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Affective computing is concerned with simulating people’s psychological cognitive
processes, of which emotion classification is an important part. Electroencephalogram
(EEG), as an electrophysiological indicator capable of recording brain activity, is portable
and non-invasive. It has emerged as an essential measurement method in the study
of emotion classification. EEG signals are typically split into different frequency bands
based on rhythmic characteristics. Most of machine learning methods combine multiple
frequency band features into a single feature vector. This strategy is incapable of utilizing
the complementary and consistent information of each frequency band effectively. It
does not always achieve the satisfactory results. To obtain the sparse and consistent
representation of the multi-frequency band EEG signals for emotion classification, this
paper propose a multi-frequent band collaborative classification method based on
optimal projection and shared dictionary learning (called MBCC). The joint learning
model of dictionary learning and subspace learning is introduced in this method.
MBCC maps multi-frequent band data into the subspaces of the same dimension using
projection matrices, which are composed of a common shared component and a band-
specific component. This projection method can not only make full use of the relevant
information across multiple frequency bands, but it can also maintain consistency across
each frequency band. Based on dictionary learning, the subspace learns the correlation
between frequency bands using Fisher criterion and principal component analysis
(PCA)-like regularization term, resulting in a strong discriminative model. The objective
function of MBCC is solved by an iterative optimization algorithm. Experiment results on
public datasets SEED and DEAP verify the effectiveness of the proposed method.

Keywords: cognitive computing, EEG-based emotion classification, multi-frequency band EEG signals, subspace
learning, dictionary learning

INTRODUCTION

Affective computing focuses on how to actively learn, reason, and perceive the surrounding
world, as well as realize a certain level of brain-inspired cognitive intelligence by simulating
people’s psychological cognitive processes (Aranha et al., 2019; Samsonovich, 2020). Researchers in
psychology and neurobiology investigate the changes and relationships in the human physiological
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systems that occur during various emotional states and activities
(Li et al., 2020). More and more evidences show that with the
progress of neuroscience research, there is a connection between
human emotional activity and the activity of specific areas of the
brain, especially the cerebral cortex and central nervous system.
For example, the amygdale is associated with emotions like fear
and anxiety in the limbic system of the brain. Anger can activate
the left frontal lobe of the brain (Davis and Whalen, 2001).
Researchers have also studied the relationship between certain
diseases and emotional activities, such as cancer, cardiovascular
disease, and depression (Zhao et al., 2018). Wirkner et al. (2017)
and Guil et al. (2020) studied the impact of emotional activity
on the progression of breast cancer patients. Nurillaeva and
Abdumalikova (2021) studied the pathways of communication
between the heart and the brain, as well as the relationship
between heart rhythm and cognitive and emotional functions.
According to the study of Gianaros et al. (2014), there is a
link between affective regulation and cardiovascular disease.
The author discussed how intense emotional activity and the
immune system interact, and how these close interactions affect
the treatment of rheumatic cardiovascular disease. Tennant
and McLean (2001) associated mood disorders such as anxiety,
depression, and anger with coronary heart disease. Authors
classified mood disorders as an important risk factor for coronary
heart disease, and concluded that mood disorders are frequently
associated with coronary heart disease events. Klatzkin et al.
(2021) studied the food intake of emotional dieters during various
emotional and stress responses. Researchers are also interested in
the impact of emotional activities in the business field. According
to research on the effect of emotion on commercial advertising,
advertisements with emotional expression and influence are
easier for consumers to remember, and publicity images with
emotional color can influence consumers’ access behavior
(Shareef et al., 2018). It is clear that research on human emotional
activities is important not only in the study and understanding of
humanity, but also in medical health and commercial activities.
As a result, the study of human emotions, including emotional
activity intervention, can be regarded as scientific and practical.

Electroencephalogram activities are closely related to people’s
psychological attention consciousness and emotional experience.
An emotional EEG signal is a physiological electrical signal
collected by the human brain in a specific emotional state. EEG
signals, as a window into brain thinking activities, cognitive
processes, and mental states, are an important technical means
for studying brain function and its neural mechanism. Wearable
devices placed on the top of the head collect emotional
EEG signals. The acquisition electrode’s placement position
is typically determined using the international standard 10–
20 and other systems. Researchers in the field of artificial
intelligence study the relationship between emotional activities
caused by internal and external stimuli and the content of
stimuli. Machine learning technology in artificial intelligence
is widely used in EEG signals-based emotion classification.
For example, Liu et al. (2020) developed a multi-level features
guided capsule network to describe the internal relationship of
multiple EEG signal channels. The advantage of this model is
that different levels of feature mapping are integrated during

the process of forming the primary capsule, which can improve
feature representation ability. Zhong et al. (2020) proposed
a regularized graph neural network to mine both local and
global relationships between various EEG channels. This method
can alleviate the problem of time dependence in emotional
process. Ni et al. (2021) developed a domain adaptation sparse
representation classification model to alleviate the problem
of insufficient training data in the new scene. This method
employed the discriminative knowledge of historical data or
related data to aid in establishing the classification model of
the current scene.

