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Abstract

One important approach to human brain mapping is to define a set of distinct regions

that can be linked to unique functions. Numerous brain parcellations have been pro-

posed, using cytoarchitectonic, structural, or functional magnetic resonance imaging

(fMRI) data. The intrinsic smoothness of brain data, however, poses a problem for

current methods seeking to compare different parcellations. For example, criteria that

simply compare within-parcel to between-parcel similarity provide even random

parcellations with a high value. Furthermore, the evaluation is biased by the spatial

scale of the parcellation. To address this problem, we propose the distance-controlled

boundary coefficient (DCBC), an unbiased criterion to evaluate discrete parcellations.

We employ this new criterion to evaluate existing parcellations of the human neocor-

tex in their power to predict functional boundaries for an fMRI data set with many

different tasks, as well as for resting-state data. We find that common anatomical

parcellations do not perform better than chance, suggesting that task-based func-

tional boundaries do not align well with sulcal landmarks. Parcellations based on

resting-state fMRI data perform well; in some cases, as well as a parcellation defined

on the evaluation data itself. Finally, multi-modal parcellations that combine func-

tional and anatomical criteria perform substantially worse than those based on func-

tional data alone, indicating that functionally homogeneous regions often span major

anatomical landmarks. Overall, the DCBC advances the field of functional brain map-

ping by providing an unbiased metric that compares the predictive ability of different

brain parcellations to define brain regions that are functionally maximally distinct.
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1 | INTRODUCTION

Neuroscience has a long history of subdividing the human brain into

different regions based on differences in histology (Brodmann, 1909).

It is commonly understood that brain function arises through the

interactions of regions that are structurally and/or functionally distinct

(Eickhoff et al., 2018; Felleman & van Essen, 1991). While early

parcellations of the human brain were based on the cytoarchitectonic

organization of the neocortex (Brodmann, 1909; Talairach, 1988;

Zilles et al., 2002), the advent of neuroimaging allowed an in-vivo

assessment of brain organization. In recent years, many parcellations

based on task-evoked (Yeo et al., 2015) and resting functional
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magnetic resonance imaging (fMRI) data (Arslan et al., 2018; Eickhoff

et al., 2015, 2018) have been published, along with multi-modal

parcellations that also incorporate structural and cytoarchitectonic

information (Fan et al., 2016; Glasser et al., 2016).

In the empirical study of brain function, parcellations play an

important practical role. They are commonly used to define the

regions of interest to summarize functional and anatomical data, or to

define the nodes for subsequent connectivity analysis (Sporns, 2011).

The main function of parcellation is to reduce complexity of the statis-

tical analysis, as the brain-wide data can be summarized with a smaller

number of values, each reflecting measurements from a region with

high homogeneity. Additionally, widely accepted parcellations aid the

direct comparison between studies (Arslan et al., 2018).

Despite the importance of brain parcellations in human neurosci-

ence research, there is no commonly accepted evaluation criterion to

compare different parcellations. The obvious reason for this is that

different parcellations are generated with different goals in mind. Spe-

cially, some parcellations aim to define regions that have a common

anatomical characteristic (Desikan et al., 2006; Fischl et al., 2004), a

shared connectivity fingerprint (Gordon et al., 2016; Power

et al., 2011; Yeo et al., 2011), or a homogeneous task-activation pro-

file (Yeo et al., 2015). As such, brain parcellations can be evaluated

based on different types of data (Arslan et al., 2018).

Universally, however, any parcellation should aim to define

regions such that the functional profiles (whether anatomical mea-

sures, connectivity patterns, or task activation) of two brain locations

in the same region should be maximally similar to each other, whereas

two brain locations in different regions should be maximally different.

Thus, brain parcellation can be viewed as a clustering problem. As a

result, standard machine learning methods to evaluate clustering solu-

tions have been applied to brain parcellation. Two such examples are

the measure of global Homogeneity (Craddock et al., 2012; Gordon

et al., 2016) and the Silhouette coefficient (Rousseeuw, 1987).

However, these two evaluation criteria have the common problem

in that they do not account for the spatial nature of the underlying data.

In the case of the human neocortex, the functional correlation between

two nodes on the cortical surface depends on their distance, with

nearby nodes showing a higher similarity compared to far away ones.

