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Abstract: Axially loaded steel tubes are widely used as primary structural members in civil engi-
neering structures. In this paper, a stress measurement method for axially loaded steel tubes is
developed based on the linear relationship between the group velocity of guided waves in the steel
tube and the stress of the steel tube. The propagation modes of guided waves in a typical steel tube
are analyzed using semi-analytical finite element method. A torsional mode T(0,1) is adopted to
conduct the measurement. Experiments are carried out to calibrate the linear relationship between
the group velocity of guided waves in a steel tube and the stress of the steel tube. The calibrated linear
relationship is verified by another round of experiments on the same steel tube specimen. There is
an average error of 8.2% between the stresses predicted by the calibrated linear equation and those
obtained from strain gauges. Via this study, the guided wave-based stress measurement method has
been successfully extended to axially loaded steel tubes.

Keywords: steel tube; guided wave; stress measurement; acoustoelastic; torsional mode

1. Introduction

Steel tubes are widely used as structural members in the area of civil engineering,
especially for axially loaded members. The in-service stress level of a steel tube mem-
ber may deviate from its design level due to unexpected loads, stress redistribution,
structural damages, etc. The absolute stress in a steel tube member is an essential parameter
for safety evaluation of the member and the structural system. However, few methods are
able to detect the stress level of an in-service steel tube member which is under load before
the detection.

There are various approaches for non-destructive stress measurement of steel mem-
bers, such as resistance strain-gauge transducer [1], optical fiber sensor [2] and vibrat-
ing wire sensor [3], X-ray diffraction method [4], magnetoelastic method [5], and ul-
trasonic method [6]. However, some of them, including the strain-gauge, optical fiber
sensor, and vibrating string sensor, must be pre-deployed on the stress-free member if
they are planned to measure the absolute stress of the member in service. In other
words, these approaches are not able to gain the absolute stress of an in-service mem-
ber without pre-deployment of the sensors. For the other approaches, including the
X-ray method, magnetoelastic method, and ultrasonic method, pre-deployment is not
required. The X-ray diffraction method relies on the interaction between the X-ray beam
and the crystal lattice of the material [4]. This method possesses high precision in labora-
tory measurements, yet it is susceptible to the quality of the component surface. Besides,
the equipment is large, complex, and expensive, making it inconvenient for field measure-
ments [7]. The magnetoelastic method is capable of making non-contact measurements,
and its equipment is less complex. However, due to the need for the magnetization process,
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its application is limited by the magnetization conditions [8]. The ultrasonic method is
based on the acoustoelastic theory [9,10], which provides a relationship between the stress
and the velocity of elastic waves in solids. By using this relationship, the ultrasonic can
be applied to measure the residual stress in welded regions [11], and the axial stress of
high strength bolts [12], rails [13], and multi-wire strands [14]. This method is fast and
simple in operation, and its equipment is low-cost and portable. Its disadvantage is that the
acoustoelastic effect is a weak effect, and thus customized methods are required to ensure
its feasibility in specific applications.

Guided waves are a kind of ultrasonic waves which propagate over the entire cross-
section of the components. Its low attenuation and high propagation distance make it
possible for long-range and hidden-area detection. Gazis [15] put forward the disper-
sion equation of guided waves in homogeneous and infinite tubes. Silk and Bainton [16]
experimentally investigated the generation of guided waves in thin-walled metal tubes
and labeled the different wave modes. Alleyne and Cawley [17,18] developed a dry-
coupled piezoelectric transducer system to excite the L(0,2) mode and suppress all the
non-axisymmetric modes for long-range detection. Due to the potential in in-situ testing,
guided waves have been generally adopted in defect detection [19] and stress measure-
ment [20] in recent years. Chen et al. [21] used the first order longitudinal guided wave to
detect the axial stress of a prestressed steel bar and found a linear relationship between the
group velocity of the first order longitudinal guided wave and the stress of the bar in the
low frequency domain. Scalea et al. [22] excited longitudinal guided waves in seven-wire
strands and pointed out that the velocity–stress relationship is similar to the acoustoelastic
trend at high stress level but just the opposite at low stress level. Chen and Wissawa-
paisal [23] revealed that the time of flight (TOF) of guided waves have a linear relationship
with the stress in steel strand when the axial force ranges between 18% and 70% of the
ultimate strength of the steel strand. Washer and Green [24] evaluated the acoustoelastic
effects in prestressing tendons and then designed non-contact electromagnetic acoustic
transducers for the launch and reception of guided waves. Gandhi et al. [25] developed the
theory of acoustoelastic Lamb wave propagation for isotropic plates subjected to a biaxial,
homogeneous stress field. Liu et al. [26] discussed the evolution of the missing frequency
band of guided waves in slightly tensioned steel strands and developed a new tensile
force measurement method capable of measuring incremental stress of approximately
3 MPa. Loveday [27] investigated the measuring method for one-dimensional temperature
stresses and axial forces in continuously welded rail. Dubuc et al. [28] explored the effect of
axial stress on higher order longitudinal guided modes propagating in individual wires
of seven-wire strands. Wu et al. [29] presented a finite element method using eigenfre-
quency to analyze the wave propagation in prestressed waveguides. Yang et al. [30] took
temperature into account and proposed a thermo-acoustoelastic theory combined with
the semi-analytical finite element method to investigate thermal effects on acoustoelastic
guided wave propagation. In the above studies, a linear relationship between the velocity of
guided waves and the stress level was examined under some conditions. Still, nonlinearity
between them was also observed in some situations [26,31,32]. In general, most previous
studies focused on steel rods and strands. Seldom were studies on guided wave-based
method for stress measurement of steel tubes reported, to the authors’ knowledge.