According to intra-band correlation with a distinct
psychological state, the EEG signals can be split into five
frequency bands. Different frequency band EEG signals reflect
the different states of brain state. Table 1 briefly describes the
information of five frequent bands of EEG signals (Gu et al.,
2021a; Shen et al., 2021). Many scholars have studied EEG signals
in different frequency bands. Mohammadi et al. (2017) used
wavelet transform to decompose EEG signals into five sub-band
signals, then extracted entropy and energy features from each
sub-band signal and sent them to support vector machine and
k-nearest neighbor, respectively. Li and Lu (2009) proposed
a frequency band search method to find the best frequency
band for emotion classification. According to their findings,
the gamma frequency band is appropriate for EEG-based
emotion classification using still images as stimuli. Zheng and
Lu (2015) built a Multi-frequent band emotion recognition
classifier using deep neural networks. This study had shown
that the beta and gamma bands contained more discriminative
information for emotion classification. Li et al. (2018) used the
hierarchical deep learning model to train numerous classifiers
on EEG signals. They verified that high-frequency bands
played the most important role in emotion classification. Yang
et al. (2018) developed a 3D representation of signal segment
to extract representative features on bands. They integrated
multiple frequency bands and used the constructed 3D signal
cube as model input. Li et al. (2019) developed a sparse linear
regression model using the technologies of graph regularization
and sparse regularization. The authors compared the effects
of different frequency band signals in emotion recognition on
various EEG datasets.

Because there are internal relationships and differences
between different frequency bands, a new learning method is
required to make full use of the information in multi-frequency
band data. Despite extensive research on the use of different
frequency bands of EEG signals for emotion recognition, one
traditional strategy is to directly concatenate features from

TABLE 1 | The basic information of five frequent bands of EEG signals.

Patterns Frequency Brain state

Delta (δ) 1–3 Hz Slowest “sleep waves”

Theta (θ) 4–7 Hz Light meditation and sleeping

Alpha (α) 8–13 Hz Closing the eyes, relaxation

Beta (β) 14–30 Hz Waking consciousness and reasoning waves

Gamma (γ) 30–100 Hz Sensory and high-level information processing
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multi-frequent bands in high dimensional space and consider this
single feature vector as the model’s input. Obviously, this strategy
does not account for the complementarity and consistency of the
data in each frequency band.

Our previous work named as optimized projection and Fisher
discriminative dictionary learning (OPFDDL) (Gu et al., 2021a)
extracted multi-frequent band EEG features in the optimal sparse
representation subspace, and adopted the Fisher discrimination
criterion to build a discriminative classifier. This method did
not directly concatenate the features of each frequency band,
but regarded each band signal as an independent feature. It
incorporated the band-correlation knowledge into a dictionary
learning model by learning independent projection matrices for
each frequency band signal. Inspired of this work, we further use
multi-frequent band shared information to exploit the intrinsic
knowledge of EEG signals and achieve correlation modeling of
multiple band data. Thus, in this study we propose a multi-
frequent band collaborative EEG emotion classification method
based on optimal projection and shared dictionary learning
(MBCC). We construct a projection matrix for each frequency
band. The projection matrix is composed of a common shared
matrix (called shared component) and a frequency band-specific
matrix (called specific component). The shared matrix well
reflects the relationship between frequency bands. The EEG
signal of each frequency band is projected to the subspace
through the projection matrix, and the dictionary shared by each
frequency band is learned in the subspace. The corresponding
sparse representation is then obtained from the new data features
using dictionary learning. According to Fisher’s criterion, the
MBCC method ensures that the coding reconstruction errors
of the same class are as small as possible, while the coding
reconstruction errors of different classes are as large as possible.
Considering the information available in the original domain
should not be lost in the projection space, we provide a
regularization term similar to principal component analysis
(PCA) that can retain discriminative knowledge to improve
the discrimination ability of the model. An efficient alternating
iterative optimization algorithm is designed to solve the proposed
model. The experiment yielded good classification results on the
public EEG emotion datasets SEED (Zheng and Lu, 2015) and
DEAP (Koelstra et al., 2011).

The advantages of MBCC are as follows: (1) An effective
discriminative dictionary is trained using the dictionary
learning model framework by capturing common shared
feature information from multi-frequency band data. The
first correlation between data in multiple frequency bands is
represented by the common shared dictionary. It creates a link
between data from different frequency bands in order to obtain
a new feature representation of EEG data. (2) Take into account
the complementarity and difference of frequency band data,
the projection matrix of each frequency band has the common
shared and independent components. The common shared
component reflects the second correlation between multiple
frequency bands and can keep each frequency band consistent.
(3) To assess the model’s discriminative ability, the Fisher
criterion based on coding error is introduced in the projection
space. Furthermore, the PCA-like regularization term based on

the common shared projection component contributes to obtain
more discriminative sparse coding.