This causes even random, but spatially contiguous, parcellations to

achieve relatively high global Homogeneity or Silhouette coefficient. To

establish whether a parcellation identifies any real functional boundaries

at all, Monte-Carlo simulations using random parcellations are therefore

necessary (Arslan et al., 2018). To complicate matters further, both

global Homogeneity and Silhouette coefficient tend to be higher for

finer parcellations. This makes it difficult to compare between two

parcellations with different spatial resolutions.

In this article, we address this problem by proposing a novel evalua-

tion criterion, the distance-controlled boundary coefficient (DCBC). As

the Silhouette coefficient, it compares within-parcel and between-parcel

correlations of the functional profiles. However, the DCBC takes into

account the spatial smoothness of the data by only comparing pairs of

locations with the same distance on the cortical surface. As we will

show, the expected value of the DCBC for a random parcellation is zero.

Thus, no simulations with random parcellations are necessary to estab-

lish a baseline measurement; we can directly test the DCBC against

zero. We also show that this baseline value is invariant to the number of

parcels in the random parcellation. This enables us to use the DCBC to

directly compare parcellations of different spatial scales.

We then use the DCBC to evaluate a set of common parcellations

of the human neocortex (Arslan et al., 2015; Baldassano et al., 2015;

Desikan et al., 2006; Fan et al., 2016; Fischl et al., 2004; Glasser

et al., 2016; Gordon et al., 2016; Power et al., 2011; Schaefer

et al., 2018; Shen et al., 2013; Tzourio-Mazoyer et al., 2002; Yeo

et al., 2011, 2015). We performed this evaluation using both a task-

based and a resting-state fMRI data set. For the task-based data set,

we used the comprehensive multi-domain task battery (MDTB) (King

et al., 2019), which contains functional contrasts across many cogni-

tive domains measured in the same participants. A python toolbox for

the efficient computation of the DCBC, as well as a surface-based

version of the MDTB data set are publicly available to download.

2 | METHODS

2.1 | Overview

The DCBC compares the correlation between two brain locations

within a parcel to the correlation between two brain locations across

a boundary between parcels. Importantly, this comparison is only per-

formed for pairs of brain locations that are separated by the same spa-

tial distance. The calculation of the DCBC proceeds in four steps.

First, we require a data set that provides a rich characterization of

each brain location. This data set defines the functional profile for each

brain location. While the DCBC can be applied to any high-

dimensional data, such as multi-modal anatomical data, we focus here

on task-based fMRI data (the MDTB data set [King et al., 2019], which

provides 34 activity estimates across a range of motor, cognitive and

social tasks) and resting-state fMRI data (acquired in the Human

Connectome Project [HCP; van Essen et al., 2013]). Second, we need

a measure of spatial distance between two brain locations, either

defined on the cortical surface, or for subcortical structures, in the

volume. Based on these distances, all location pairs are subdivided

into a set of spatial bins. The within-parcel and between-parcel corre-

lation is then computed for each spatial bin separately. In the last step,

the results are integrated across spatial bins, using an adaptive

weighting scheme. To validate the method, we employed random

parcellations of the human neocortex using a range of spatial resolu-

tions, as well as sets of smooth artificial functional data sets.

2.2 | Evaluation data

2.2.1 | Task-based data set (MDTB)

To define the functional profiles for the evaluation, we first used the

publicly available MDTB data set (King et al., 2019), which contains a

ZHI ET AL. 3707



wide range of tasks, quantifying processes required for motor, cogni-

tive, and social function. Each of the 24 participants (16 females,

8 males, mean age = 23.8) was scanned four times for 80-min, while

performing either task set A or B (17 tasks for each, 9 tasks in com-

mon). Task set A was performed in the first two sessions, task set B in

the last two sessions. A total of approximately 5.3 h of functional data

per participant was collected.

In each imaging run, every task was performed once for 35 s,

starting with a 5 s instruction period, followed by a 30 s period of con-

tinuous task performance. The task battery included motor (finger

tapping, sequence production), working memory (2-back task, math),

language (verb generation, reading), social (theory of mind, action

observation), executive control (no-go, stroop), attention (visual sea-

rch), emotion (facial expression, pleasant/unpleasant pictures), spatial

(mental rotations), introspection tasks (spatial and motor imagery),

movie-based tasks (cartoon, nature, landscapes), and rest (fixation)

(King et al., 2019).