As mentioned above, for civil structures, the axial stress measurement of steel tubes
is of great demand, and the guided wave-based method has the potential to meet the
demand. In this study, a guided wave-based method for axial stress measurement of steel
tubes is proposed and experimentally validated. The implementation of the method is
customized according to the features of steel tubes. In Section 2, the theoretical basis of the
proposed method is clarified. Based on the guided wave theory, the requirements of the
stress measurements in tubes are discussed, and the appropriate wave mode for excitation
is selected. In Section 3, the measurement methodology fit for tubes, including equipment
arrangement and signal processing method, is presented. In Section 4, experiments are
carried out to calibrate the linear relationship between the stress and the group velocity of
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guided waves in steel tubes. The feasibility of the calibrated linear relationship is verified
by another round of experiments on the same specimen.

2. Theory
2.1. Acoustoelastic Theory under Axial Stress

According to the acoustoelastic theory [10], in a homogeneous and isotropic infinite
solid subjected to uniaxial stress, the velocity of ultrasonic waves propagating in the same
direction as the applied stress can be written in the first-order approximation [33] as

VL = V0
L (1 + KLσ) (1)

VT = V0
T(1 + KTσ) (2)

where VL and VT are the velocities of longitudinal and transverse waves, respectively;
σ is the applied stress; VL

0 and VT
0 are the longitudinal wave velocity and the transverse

wave velocity when the stress σ = 0, and they are determined by the material properties
of the solid as given in Equation (3); and KL and KT are the acoustoelastic coefficients
representing the response of the material to the stress and propagating waves, and they are
also determined by the material properties as given in Equation (4) [33]. This approximation
holds in most situations, since the change in wave velocity is much smaller compared to
that in stress.

V0
L =

√
λ + 2µ

ρ
, V0

T =

√
µ

ρ
(3)

KL =
(λ + µ)(4λ + 10µ + 4m)/µ + λ + 2l

2(λ + 2µ)(3λ + 2µ)
, KT =

4λ + 4µ + m + λn/4µ

2µ(3λ + 2µ)
(4)

where ρ is the density of the material, µ, λ are the Lamé elastic constants, and l, m, n are the
Murnaghan’s third-order elastic constants.

Equations (1) and (2) illustrate that for a given material, the VL and VT are linear to
the axial stress. Besides, it is numerically and experimentally proved that this relationship
still holds for most waveguides [21,22,27,29,33,34], Although the material parameters
in Equations (3) and (4) are not easy to be obtained precisely, the coefficient K can be
experimentally determined by measuring the wave velocity under several given stresses.
Next, the equations can be used to determine the stress in the same material by measuring
the wave velocity in it.

2.2. Guided Waves in Tube

When ultrasonic bulk waves propagate under the limitation of a solid’s boundary,
the guided waves generate. They will continuously interact with the boundary, such
as reflecting and refracting. The corresponding solid is called a waveguide whose size
in the dimension orthogonal to the direction of propagation is always smaller than the
wavelength of the guided waves. Compared to the bulk waves, guided waves propagate
over the whole section of the waveguides, and the solution of its wave equation needs to
satisfy additional boundary conditions. In a tube (i.e., a hollow cylinder) there are three
groups of modes: longitudinal mode, torsional mode, and flexural mode, labeled as L(0,m),
T(0,m), and F(n,m), where n is the harmonic order and m is a sequence number. They are
distinguished from each other by the vibration patterns of the particles. The longitudinal
mode and the torsional mode are axially symmetrical, while the flexural mode is not.