BACKGROUND

Let ZZZ = [zzz1, ...,zzzn] ∈ RRRd×n be a set of d-dimensional n training
signals. The traditional dictionary learning is to learn a dictionary
matrix to sparsely represent the EEG signals Z. The problem of
dictionary learning (Jiang et al., 2013; Gu et al., 2021b) is,

min
D,A
||Z−DA||2F + λ||A||1,

s.t. ∀i, ||di||0 = 1,
(1)

where D = [ddd1, ...,dddk] ∈ RRRd×K is the learned dictionary, K
is the dictionary size. AAA = [aaa1, ...,aaan] ∈ RRRK×n is the sparse
coding coefficient matrix. The first term in Eq. (1) is to
minimize the reconstruction errors of Z. The second term is the
sparsity constraints.

In our previous work OPFDDL method (Gu et al., 2021a),
ZZZm
= [zzzm

1 , ...,zzz
m
nm
] ∈ RRRd×nm is the class m frequent band signal

set, m = 1, 2, ...,M, n =
∑

m nm. By introducing the frequent
band specific projection matrix GGGm

∈ RRRd×p, each training signal
zzzm

j is projected into a low-dimensional space, as GGGmzzzm
j . Suppose

SSSm
w and SSSm

b are within-class and between-class reconstruction
errors of the m-th frequent band signals, respectively. SSSm

w and SSSm
b

are defined as,

Sm
w = Tr(

∑nm
j=1((G

m)Tzm
j −(G

m)TDδ(am
j ))× ((G

m)Tzm
j

−GmTDδ(am
j ))

T)

= Tr(GmTWm
w Gm)

(2)

where WWWm
w =

∑nm
j (zzzm

j −DDDδ(aaam
j ))× (zzz

m
j −DDDδ(aaam

j ))
T . The

function δ(aaam
j ) returns the coding coefficients consistent with the

class of zzzm
j .

Sm
b = Tr(

∑nm
j ((Gm)Tzm

j −(G
m)TDξ(am

j ))× ((G
m)Txm

j
−GmTDξ(am

j ))
T)

= Tr((Gm)TWm
b Gm)

(3)

where WWWm
b =

∑nm
j (zzzm

j −DDDξ(aaam
j ))× (zzz

m
j −DDDξ(aaam

j ))
T . The

function ξ(aaam
j ) returns the coding coefficients not consistent

with the class of zzzm
j .

According to the classification rule of Fisher criterion (Peng
et al., 2020; Zhang et al., 2021), the OPFDDL method proposes
the discriminative model on M frequent bands in the projection
space,

min
Gm,D

∑
m Tr(GmT Wm

w Gm)∑
m Tr(GmT Wm

b Gm)
,

s.t. (Gm)T(Gm) = I, m = 1, 2, ...,M
(4)

Then the matrices G̃GG, W̃WWw, and W̃WWb are defined as

G̃GG = [GGG1,GGG2, ...,GGGM
], W̃WWw =

WWW1
w · · · 0
...

. . .
...

0 · · · WWWM
w

, and
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W̃b =

WWW1
b · · · 0
...

. . .
...

0 · · · WWWM
b

. With these definitions, the objective

function of OPFDDL has the following form,

min
G̃,D,λ

λ2Tr(G̃TW̃wG̃)− λTr(G̃TW̃bG̃),

s.t. G̃TG̃ = I,
(5)

where λ is the adaptive weight parameter.
The training procedure of OPFDDL is given by Algorithm 1.

ALGORITHM 1 | The OPFDDL algorithm.

Repeat

1. Calculate the coding coefficients by solving the following problem:

min
A
||G̃T Z−DA||2F + λ||A||1 (6)

2. Calculate the projection matrix by solving the following problem:

(λ2W̃w − λW̃b)G̃ = γG̃ (7)

3. Calculate the dictionary D by:

D = D−
λD

n

∑
k

∂L(Z̃k)

∂D
, k = 1, . . . ,d (8)

∂L(Z̃k)

∂D
= 2G̃G̃T D(33T

+HHT )− 2G̃G̃T Z̃k(3
T
+HT ) (9)

3 = [δ1, δ2, ..., δM
],H = [ζ1, ζ2, ..., ζM

] (10)

4. Calculate the adaptive weightλ by:

λ =
tr(G̃T W̃bG̃)

2tr(G̃T W̃wG̃)
(11)

Until convergence

MULTI-FREQUENT BAND
COLLABORATIVE EEG EMOTION
CLASSIFICATION METHOD BASED ON
OPTIMAL PROJECTION AND SHARED
DICTIONARY LEARNING

Objective Function of MBCC
The OPFDDL method can be regarded as the baseline
algorithm of MBCC. The primary distinction between the
MBCC method and OPFDDL is that, although OPFDDL
also employs a projection matrix to project each frequency
band to the subspace, the correlation between projection
matrices is weak. The common shared component defined
in MBCC is a key part of multi-frequent band collaborative
learning. In addition, according to the consistency principle,
the PCA-like regularization term in the shared potential space

further captures the discriminative information contained among
multiple frequency bands. Thus, the MBCC method can balance
discriminative knowledge and multi-frequent band correlation in
the projection space.