All fMRI data were acquired on a 3T Siemens Prisma at Western

University. The imaging parameters were as follows: repetition

time = 1 s; field-of-view = 20.8 cm; phase encoding direction P to A;

48 slices; 3 mm thickness; in-plane resolution 2.5 � 2.5 mm2. For ana-

tomical localization and normalization, a 5 min high-resolution scan of

the whole brain was acquired (see King et al. [2019]) for more details).

Data pre-processing was carried out using tools from

SPM12 (www.fil.ion.ucl.ac.uk/spm/doc/spm12_manual.pdf), as well as

custom-written scripts written in MATLAB. For all participants, an

anatomical image (T1-weighted MPRAGE, 1 mm isotropic resolution)

was acquired in the first scanning session. Functional data were

realigned for head motion within each session, and for different head

positions across sessions using the six-parameter rigid body transfor-

mation. The mean functional image was then co-registered to the ana-

tomical image and this transformation was applied to all functional

images. No smoothing or group normalization was applied.

The anatomical image of each of the 24 subjects was processed

by standard recon-all pipeline of the freesurfer software (version 5.0)

(Fischl, 2012), including brain extraction, white and pial surfaces gen-

eration, inflation, and spherical alignment to the new symmetric fsLR-

32K template (van Essen et al., 2012). Individual surfaces were then

re-sampled into this standard grid. This resampling led to surfaces

with 32,492 vertices that are shared both across participants and

across left and right hemisphere.

A General Linear Model (GLM) was fitted to the time series data

of each voxel for each imaging run. Each task was modeled as a 30 s

regressor and all the preceding 5 s instructions were modeled as sepa-

rate regressors. The regression weights (betas) were estimated for

each run independently and then averaged across the 16 runs for

each task set.

To combine the activity estimates across the two task sets, we

used the mean of the shared tasks as a common reference point. We

subtracted this pattern from the average beta estimates for each task

set separately, and then concatenated the two vectors of activity esti-

mates. The average beta weights were then divided by the square

root of the average mean-square-residual from the first-level GLM to

obtain z-scores for each voxel. The resulting functional profiles con-

sisted of 34 pre-whitened activity estimates (set A = 17; set B = 17)

for each voxel. Finally, we subtracted the overall mean across all tasks

from the functional profile of each voxel.

The functional profiles were then mapped to each individual cor-

tical surface by averaging the value from voxels along the connecting

line between the pial and white-gray matter surface, using five equally

spaced locations between the two surfaces.

2.2.2 | Resting-state data set (HCP)

The second data set used in this study was the resting-state fMRI

(rs-fMRI) data from the “unrelated 100” subjects (54 female, 46 male

adults, aged from 22 to 35), which was made publicly available in the

HCP S1200 release (van Essen et al., 2013). The rs-fMRI scans for

each subject were collected in two sessions held on different days,

including a total four runs of approximately 15 min each. During the

scans, the subjects were asked to fixate a white cross-hair on a dark

background.

The HCP resting-state fMRI time series were acquired using 3T

Siemens “Connectome Skyra” scanner with 2 � 2 � 2 mm spatial

resolution and a TR of approximately 0.7 s. For more details of the

data acquisition parameters, see Smith et al. (2013) and U�gurbil

et al. (2013).

All data were pre-processed using the HCP minimal processing

pipeline (Glasser et al., 2013), including structural registration, correc-

tion for spatial distortion, head motion, cortical surface mapping, and

functional artifact removal (Glasser et al., 2013; Smith et al., 2013).

For each rs-fMRI run, this resulted in 1200 time points for each of the

32k vertices of the standard fsLR-32K template (van Essen

et al., 2012) per hemisphere. To generate the functional profiles for

the HCP data set, we concatenated all four runs after mean-centering.

2.3 | Existing evaluation criteria for brain
parcellations

Given that brain parcellation can be viewed as a clustering problem,

two common methods used to evaluate the resultant parcels are the

global Homogeneity (Craddock et al., 2012; Gordon et al., 2016), and

the Silhouette coefficient (Rousseeuw, 1987). Homogeneity is defined

as the average similarity across all pairs of vertices within a parcel. As

the similarity measure of two vertices, we used the Pearson's correla-

tion between functional profiles. The global Homogeneity is then sim-

ply the average with-parcel correlation across all parcels, with higher

homogeneity suggesting a better parcellation.