The dispersion curves describe the behavior of the guided wave, and for tubes it
can be obtained by solving the dispersion equation given by Gazis [15]. The solution of
the equation consists of a real number and imaginary number. The real number part of
the solution is used to plot the dispersion curves, and the imaginary part is related to
dissipation which is not concerned here for its insignificant influence on stress measure-
ment. In recent years, other methods such as finite element method, semi-analytical finite
element method, and boundary element method are also applied to obtain dispersion
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curves by numerically solving the wave equation [35]. In this study, semi-analytical finite
element (SAFE) method [36] is used to obtain the dispersion curves of a steel tube with
given sizes. In the SAFE method, the wave motions in the propagation direction z are
theoretically described by harmonic function exp(ikz-iωt), where k is wavenumber and
ω is circular frequency, and the x-y cross-section is discretized. The governing equations
of the discretized system are given by the virtual work principle. By numerically solving
the equations, the dispersion curves can be obtained. For example, the dispersion curves
of a steel tube with a diameter of 88.5 mm and a thickness of 4.0 mm, which would be
used in the experiment, can be obtained by SAFE method, as shown in Figure 1. Note that
material density ρ = 7850 kg/m3, Young’s modulus = 206 GPa, and Poisson’s ratio = 0.3
are assumed for the steel.
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For each mode, the group velocity varies with frequency, which is called frequency
dispersion. It will naturally cause distortion of the wave packet in propagation. In the real
world, the frequency may also be influenced by the environment or other factors, so the
wave velocity changes as well.

As mentioned above, to detect the axial stress in the tube, the wave velocity is required
to be determined. In practice, the propagation distance and the corresponding TOF are
usually easier to be directly measured, and then the wave velocity can be determined by the
ratio of them. As a result, the wave velocity determined in this way is actually an average
velocity. If the current velocity changes because of frequency dispersion, it will lead to a
variation in measured TOF and cause an error that is difficult to recognize. Therefore, it is
better to choose a mode in which the dispersion effect is insignificant. The L(0,2) and T(0,1)
modes are first considered for the given tube. Because both of them have a considerable
large section where the velocity changes little with the frequency, they are also easy to be
excited and received. Note that frequency higher than 200 Hz is not considered in this
study in order to excite fewer wave modes, making it easier for wave signal identification.

Most previous studies prefer longitudinal modes because it is more sensitive to
stress [13], i.e., the change of the wave velocity to a given stress increment will be more
significant. In another aspect, it is difficult to excite torsional modes in slender members
such as rods and strands in the experiments, and thus the torsional modes are usually
ignored. However, for tubes considered in this study, the torsional mode is seriously
considered and is found to have some additional advantages for the experiment. Firstly,
the first-order torsional mode theoretically has no frequency dispersion [37], which means
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the wave packet changes less in propagation. It is beneficial for the accuracy of the signal
identification and the determination of TOFs. Secondly, the velocity of the T(0,1) mode is
equal to that of the body transverse wave, which is only related to the material. Thus, the
sectional size of the tube will not affect the experiment results. In future applications in
members with the same material but different sections, repeated acoustoelastic coefficient
calibrations may not be required. The last advantage of it is that the velocity of T(0,1) mode
is much lower than that of L(0,2) mode and thus will have a larger TOF for a given propa-
gation distance. It will lead to a smaller relative error in the experimental measurement. As
a result, the T(0,1) mode is finally chosen in this study.

3. Experiments
3.1. Equipment Setup

To carry out an experiment to validate the proposed method, a scheme, as shown in
Figure 2, is devised. Axial forces are applied on both sides of a straight tube to produce
uniform axial stress. The parameters of the guided wave of T(0,1) mode are set in a program
and sent to the ultrasonic testing machine. The transmitting transducer located at one end
of the tube converts the electrical signals into circumferential displacement to excite the
expected wave. It propagates axially and is received by two transducers located at a given
distance L from each other. By identifying the times when the two transducers receive the
same wave packet, the TOF for the distance L can be obtained.
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Figure 2. Scheme of experimental system.