We look for a projection matrix in the MBCC method to
project the data from d-dimensional space to p-dimensional
space. This study assumes that the projection matrix GGGm

∈ RRRd×p

for each frequency band has two parts: the shared component
GGG0
∈ RRRd×p, which is a common shared matrix that reflects the

correlation between different frequency bands, and the band
specific component G̃GG

m
∈ RRRd×p, which is the projection matrix

for each frequency band. The matrix is equal to the sum of the
shared component and the band specific component,

Gm
= (1− σ)G0

+ σ G̃m
, (12)

where σ ∈ [0, 1]is the balance parameter. When σ = 1, the
projection matrix GGGm is degenerated into the band specific
matrix G̃GG

m
, which is equivalent to the projection matrix in the

OPFDDL method. When σ = 0, the model only learns the
common shared matrix.

The projection of the signal in each frequency band is
represented as,

(Gm)Tzm
j = ((1− σ)G0

+ σG̃m
)Tzm

j . (13)

The within-class reconstruction error of the m-th frequent
band in the projected space can be represented as

Jm
w = Tr(

∑nm
j
∑p

k[(1− σ)G0(:, k)T(zm
j −Dδ(am

j ))+

σG̃m
(:, k)T(zm

j −Dδ(am
j ))]

2)

= Tr
(
((1− σ)G0

+ σG̃m
)TWm

w ((1− σ)G0
+ σG̃m

)
)
.

(14)

The between-class reconstruction error of the m-th frequent
band in the projected subspace can be represented as

Jm
b = Tr(

∑nm
j
∑p

k[(1− σ)G0(:, k)T(zm
j −Dξ(am

j ))+

σG̃m
(:, k)T(zm

j −Dξ(am
j ))]

2)

= Tr
(
((1− σ)G0

+ σG̃m
)TWm

b ((1− σ)G0
+ σG̃m

)
)
.

(15)

Thus, the Fisher criterion of all frequent bands is written as,

min
D,G0,G̃m

∑
m Tr

(
((1− σ)G0

+ σG̃m
)TWm

w ((1− σ)G0
+ σG̃m

)
)

∑
m Tr

(
((1− σ)G0 + σG̃m

)TWm
b ((1− σ)G0 + σG̃m

)
) .

(16)
Because different frequent band data describe the same object,

there must be an internal connection between them. The model
maximizes the commonality of multiple frequent band data in the
shared projection space using the consistency principle. When
projecting the data from multiple bands to the optimal subspace,
we need to preserve the discriminative information available in
the original space. To solve this problem, we use a PCA-like
regularization term as follows,

J(G0) = min
G0

∑
m
||Zm
− G0(G0)TZm

||
2
F. (17)
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Ignoring the constant terms in J(GGG0), Eq. (17) can be
represented as,

J(G0) =−min
G0

∑
m Tr

(
((G0)TZm)((G0)TZm)T

)
= −min

G0

∑
m Tr

(
(G0)TZm(Zm)TG0) . (18)

Let2m
= Zm(Zm)T , Eq. (18) can be written as,

J(G0) =−min
G0

∑
m

Tr
(
(G0)T2mG0

)
. (19)

Combined the Fisher criterion and PCA-like regularization
term, the objective function of MBCC is,

min
G0,G̃m,D

∑
m Tr(((1− σ)G0

+ σG̃m
)TWm

w ((1− σ)G0

+σG̃m
))− α

∑
m Tr((G0)T2mG0)∑

m Tr(((1− σ)G0
+ σG̃m

)T

Wm
b ((1− σ)G0

+ σG̃m
))

,

s.t. ∀m,
(
(1− σ)G0

+ σG̃m
)T (

(1− σ)G0
+ σG̃m

)
= I.

(20)
The projection matrix is orthogonal and it will result in

an efficient procedure for optimization. We can see that the
dictionary learned in the MBCC method have the stronger
discriminative ability.

Define G = [G0
;G1
; ...,GM

] ∈ R(M+1)d×p,�m
= [(1−

σ)Id, σId, ..., σId] ∈ Rd×(M+1)d, 1m
= [Id, 0d×d, ..., 0d×d] ∈

Rd×(M+1)d, 3 =
∑M

m (�
m)TWm

w�
m,2 =

∑M
m (1

m)T2m1m,
H =

∑M
m (�

m)TWm
b �

m, Eq. (20) is equivalent to,

min
G,D

Tr
(
GT3G

)
− αTr

(
GT2G

)
Tr
(
GTHG

) , (21)

s.t. GTG = I.

By combining the two terms on the numerator, we can get,

min
G,D

Tr
(
GT(3− α2)G

)
Tr
(
GTHG

) , (22)

s.t. GTG = I.

Optimization
It is not easy to directly solve the variables G and D in the
objective function. Therefore, we will take the alternative iterative
optimization scheme to decompose the original problem into two
sub-optimization problems.

Update G. For the given dictionary D, there must be a
minimum ρ, which satisfies the following formulation,

Tr
(
GT(3− α2)G

)
Tr
(
GTHG

) ≥ ρ, (23)

We have F(ρ) = min
G

Tr
(
GT(3− α2)G

)
− ρTr

(
GT HG

)
.