Another popular evaluation metric for brain parcellations is the

Silhouette coefficient (Rousseeuw, 1987), which compares the aver-

age dissimilarity (defined as 1-R, where R represents Pearson's corre-

lation between functional profiles) from one vertex to all other

vertices in the same parcel (wi), to the average dissimilarity from the

same vertex to all the vertices that assigned to neighboring parcels (bi)
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(Arslan et al., 2018; Yeo et al., 2011). For a given a parcellation

P1,P2,…,Pkf g, wi and bi can be defined as:

wi ¼ 1
mk�1

X

j � Pk , i≠ j

1�R vi,vj
� �

, bi ¼ 1
N

X

j � nb Pkð Þ
1�R vi,vj

� �

where mk indicates the number of vertices that within the parcel Pk . N

is the total number of vertices in all neighboring parcels and nb Pkð Þ
represents all neighboring parcels of Pk .

For each cortical vertex vi, the Silhouette coefficient is defined as:

Si ¼ bi�wi

max wi ,bið Þ

Based on this definition, the Silhouette coefficient for each vertex

ranges from �1 to 1, 1 indicates that there is a perfect correlation

within each parcel (r¼1) and on average, not correlations across par-

cels (r¼0). As we will see, both of these measures are biased by the

intrinsic smoothness of the functional profiles on the cortical surface.

2.4 | Measuring spatial distance

To account for the intrinsic smoothness of the data, we require a mea-

sure of spatial distance between any pair of brain locations. For subcor-

tical structures, we have used the Euclidean distance between pairs of

voxels (King et al., 2019). For the neocortex, however, we ideally would

like to use the geodesic distance between vertices on the cortical sur-

face. As an approximation to this distance, we used Dijkstra's algorithm

(Dijkstra, 1959) to estimate the shortest paths between each pair of

vertices on each individual cortical surface. For this computation we

used the mid-cortical layer which is the average of the pial and white-

gray matter surface. For computational and memory efficiency we only

considered distances up to maximum of 50 mm. Inter-vertex distances

were then averaged across individuals and hemispheres. This resulted

in a matrix that indicates the average cortical distance between nearby

brain locations for the atlas brain surface.

2.5 | Distance-controlled boundary coefficient

2.5.1 | The problem of spatial smoothness

The problem with global Homogeneity and Silhouette coefficient is that

they do not take account that function tends to vary in a smooth fashion

across the cortical surface. For instance, if we compute the correlation of

vertex pairs across the cortex using task-evoked functional profiles (King

et al., 2019) for an individual participant, we can clearly see that the corre-

lation falls off with the spatial distance between vertices (see Figure 1a).

Note that this smoothness is not an artifact of the data processing; except

for motion realignment and mapping onto the surface, no smoothing was

applied to the data. Thus, the dependence on spatial distance reflects the

intrinsic smoothness of functional specialization on the cortex.

For the global Homogeneity measure, this property favors

parcellations with small parcels, as only close-by vertex pairs will be

within the same parcel. Similarly, the spatial smoothness also biases

the Silhouette coefficient, as the spatial distance for within-parcel

pairs is on average smaller than that for between-parcel pairs. For

example in random parcellation Icosahedron 162 (Figure 1b), the aver-

age spatial distance of within-parcel pairs is 14.5 mm. Even if we limit

the comparison to vertex pairs from spatially adjacent parcels, as is

common practice in the evaluation of brain parcellations, the

between-parcel pairs have a substantially larger average distance

(25.5 mm). This discrepancy results in a higher average correlation of

functional profiles for within-parcel pairs compared to between-parcel

pairs.

We therefore propose to only compare vertex pairs with a similar

spatial distance. For this purpose, the DCBC method bins all vertex

pairs according to their spatial distance, and then compares the corre-

lation for within-pairs and between-pairs within each bin. One impor-

tant practical decision is the choice of bin size, a question that we

address in the results section. For our neocortical data, a bin size of

1 mm appears to be adequate.