The equipment arrangements corresponding to the scheme are shown in Figure 3.
A jack (ESH-206, Eagle Pro) with a hydraulic pump is installed on a steel frame to apply
forces on the steel tube specimen. A compression force sensor is used to measure the
applied axial force. Two transverse wave piezoelectric probes with a diameter of 20 mm
are selected as the receiving transducers, and a magnetostrictive transducer composed of a
metal strip and a coil is selected as the transmitting transducer. They are tightly attached
to the specimen by epoxy adhesive. At the location of each receiving transducer, four
strain gauges are evenly distributed around the circumference to crosscheck the stress
in the specimen. The strain gauges and transducers are well staggered to avoid mutual
interference. An ultrasonic testing machine (MSGW30, Zheda Jingyi Electromechanical
Technology Co., Ltd., Hangzhou, China) is utilized to generate the T(0,1) mode wave and
receive the signal from the transducers under the control of a personal computer.
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Figure 3. Photograph of equipment arrangements.

3.2. Specimen and Loading Method

A 780 mm-long Q345 [38] steel tube with a diameter of 88.5 mm and a wall thickness
of 4 mm is used as the specimen, as shown in Figure 4a. End plates with stiffeners are
added to the ends of the specimen for a better force transfer. To determine the locations
for transducer installations and make sure the stress between them is uniform enough for
the experiment, the stress distribution is estimated by finite element simulation. The result
of finite element simulation is shown in Figure 4b. It can be found that the stress keeps
constant in the region 0.20 m away from the ends. As a result, the transmitting transducer
is located 0.20 m away from one of the ends, and the receiving transducers are situated in
the middle of the specimen and 0.20 m away from the other end, respectively. The distance
between the receiving transducers is 0.19 m.

The compressive stress applied to the specimen ranges from 0 MPa to 150 MPa,
which is lower than the strength of steels commonly used in structures. The loading
procedure is uniformly divided into eight steps, as shown in Table 1. After every load
step, when the stress keeps stable at the appointed level, ultrasonic signals are excited by
the magnetostrictive transducer and received by the piezoelectric probes. This exciting–
receiving process is held for 2 min to eliminate possible accidental errors. The distance,
L, between two receiving transducers is remeasured after each load step to eliminate the
distance change caused by the elastic shortening of the tube under the compressive load.
Since the variation of the wave velocity caused by the acoustoelastic effect is so small, it is
sensitive to the initial error of the propagation distance [33]. The axial stresses are obtained
by the strain gauges. The temperature change is controlled within 0.1 ◦C to eliminate
the influence of temperature. The above procedures are repeated for another round. The
datum from the first round of experiments will be used to calibrate a stress-to-velocity
relationship, and the datum from the second round of experiments will be used to verify
the calibrated relationship.
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Table 1. Stress in each step of the loading procedure.

Steps 1 2 3 4 5 6 7 8

Stress (MPa) 18.75 37.5 56.25 75 93.75 112.5 131.25 150

3.3. Signal Choosing and Processing

As mentioned above, the frequency of the guided wave upon 200 kHz is not considered
for mode purity. However, a relatively high frequency is beneficial for energy concentration,
avoiding signal overlap and coping with the shift of the central frequency. In terms of the
period of the wave, a small period makes it harder to identify the signal feature, while a
larger period will cause the signal image to be too wide on the time domain and overlap
with other signals. After several trial tests and comparisons, a 110 kHz, 6-period signal
modulated by Hann window is selected. Its time domain diagram and frequency domain
diagram are shown in Figure 5.

To get the time difference between the two received signals, their position in the time
domain must be determined. Directly identifying the peak is a traditional method but may
not be necessarily reliable. Thus, three other methods are considered. The first is to take the
average of the zero points of the whole signal as its position, as shown in Figure 6a. The
second is to calculate the centroids of each graph enclosed by the signal curve and time
axis, then take the average as the signal position, as shown in Figure 6b. The third is to use
the cross-correlation function to directly compare the two signals (Figure 6c). The value of
the function reflects the similarity of the two signals and varies with their shift on the time
space. When the value appears to be maximum, the shift is just the time difference.
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These three ways are tested on an FE model of the specimen using Comsol [39]. The
solid mechanics module is used for the model. The loading of axial force and the excita-
tion of guided waves are carried out in steady-state and transient analysis, respectively.
Displacement in the axial direction is fixed on one end of the tube, and uniform axial
forces are applied on the other end. Circumferential displacement is applied at the po-
sition of the transmitting transducer to excite guided waves. To ensure the accuracy of
the simulation, the maximum element size is set to be less than 1/10 of the wavelength.
The elastic constants of the material used in the simulations are given as λ = 110 GPa,
µ = 82 GPa, ρ = 7850 kg/m3, l = −350 GPa, m = −600 GPa, and n = −720 GPa, based on
the data of several kinds of steels measured by Takahashi [40]. In the FE simulations, the
sampling rate is set to be 2 MHz, the same as that used in experiments. Because the time
change in this study is smaller than the sampling period of 5 × 10−7 s, the obtained signal
is interpolated with cubic spline when using the cross-correlation method.