As a result, we can define the function of ρ by,

Tr
(

GT(3− α2)G
)
− ρTr

(
GTHG

)
≥ 0, (24)

According to Zhang et al. (2017), (1) F(ρ) is a decreasing
function of ρ. (2) F(ρ) = 0 if ρ = ρ∗. In addition, the minimum
ρ always exists.

Then ρ can be updated by,

ρ = ρ+ λρ
F(ρ)
F′(ρ) ,

F′(ρ) = −Tr(GTHG),
(25)

where λρ is the learning rate.
With the fixed ρ and D, the objective function of G is,

min
G

Tr
(
GT(3− α2− ρH)G

)
,

s.t. GTG = I,
(26)

The optimization of G can be solved by the following
eigenvalue decomposition,

(3− α2− ρH)G = γG. (27)

The columns of the matrix G are the eigenvectors with respect
to the first p minimum eigenvalues of Eq. (27).

Update D. With the fixed G, the objective function of D is,

min
D

Tr(GT3G)
Tr(GTHG)

, (28)

Let D = [D1,D2, ...,DC] be the learned dictionary, and Dj is
the j-th class sub-dictionary. The Eq. (28) can be re-written as,

J(Dj) = min
Dj

C∑
j=1

Tr(GT3jG)
Tr(GTHG)

, (29)

where 3j =
∑

m=1
∑c

j6=s(Z
m
j −Ds0

m
j,s)× (Z

m
j −Ds0

m
j,s)

T ,
H =

∑
m=1

∑c
j=1(Z

m
j −Dj0

m
j,j)× (Z

m
j −Dj0

m
j,j)

T . 0m
j,s and

0m
j,j are the coding coefficient matrices corresponding to classes s

and j of the m-th frequent band, respectively, where s6=j.
Dj can be updated by gradient descent method, in which Dj is

computed as,

Dj = Dj + η∂J(Dj),

∂J(Dj) =
∂J(Dj)
∂3j

∂3j
∂Dj
+

∂J(Dj)
∂H

∂H
∂Dj
.

(30)

There is no connection between 3j and Dj, i.e., ∂3j
∂Dj
= 0.

Therefore, we only need compute ∂J(Dj)
∂H

∂H
∂Dj

.

∂J(Dj)

∂H
=
−Tr(GT3jG)(G)TG(

Tr(GTHG)
)2 , (31)

∂H
∂Dj
= (0m

j,j)
T(Dj0

m
j,j − Zm

j ). (32)

Update A. With the fixed D and G, the sparse coding
coefficient matrix A can be computed as,

min
A
||GTZ−DA||2F + λ||A||1, (33)
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Since A is differentiable, it can be obtained by,

A = (DTD+ λI)−1(DTGTZ). (34)

The alternating optimization procedure of MBCC is
summarized in Algorithm 2.

ALGORITHM 2 | The MBCC algorithm.

Repeat

1. Calculate the coding coefficient matrix A by Eq. (34)

2. Calculate the projection matrix G by Eq. (27)

3. Calculate the dictionary D by Eq. (30)

Until convergence

Testing
For the testing procedure, each frequency band feature of the
signal z is represented as zm. With the obtained{Gm, D}by
Algorithm 2, its label l(zm) on the m-th frequency band can be
computed by the following optimization problem,

l(zm) = min
zm
||(Qm)Tzm

−Dj(DT
j Dj)

−1DT
j zm
||2. (35)

Then the majority voting strategy is used to determine the class
label of signal z,

y = arg max
m

l(zm). (36)

EXPERIMENT

Datasets and Experimental Settings
Two EEG emotion recognition data sets used in the experiment,
SEED and DEAP datasets, which are described as follows.
The SEED dataset is an emotional EEG dataset collected and

TABLE 2 | The accuracy (standard deviations) of all methods on SEED
dataset in session 1.

Methods β + γ α + β + γ θ + α + β + γ δ + θ + α + β + γ

SVM 77.87 77.96 79.07 81.02

(8.69) (9.42) (9.96) (8.26)

LC-KSVD 78.39 80.10 81.65 83.50

(9.81) (8.13) (9.19) (8.38)

MvCVM 81.03 81.89 83.01 83.84

(9.84) (8.72) (9.67) (9.93)

GLSRM 81.62 82.84 83.33 84.17

(9.66) (8.95) (8.11) (9.39)

MVU 81.65 82.85 83.08 84.27

(9.93) (9.50) (8.67) (9.04)

OPFDDL 81.18 83.67 84.81 86.52

(8.51) (8.18) (8.76) (8.59)

MBCC 81.85 84.61 86.07 87.91

(7.98) (8.69) (8.82) (8.26)

The best performance of each comparison is emphasized by the bold font.

provided by Shanghai Jiao Tong University’s BCMI Laboratory.
The dataset is completed by requiring participants to wear EEG
acquisition equipment and recording the emotional EEG signals
produced by watching three different types of movie clips. Sixty-
two channel electrodes are used in the SEED dataset. The dataset
was compiled from 15 participants. With a total of 15 clips, the
films are classified as positive, negative, or neutral in terms of
their emotional impact. There are five clips of each type, and
each movie clip lasts about 4 min. To ensure the experiment’s
validity and accuracy, the playback sequence of the 15 videos is
random, with no repeated clips. Every participant repeated the
experiment three times. A few days were set aside in the middle of
each experiment to allow participants to adjust their emotions so
that they had a consistent emotional response to the same movie
clip. In the experiment, EEG signals are divided into 5-s segments

TABLE 3 | The accuracy (standard deviations) of all methods on SEED
dataset in session 2.