2.5.2 | Averaging across bins

Parcellations can be compared by investigating the difference in within-

parcels and between-parcels as a function of the spatial distance (see

King et al., 2019, figs. 3 and 4). However, for many applications we

would like a single evaluation criterion for each parcellation, which

necessitates the averaging across a range of spatial distances. This raises

the question of what range of spatial distances to consider, and how to

weight the distances within that range. A rational solution to this prob-

lem is to find the weighting that, for any given parcellation, provides us

with the best estimate of the average difference between within-parcel

and between-parcel correlations, assuming that this difference is con-

stant across the desired range of distances. The variance of the estimate

of the correlation difference (di) for bin i can be approximated by

assuming the independence of the different vertex pairs. In this case,

the variance of the estimate depends on the number of within-parcel

(nw,i) and between-parcel vertex pairs (nb,i) in each spatial bin:

var dið Þ¼ 1
nw,i

þ 1
nb,i

¼ nw,iþnb,i
nw,inb,i

For averaging, we define a weight that is proportional to the pre-

cision (inverse of the variance) of each estimator:

wi ¼ nw,inb,i
nw,iþnb,i

=
X

j

nw,jnb,j
nw,jþnb,j

For example, Figure 1c shows the weighting factor for each spa-

tial bin of Icosahedron 162 random parcellation using a 1 mm bin

width. The DCBC is then the weighted average of the correlation dif-

ference across bins.
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2.6 | Random parcellations

To evaluate the DCBC for parcellations that on average do not align

with real functional boundaries, we generated a set of random

parcellations. If our method successfully controls for the spatial

smoothness of the functional profiles, the average DCBC for such ran-

dom parcellations should be zero, that is, there should be no differ-

ence between within-parcel and between-parcel correlations. To test

this claim for parcellations at different spatial scales, we used a regular

hexagonal parcellations of a sphere (Icosahedron) with 42, 162,

362, 642, and 1002 parcels (see Figure 2). To generate random align-

ment of this parcellation with the data, we rotated each map randomly

around the x, y, and z axis. We repeated this process 100 times to

obtain 100 random parcellations for each spatial scale.

2.7 | Random functional maps

Real data may have functional boundaries that are correlated across

participants. As a consequence, some random parcellations will still by

chance align with these boundaries and yield systematically positive

DCBC values; and other random parcellations will misalign with the

real functional boundaries and yield systematically negative values. To

test the DCBC on functional maps without a systematic boundary

structure across participants, we also randomly generated 100 cortical

functional maps with 34 task conditions. These maps then were used

in the analysis shown in Figure 3. We drew independent normally dis-

tributed values for every condition and vertex for the fsLR-32k tem-

plate (van Essen et al., 2012), and then smoothed these maps on the

cortical surface using -metric-smooth function provided by

Connectome Workbench software (Marcus et al., 2011). The smooth-

ing kernel was set to 12 cm, yielding a similar spatial autocorrelation

function as in our real data.

2.8 | Evaluation of commonly used group
parcellations

We then evaluated a set of commonly used group parcellations of

the human neocortex (Table 1). The majority of the parcellations

considered here are based on resting-state functional connectivity

(rs-FC) data. The fMRI data is recorded at rest, and the covariance
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or correlations between the time series of different brain locations

is submitted to a clustering or dimensionality reduction approach.

Parcellations can also be based on task-evoked activation maps.

For example, Yeo et al. (2015) derived a parcellation from 10,449

experiment contrasts across 83 behavioral tasks. The anatomical

parcellations considered here are based on the macro-anatomical

folding structure of the human neocortex, following the major

sulci and gyri of the human brain. Finally, we also considered two

multi-modal parcellations, which combined rs-FC and anatomical

criteria.

Within each of these categories, parcellations also differ in the

approach used for generation. For instance, several parcellations were

obtained based on a two-level approach, where subject-level

parcellations are derived in a first step, and then integrated across

subjects in a second step using clustering or majority voting. Other

parcellations are directly derived by clustering group-averaged data

(Arslan et al., 2018).

Because the DCBC evaluation considers only vertex pairs up to a

specific spatial distance on the cortical surface, the evaluation is con-

ducted separately for the left and right hemisphere. For many

parcellations, the parcels are separated for the two hemispheres. For

example, Gordon et al. (2016) used 161 and 172 distinct regions for

the left and right hemisphere respectively, totaling 333 regions. Other

parcellations use bi-hemispheric parcels. As a consequence the 7 and

17 regions in Yeo et al. (2011), were effectively evaluated as 14 and

34 parcels.

