨ ⟩ = −ℏ + λ and X EN N

N
0

( )
b b

bω⟨ ⟩ = ℏ + λ .
As we learned before, the imaginary part of the correlation

function C(t) (eq 54) originates from the quantum mechanical
uncertainty principle between nuclear coordinates and momen-
ta. Integration according to eq 61 results in

t g n t

i t t

( ) ( ) (1 2 ( ))(cos( ) 1)

(sin( ) )

loc 2∑γ ω ω

ω ω

= { + −

− − }

ξ
ξ ξ ξ

ξ ξ (62)

Interestingly, the imaginary part of γ(t), which follows from the
imaginary part of C(t), vanishes for short times. Hence, for a fast
decay of the energy gap correlation function of the pigments, the
uncertainty principle is not as critical in the generalized Förster
as in the Redfield theory. In this limit, a short time
approximation [cos(ωξt) ≈ 1 − ωξ

2t2/2, sin(ωξt) ≈ ωξt]
together with a high-temperature approximation n(ωξ) ≈ kBT/
ℏωξ gives

t t k TE t( ) ( ) /cl B
loc 2 2γ γ≈ = − ℏλ (63)

that we have denoted as γcl(t), since with eqs 59 and 60,
neglecting the lifetime broadening 1/ Ma

τ and 1/ Nb
τ , the

semiclassical line shape expressions in eqs 49 and 50 result.
A comparison between the full exp(γt) and its short-time

approximation γcl(t) leading to the semiclassical line shape
function is shown in the lower half of Figure 3. The function
exp(γcl(t)) decays on a similar time scale as the full exp(γt). The
latter, however, due to the i sin(ωξt) contributions, is complex
and contains oscillations that are absent in the real short-time
approximation. These oscillations describe vibrational side-
bands that are only roughly included in the broadening of the
semiclassical Gaussian line shape function [by the somewhat
faster decay of the exp(γcl(t))]. Interestingly, the semiclassical
generalized Förster theory provides a qualitatively correct
description of the interdomain exciton transfer including
relatively large energy differences (Figure 2C). For even larger
energy gaps, as they occur between chemically distinct pigments,
the thermal broadening of the symmetric semiclassical Gaussian
line shape function will not be enough, and additional high-
frequency intramolecular vibrations of the pigments have to be
taken into account. This inclusion can only be done in a
quantum theory since the vibrational sidebands of these high-

frequency vibrations will occur only on the high-/low-energy
sides of the 0−0 transition in absorption/emission. A classical
theory of nuclear motion cannot describe this asymmetry.40

Again, it is the missing imaginary part of the correlation function
resulting from the uncertainty principle between nuclear
coordinates and momenta that is responsible for this defect of
the semiclassical line shape theory. An approximate inclusion of
these effects can be obtained by treating a single effective
vibrational mode quantum mechanically and the remaining
modes classically.42,69,70

Large energy gaps between chromophores occur, e.g.,
between chlorophyll b (Chl b) and Chl a pigments in the
major light-harvesting complex of higher plants LHCII, where
high-frequency intrapigment vibrations were found to be
essential for efficient Chl b → Chl a energy transfer.71 High-
frequency intrapigment vibrations were also found to be
important for energy transfer between high- and low-energy
bilin chromophores in marine cryptophyte algae.72−74 In these
cases, where the energy difference between the minima of the
PES of the excited states is large compared to the reorganization
energy, a classical theory of nuclear motion would result in a too
small rate constant. Larger reorganization energies occur in
charge transfer reactions, because of the polar nature of the
charge separated state. Despite a very small effect of single high-
frequency intrapigment vibrations, collectively these modes
were found to decrease the rate constant in the normal region
and to increase it in the inverted region of primary electron
transfer in photosystem II, making the reaction robust against
static disorder effects.75

■ CONCLUSIONS

We have investigated exciton relaxation in domains of strongly
coupled pigments and exciton transfer between such domains
with weak interdomain excitonic couplings, using the semi-
classical modified Redfield and generalized Förster theory,
respectively. A key quantity appears to be the energy gap
correlation function of these reactions. Whereas a classical
theory of nuclear motion results in a real correlation function,
the uncertainty principle between nuclear coordinates and
momenta in a quantum theory gives rise to an imaginary part.
This imaginary part is found responsible for the equilibration of
excitation energy in domains of strongly coupled pigments.
Nuclear reorganization effects also lead to a preferential
population of low-energy exciton states, but for realistic spectral
densities of photosynthetic light-harvesting antennae, these
reorganization effects are much too small to compensate for the
missing uncertainty principle in a classical theory of nuclear
motion.
The situation changes for weaker excitonic couplings as they

occur between different exciton domains in photosynthetic
antennae. In this case, the nuclear reorganization effects
guarantee a correct thermal equilibration of excitation energy,
independent of the correlations between nuclear coordinates
and momenta. The uncertainty principle still has an influence on
the time scale of the reaction, in particular if large energy gaps are
involved.
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