Methods β + γ α + β + γ θ + α + β + γ δ + θ + α + β + γ

SVM 77.25 78.04 79.67 80.92

(8.53) (7.81) (7.96) (9.92)

LC-KSVD 78.31 79.63 80.88 82.37

(7.74) (7.23) (9.65) (9.62)

MvCVM 80.53 82.55 83.37 83.94

(8.28) (8.33) (8.24) (9.54)

GLSRM 80.78 82.66 82.70 83.94

(7.09) (8.75) (8.56) (9.11)

MVU 81.76 82.51 82.84 84.24

(8.88) (8.89) (9.57) (9.82)

OPFDDL 81.30 83.22 84.76 86.21

(8.75) (8.78) (9.90) (9.43)

MBCC 81.90 84.24 86.14 87.87

(8.52) (7.99) (8.85) (8.07)

The best performance of each comparison is emphasized by the bold font.

TABLE 4 | The accuracy (standard deviations) of all methods on SEED
dataset in session 3.

Methods β + γ α + β + γ θ + α + β + γ δ + θ + α + β + γ

SVM 77.19 78.24 79.31 80.78

(9.23) (9.65) (9.41) (9.50)

LC-KSVD 77.61 79.76 80.12 81.92

(8.12) (7.09) (7.32) (9.87)

MvCVM 79.87 82.14 83.18 83.53

(8.67) (8.12) (8.02) (9.13)

GLSRM 80.45 81.30 82.43 83.28

(9.09) (9.59) (9.34) (8.84)

MVU 80.84 81.32 83.00 83.94

(9.27) (8.13) (9.72) (9.28)

OPFDDL 81.05 83.18 84.61 86.43

(7.84) (9.67) (9.08) (9.86)

MBCC 81.81 84.24 85.63 87.74

(8.04) (8.98) (8.22) (8.90)

The best performance of each comparison is emphasized by the bold font.
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FIGURE 1 | Confusion matrices of MBCC on the SEED dataset, (A) β+ γ, (B) α+ β+ γ, (C) θ+ α+ β+ γ, (D) δ+ θ+ α+ β+ γ.

FIGURE 2 | Confusion matrices of OPFDDL on the SEED dataset, (A) β+ γ, (B) α+ β+ γ, (C) θ+ α+ β+ γ, (D) δ+ θ+ α+ β+ γ.
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and features are extracted every 0.5 s. Thus, the sequence length
of each segment is 19.

The DEAP dataset is another open database for emotion
recognition research that uses EEG and peripheral physiological
signals. The dataset recorded the EEG data and 13 peripheral
physiological signals of 32 participants using music videos as
stimulus materials. The DEAP dataset employs 40 music videos,
each of which is 1 min long, as stimulus materials. These
music videos are labeled and screened using the general three-
dimensional model of valence, arousal, and dominance.

To illustrate the effectiveness of the MBCC method, the
comparison methods in the experiment are: SVM (Cortes and
Vapnik, 1995), LC-KSVD (Jiang et al., 2013), multi-view CVM
(MvCVM) (Huang et al., 2016), global and local structural risk
minimization (GLSRM) (Zhu et al., 2016), multi-view learning

TABLE 5 | The accuracy (standard deviations) of all methods on the DEAP
dataset in valence.

Methods β+ γ α+ β+ γ θ+ α+ β+ γ

SVM 62.21 63.04 63.55

(8.30) (8.09) (8.76)

KSVD 62.63 63.51 63.94

(8.59) (8.28) (8.43)

MvCVM 63.87 64.20 64.65

(8.57) (8.42) (9.07)

GLSRM 64.15 66.26 66.84

(9.60) (8.71) (9.35)

MVU 64.14 66.18 66.79

(9.02) (9.29) (9.13)

OPFDDL 66.04 68.42 69.08

(8.74) (8.40) (8.95)

MBCC 66.64 68.85 69.97

(8.65) (8.20) (8.46)

The best performance of each comparison is emphasized by the bold font.

TABLE 6 | The accuracy (standard deviations) of all methods on the DEAP
dataset in arousal.