Note that three group-level parcellations (Fan et al., 2016; Shen

et al., 2013; Tzourio-Mazoyer et al., 2002) were only available in vol-

ume space. These parcellations were mapped to HCP standard fsLR-

32k cortical surface using the volume-to-surface pipeline described in

Arslan et al. (2018) and van Essen et al. (2012). All parcellations in this

study are available as a collection in fsLR-32k surface space at Zhi and

Diedrichsen (2021).

2.9 | Parcellation based on the evaluation data

To estimate how well a group parcellation could theoretically subdi-

vide the neocortex into functionally distinct regions, we derived a

parcellation from the MDTB data set. We estimated 12 cortical

parcellations with 14 to 1000 parcels, using group-averaged MTDB

functional profiles. For evaluation on the MDTB data, this

parcellation has the unfair advantage that the individuals used in the

evaluation is also contained within the training set, providing an

upper-bound estimate of the noise ceiling (Nili et al., 2014). To esti-

mate a lower bound of the noise ceiling, we used a leave-one-out

cross validation approach: We derived a group parcellation from the

averaged data from 23 participants, and then evaluated it on the

remaining subject. We then averaged the DCBC across the 24 differ-

ent parcellations.

To derive the MDTB group parcellation we used spectral clus-

tering. We first down-sampled the surface data from 32K vertices
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F IGURE 2 Random cortical
parcellations with different
number of parcels
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to 4002 vertices. Then we performed spectral clustering on the

affinity matrix between the vertices of the down-sampled map.

After clustering, we then restored the map to the original resolution

of the surface. The lower resolution ensured that the resulting

parcellations were spatially contiguous. We consider the MDTB

group parcellation as a potential lower bound (see Sections 3.4 and

4) of how well a group parcellation can perform on the MDTB

data set.

TABLE 1 Commonly used group-level cortical parcellations

Name Type Resolution Reference Link Approach

Yeo Resting

state

7 and 17 Yeo et al. (2011) www.freesurfer.net/fswiki/

CerebellumParcellation_

Buckner2011

Cortical networks spanning both

hemispheres; group-averaged rs-FC,

spectral clustering

Power Resting

state

130 Power et al. (2011) balsa.wustl.edu/study/show/WG33 Sixty-five regions per hemisphere,

based on group-average rs-FC;

mapping to surface space by Glasser

et al. (2013)

Schaefer Resting

state

100 to

1000

Schaefer

et al. (2018)

github.com/ThomasYeoLab/CBIG/tree/

master/stable_projects/brain_

parcellation/Schaefer2018_

LocalGlobal

Group-averaged rs-FC; gradient-

weighted Markov Random Field

method; aligned to Yeo 7 and 17

networks

Gordon Resting

state

333 Gordon

et al. (2016)

sites.wustl.edu/petersenschlaggarlab/

resources

Group-averaged rs-FC; agglomerative-

based clustering method

Baldassano Resting

state

171 Baldassano

et al. (2015)

biomedia.doc.ic.ac.uk/brain-

parcellation-survey/

Using HCP S500 group PCA output

(Smith et al., 2014) as connectivity

profiles; Bayesian modeling clustering

method

Shen Resting

state

200 Shen et al. (2013) www.nitrc.org/frs/?group_id=51 Individual and group rs-FC data;

spectral clustering; volume-surface

mapping by (Glasser et al., 2013)

ICA Resting

state

15 to 300 Beckmann and

Smith (2004)

db.humanconnectome.org/data/

projects/HCP_1200

Based on HCP S1200 group PCA

output (Smith et al., 2014); group-

averaged parcellations obtained

through group-ICA (Beckmann &

Smith, 2004)

Arslan Resting

state

50 to 497 Arslan et al. (2015) biomedia.doc.ic.ac.uk/brain-

parcellation-survey/

Individual parcellations derived via

spectral clustering; integrated into a

group parcellation using second-level

clustering

Yeo 2015 Task-

evoked

12 Yeo et al. (2015) surfer.nmr.mgh.harvard.edu/fswiki/

BrainmapOntology_Yeo2015

Hierarchical Bayesian model applied to

10,449 task contrasts

AAL Anatomical 82 Tzourio-Mazoyer

et al. (2002)

http://www.gin.cnrs.fr/en/tools/aal/ Commonly used brain atlas based on

cortical folding; volume-based atlas

mapped to surface

Desikan Anatomical 70 Desikan

et al. (2006)