At a distance of 2.5 mm, the TOFs determined by the three methods and comparisons
with the theoretical result are given in Table 2. It shows that the errors of the three methods
are close to each other, and all are lower than 2.0%. The zero-point method, which has the
minimum error, is adopted.

Table 2. TOFs determined by different methods.

Methods Theoretical Result Zero-Point Graph Centroid Cross-Correlation

TOFs (×10−7 s) 7.701 7.839 7.842 7.840
Errors - 1.79% 1.83% 1.80%

In this study, the received signal is first filtered and denoised at the central frequency
of 110 kHz by wavelet transform [21] to highlight the required signal, and then its position
is determined by the zero-point method.

4. Results

The stress to group velocity datum obtained in the first round of experiments is shown
in Figure 7. According to their theoretical linear relationship given in Equation (2), a linear
fitting on the datum by least squares method is carried out and yields

Vg = 0.0178σ + 3474.49 (5)
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The R-square coefficient of the linear fitting is 0.9679, which indicates an obvious
linear relationship.

Equation (5) is used to predict the stresses of the same specimen based on the group
velocities determined by the second round of experiments. The predicted stresses are
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compared with the stresses read from the strain gauges, as shown in Figure 8. It can be
observed that the average error of the eight predictions is 8.2%, and the maximum error
of them is 15.7%. The level of errors is comparable to previous studies on steel rods and
strands [20,23,27], considering their load levels, waveguide sizes, and application scenarios.
This error may root from the errors in time and length measurements. As mentioned above,
there is an error of about 2% for the TOF, and this error will become more prominent
because of the distortion of received signals in experiments. The propagating distance, L,
is manually measured using a caliper with a minimum scale of 0.01 mm. Since the entire
length change of the experiment is about 0.26 mm, any possible error of the length change
in the range of 0.001~0.01 mm will cause some error to the predictions. Other factors, such
as the electromagnetic oscillation of instruments, may also contribute to the error.
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5. Conclusions

In this study, an axial stress measurement method for steel tubes is developed based
on ultrasonic guided waves. The propagation modes of ultrasonic guided waves in a
steel tube are investigated by semi-analytical finite element method. Three methods for
determining the signal position in the time domain are compared in FE simulations. An
experiment system is built up, and calibration and verification experiments are conducted
on a tube specimen. Here are the main conclusions of the study:

• For tube members, the T(0,1) mode is another good choice for wave velocity mea-
surements. Based on the numerically obtained dispersion curves, the T(0,1) mode
is appropriate to be excited due to no dispersion, low propagation velocity, and
consistency for different sectional sizes.

• The three signal positioning methods, i.e., zero-point method, graph centroid method,
and cross-correlation method, showed a similar error level around 1.8%, compared to
the theoretical result. They are all proved in FE simulations to be usable to determine
the signal position in the time domain.

• There is a linear relationship between the axial stress in steel tubes and the group
velocity of guided waves in steel tubes. The detailed equation of the linear relationship
can be calibrated by experiments. A linear fitting with an R-square coefficient of 0.9679
is observed, and thus the linear relationship between the stress and group velocity
is validated.

• The average error of the stresses predicted by the fitted linear equation is 8.2%, and
the maximum error of them is 15.7%. The level of errors is comparable to previous
studies on steel rods and strands.



Sensors 2022, 22, 3111 11 of 12

It should be pointed out that the work of this study is generally a proof of concept on
the guided wave-based method for axial stress measurement of steel tubes. The temperature
change influences the stability of the proposed methods. However, this factor is excluded
by keeping the temperature constant in this study. As mentioned above, the process of
measuring the propagating distance L brings errors. Connecting the two transducers with
a fixed-length rod will reduce the error and improve the stability of the method. Hence,
more intensive studies need to be conducted to clarify the effects of some issues and then
improve the accuracy and stability of the method.
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