Methods β+ γ α+ β+ γ θ+ α+ β+ γ

SVM 64.77 65.37 65.85

(10.85) (11.67) (10.94)

KSVD 65.07 66.07 66.20

(10.46) (11.09) (11.86)

MvCVM 66.31 66.90 67.19

(11.01) (11.48) (11.24)

GLSRM 66.49 69.05 69.49

(10.33) (10.27) (10.48)

MVU 66.38 69.10 69.27

(10.79) (10.75) (11.12)

OPFDDL 68.46 70.35 70.59

(10.56) (10.87) (10.06)

MBCC 69.14 70.96 71.55

(10.39) (10.88) (10.70)

The best performance of each comparison is emphasized by the bold font.

with universum (MVU) (Wang et al., 2014), and OPFDDL (Gu
et al., 2021a). In detail, the Gaussian kernel is used in MvCVM.
The kernel parameter and the weight parameter are searched in
the grid {1/64, 1/32, . . . , 64} and {1, 101, . . . , 103}, respectively.
The weights and offsets in GLSRM are searched in the grid{0.1,
0.2, . . . , 1}, and its regularization parameters are searched in the
grid {1, 101, . . . , 103}. In MVU, the learning rate is 0.99, and
the relaxation of views is 10−6. In OPFDDL and MBCC, the
number of atoms in each class is selected in {5, 10, . . . , 35}.
The dimension of matrix G is set to be 90% of the dimension
of the EEG signal features. The parameter α is searched in the
grid{0.1, 0.2, . . . , 1}. The parameter σ is set as σ = 1− α. The
regularization parameter in Eq. (2) was set as 0.01. All methods
are implemented in MATLAB.

Experiments on the SEED Dataset
The commonly used power spectral density (PSD) features (Jenke
et al., 2014) are adopted in δ, θ, α, β, and γ frequent bands. We
obtain 62 dimensional features on each band. We divided the
EEG signal data corresponding to the 15 movie clips collected
and used 12 clips as training data and the remaining three clips
as test data. In both the training and test sets, the proportion
of three classes of EEG signals is the same. After the final
preprocessing, the samples of three different classes of EEG
signals in the training and test sets are balanced. The SEED
dataset is divided into three sessions (sessions 1–3) according to
the time interval of signal acquisition. The classification results of
all methods in three sessions are shown in Tables 2–4. We can see
that the MBCC method performs the best in terms of accuracy
in all three sessions. In Table 2, the accuracies of the MBCC
method are 0.67, 0.94, 1.26, and 1.39% better than the second
best method OPFDDL in multi-frequent bands β+ γ,α+ β+

γ,θ+ α+ β+ γ,δ+ θ+ α+ β+ γ. The results in Tables 3, 4
are similar to those in Table 2. Compared with the OPFDDL
method, the proposed MBCC has the ability to take into account
the complementarity and consistency between frequency bands
while maintaining the PCA constraints of the data structure in the
projection space, which is conducive to improving classification
performance. Thus, the dictionary learned in the projection
space by MBCC has good discriminative performance. The SVM
and LC-KSVD methods merge all frequency band data into a
vector for learning, and they cannot effectively find the internal
connection between each frequency band. For joint learning of
multiple perspectives, MvCVM, GLSRM, and MVU treat each
frequency band as a learning view. Obviously, the MBCC method
obtains a more discriminative model based on dictionary learning
and subspace learning.

By calculating the average results of all experiments on three
sessions, Figures 1, 2 show the confusion matrices of MBCC
and OPFDDL on the SEED dataset, respectively. The real label
is represented by the ordinate of the confusion matrix, while the
predicted label is represented by the abscissa.

It can be seen from Figures 1, 2 that (1) the classification
results of positive emotional EEG signals are relatively good
on the SEED dataset, while the classification results of negative
emotions are relatively poor. Positive emotion is easier to identify
than negative and neutral ones. This shows that positive emotions
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FIGURE 3 | Confusion matrices of OPFDDL on the DEAP dataset in valence, (A) β+ γ, (B) α+ β+ γ, (C) θ+ α+ β+ γ.

FIGURE 4 | Confusion matrices of MBCC on the DEAP dataset in valence, (A) β+ γ, (B) α+ β+ γ, (C) θ+ α+ β+ γ.

can cause similar brain feedback between frequency bands more
than neutral and negative emotions. (2) The data of different
frequency bands are projected into subspaces, and the common
shared component of the projection matrix represents the
correlation between frequency bands. Obviously, the OPFDDL
method does not have this characteristic. (3) In addition, the
MBCC method use the PCA-like regularization term based on

shared projection matrix to make full use of the discriminative
information of EEG data. Thus, the MBCC method achieves
better classification accuracy on the SEED dataset.

Experiments on the DEAP Dataset
In the DEAP dataset, music video stimulation is a three-
dimensional emotion model based on valence, arousal, and
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FIGURE 5 | Confusion matrices of OPFDDL on the DEAP dataset in arousal, (A) β+ γ, (B) α+ β+ γ, (C) θ+ α+ β+ γ.