surfer.nmr.mgh.harvard.edu/fswiki/

CorticalParcellation

Individual parcellations based on

cortical folding; group parcellation via

majority-voting

Destrieux Anatomical 150 Fischl et al. (2004) surfer.nmr.mgh.harvard.edu/fswiki/

CorticalParcellation

Individual parcellations based on

cortical folding; group parcellation via

majority-voting

Glasser Multi-

modal

360 Glasser

et al. (2016)

balsa.wustl.edu/study/show/RVVG Multi-modal group parcellation based

on rs-FC and cytoarchitectonic

information (Brodmann areas and

myelin content) from 210 HCP

subjects

Fan Multi-

modal

210 Fan et al. (2016) atlas.brainnetome.org/bnatlas.html Multi-modal parcellation; rs-FC and

anatomical information from 40 HCP

subjects; mapping to surface by

(Glasser et al., 2013)

Abbreviation: rs-FC, resting state functional connectivity (fMRI).
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3 | RESULTS

3.1 | Binning reduces the bias introduced by
spatial smoothness

Existing evaluation methods for brain parcellations have the problem

of being biased by the natural smoothness of functional brain maps.

To demonstrate this effect, we first tested various evaluation methods

using random functional maps and random parcellations of different

spatial scales. As can be seen in Figure 3a, both the Homogeneity and

Silhouette coefficient show highly significant positive values, even for

these random maps. Furthermore, the values for both methods

increase when the parcellation increases in spatial resolution

(i.e., have more and smaller parcels). This makes direct comparisons of

different parcellations in different spatial scales difficult, and necessi-

tates the use of randomization analyses for each parcellation to deter-

mine the baseline value expected by random chance (Arslan

et al., 2018).

A similar problem can also be seen when using the difference

between the correlations of within-parcel and between-parcel pairs of

vertices (un-binned average correlation difference [ACD]). This is cau-

sed by the tendency that vertices that are closer together show higher

functional correlations (Figure 1a), combined with the fact that

within-parcel vertex pairs are on average closer to each other than

between-parcel pairs (Figure 1b). To remove this bias, the DCBC cal-

culation involves the binning of vertex pairs according to their spatial

distance. We then calculate the difference between the average cor-

relation between within-parcel and between-parcel pairs within each

spatial bin, thereby only comparing vertex pairs of matched spatial

distance.

To ascertain that this approach provides an approximately unbi-

ased and stable evaluation criterion, we first applied the suggested

technique on the simulated functional data. As can be seen (Figure 3a,

binned ACD), even using a relatively coarse spatial binning of 2.5 mm,

this approach nearly removes all bias caused by the spatial smooth-

ness. For the finest parcellation, an Icosahedron with 1002 regions,

the binned difference between correlations (.009) was approximately

60 times lower than the mean of the difference calculated in each bin

(.544). This shows that the binning approach dramatically reduces the

bias caused by spatial smoothness.

3.2 | Adaptive weighted averaging reduces
variance and bias

After binning, we often want to integrate the results across bins to

arrive at a single evaluation criterion. This can be done by simply aver-

aging the differences in correlation across bins. However, this

approach leads to a summary measure with high variability

(Figure 3b). This is caused by the fact all bins have equal influence on

the average, even though some bins contain very few vertex pairs.

This can be addressed by taking the number of within-parcel and

between-parcel pairs in each bin into account in an adaptive

weighting scheme (see Section 2). Indeed, the standard deviation of

the weighted DCBC in the simulation is 2.8 times lower than for the

un-weighted version for 1 mm bins, and 8.1 times lower for the

2.5 mm bins. Furthermore, the weighted DCBC also shows smaller

residual bias than the unweighted DCBC.

3.3 | Choosing an appropriate bin width

An important practical issue in the DCBC calculation is to choose a

specific bin width. This choice is subject to a fundamental trade-off. If

the bin width is too wide, the DCBC may still be biased as a result of

the spatial smoothness of the functional profiles. This is because

within each bin, the average spatial distance for within-parcel pairs is

still slightly smaller than for the between-parcel pairs, inducing a sys-

tematic difference between the correlations within each spatial bin.

Even though this bias is small, it can remain highly significant when

tested across the 100 simulations presented in Figure 3b for a bin

width of 2.5 mm. Choosing a smaller bin width reduces this bias. For

bins of size 0.1 and 0.2 mm, the same 100 simulated data sets no lon-

ger show a significant difference against zero (p = .327 and .202,

respectively).