FIGURE 6 | Confusion matrices of MBCC on the DEAP dataset in arousal, (A) β+ γ, (B) α+ β+ γ, (C) θ+ α+ β+ γ.

dominance. The valence and arousal of emotion are classified
in this subsection. The binary valence-oriented classification
refers to the classification of emotions according to high valence
and low valence. Also, the binary arousal-oriented classification
refers to the classification of emotions according to high arousal

and low arousal. The classification threshold is set to 5, the
participant’s score ∈ [1, 5]for valence is low valence, and score ∈
(5, 9] is high valence. Similarly, the participant’s score ∈ [1, 5]for
arousal is low arousal, and score ∈ (5, 9] is high arousal. The EEG
signals are segmented by a 4-s time window with an overlap 2 s
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FIGURE 7 | Classification accuracy of MBCC vs. different α on the SEED and
DEAP datasets.
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FIGURE 8 | Classification accuracy of MBCC vs. different K on the SEED and
DEAP datasets.

for each frequency band. Similar to the feature extraction strategy
in subsection “Experiments on the SEED Dataset,” PSD features
are used in the DEAP dataset. Following (Shen et al., 2021), four
frequency bands (θ, α, β, γ) are used in the experiment.

Tables 5, 6 compare the average recognition results on valence
and arousal on the DEAP dataset, respectively. We can see that
(1) all methods have achieved the better classification accuracy
for the arousal than the valence on the DEAP dataset. The reason
may be that arousal, as an indicator of physiological arousal,
reflects the degree of activation of neurophysiological activities,
which can be directly reflected in changes in physiological
signals. The valence-oriented classification is a more complex
task involving mental state, and PSD features may not fully
reflect valence’s state. (2) Compared with the benchmark methods
SVM and LC-KSVD, the MBCC method has achieved much
better results. Compared with GLSRM, MVU, and OPFDDL
methods, the classification performance of the MBCC method
has further improved. The MBCC method has the accuracy rate
of 69.97% for the valence-oriented classification, and 71.55% for
the arousal-oriented classification using four frequency bands.
The classification accuracies of the MBCC method are increased
by 0.89 and 0.96%, respectively, when compared to the second
best method. This is due to that the multi-frequent band
data maintains the consistency between feature similarity and

semantic similarity in the learned subspace and can learn a more
discriminative dictionary shared by frequency bands.

Figures 3, 4 show the confusion matrices of the OPFDDL
method and the MBCC method in valence, respectively.
Figures 5, 6 show the confusion matrices of the OPFDDL method
and the MBCC method in arousal, respectively. Compared with
OPFDDL, MBCC has obvious advantages in valence-oriented
and arousal-oriented classifications. When different band data
describe the same object, there must be an internal connection
between each band data. According to the consistency principle,
the MBCC method maximizes the commonness of multiple
frequent bands in the shared projection space. Furthermore,
the Fisher criterion and PCA-like regularization term aids
in learning more discriminative sparse representation and
maintaining data structure.

Parameter Analysis
The parameter involved in the objective function of the MBCC
method is α, and its impact on MBCC’s performance is analyzed
here. The set value range specifies how to conduct experiments
on the SEED session 1 and DEAP dataset, respectively. Figure 7
depicts the accuracy values at various values of α. The figure
shows that MBCC achieves the highest accuracy value when
taking 0.4, 0.5, and 0.6 on the SEED session 1, DEAP in valence,
and DEAP in arousal, respectively.

The atomic number K of the dictionary also directly
determines the performance of the MBCC method. Figure 8
shows the accuracy values under different K values. We can see
that when K reaches 15 and 20 on the SEED session 1 and
DEAP dataset, respectively, the accuracy rate tends to stabilize.
It indicates that the learned dictionary well represents the data
characteristics of the EEG data. Also it shows that the MBCC
method can be well applied to the SEED and DEAP datasets using
a small size of dictionary.

CONCLUSION

According to the consistent complementarity of multi-frequent
band EEG signals and the internal correlation of data itself,
this study proposes multi-frequency band collaborative EEG
emotion classification method based on the idea of dictionary
learning and subspace learning. Using a projection matrix,
this method maps different frequency band data to the
subspaces of the same dimension. Unlike most existing projection
strategies, the projection matrix we designed is divided into
two parts, a common shared component and a band-specific
component. This strategy can fully use the relevance of different
frequency bands and their shared semantics. In the subspace,
the MBCC method learns the common shared dictionary
between the frequency bands, which can represent the correlation
and discrimination of the EEG data. Simultaneously, the
incorporation of Fisher criterion and PCA-like regularization
term into the subspace via dictionary learning makes the learned
model more discriminative.

However, the time computation of MBCC is relatively high.
It may be not suitable for real-time predicting emotional states
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in applications of human-computer interaction. This is the
problem we need to solve in the next stage. Furthermore,
the work that can be studied further in the future includes:
(1) Human emotions are susceptible to external influences.
For example, the emotions of the subjects may change while
watching a film. The overall emotions of watching the film
may be consistent, but the emotions may be inconsistent with
expectations at times. As a result, the collected EEG signals
are mixed with abnormal samples. In practice, selecting the
appropriate abnormal sample processing method is important.
The use of the correct processing method can improve the
accuracy of emotional EEG signal recognition. (2) EEG signals
have the characteristics of randomness. That is, for the same
individual subjects, EEG signals are different even in the same
emotional state at different times. How to improve the robustness
of emotion classification model in multiple domains still needs
further research. In the future, we will continue to design
and improve our method to be suitable in across time and
individuals scenes.
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