Choosing a very small bin width, however, also comes with

some disadvantages. First, the computational cost of the DCBC cal-

culation increases linearly with the increasing number of bins. More

importantly, if a very small bin is chosen, it can result in noisier

DCBC estimate, as very few vertex pairs will fall within each bin. In

the extreme case, there would either be no within- or between-

vertex pair in a bin, such that the bin could not be used for the dif-

ference calculation. For neocortical data projected to the fsLR-32k

template (van Essen et al., 2012) a bin width of 1 mm appears to

offer a good balance between bias, accuracy and computational

speed.

3.4 | DCBC evaluation for real data

Using a task-based data set (MDTB) and a resting-state data set

(HCP), we evaluated 15 commonly used group-level cortical

parcellations (Figure 4a; Table 1). These parcellations relied either on

anatomical criteria (cortical folding), task-evoked activation, or func-

tional resting-state connectivity. Two multi-modal parcellations

(Glasser et al., 2016) relied on a combination of anatomical and func-

tional features. Each of the parcellations was evaluated per hemi-

sphere and the global DCBC of a subject was then averaged across

hemispheres.

For the MDTB data set, the difference between the within-parcel

and between-parcel correlations across range of spatial distances (0–

35 mm) is shown in Figure 4c. While the difference increased with

increasing distance, the relative ordering of the parcellations was rela-

tively consistent: Independent of the exact spatial distance consid-

ered, the Power and the MDTB correlation appear to outperform the

other parcellations.
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For the HCP data set (Figure 4e), the difference between the

within-parcel and between-parcel correlation was substantially

smaller. This is mostly caused by the fact that the raw Pearson's corre-

lation of the time series (Figure 4d) were lower than the correlations

for the MDTB data set (Figure 1a,d). The correlations for the rs-fMRI

data also fell off more rapidly with increasing distance, reaching values

of r <0:1 for distances over 8mm (Figure 4d). The lower DCBC values

for this data set, therefore, are partly due the fact that correlations

between full fMRI time series are usually lower than correlations

between task-based activity estimates. For the HCP data set the

difference in correlations were relatively stable across the range of

spatial distances considered (<35mm).

To obtain a minimum-variance estimate of the correlation differ-

ence when averaging across spatial distances, we weighted the
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F IGURE 4 Evaluation on the real data sets. (a) The left hemisphere of 15 commonly used cortical parcellations and the multi-domain task
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resting-state data set
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difference curves with the parcellation-specific weighting function

(Figure 4b). This procedure is certainly justified if the differences

between correlation curves is stable across spatial distances. For

parcellation where the differences between within-parcel and

between-parcel correlations vary with distance, small biases may arise.

For example, we may expect for the MDTB data set could give a small

advantage to coarser parcellations. We will return to this issue in the

discussion.

3.5 | Resting-state group parcellations predict
task-based functional boundaries

We then calculated the average weighted DCBC across all

parcellation (Figure 5). The first insight is that the nine parcellations

that are based solely on functional resting state data (Arslan

et al., 2015; Baldassano et al., 2015; Gordon et al., 2016; Power

et al., 2011; Schaefer et al., 2018; Shen et al., 2013; Smith

et al., 2014; Yeo et al., 2011) predicted the functional boundaries in

the task-based data set substantially better than chance (Figure 5a).

For example, the within-parcel and between-parcel correlations for

the Yeo 17 parcellation (Figure 1d) differed by approximately 0.1

across spatial bins, reflected in an average DCBC value of 0.1020

(SE = 0.0053) across the 24 subjects. Other resting-state

parcellations also showed clear differences between the within-

parcel and between-parcel correlations, especially Power 2011

(DCBC = 0.1334, SE = 0.0085), Yeo 7 (DCBC = 0.1271,

SE = 0.0073), and Gordon 2016 (DCBC = 0.0876, SE = 0.0047).

This finding confirms that resting-state group parcellations generally

predict task-relevant functional boundaries significantly better than

chance (Tavor et al., 2016).

When evaluating these resting-state parcellations on resting state

data (see Figure 5b), we obtain consistent results. Even though the over-

all DCBCwas substantially lower than for the task-based data, the best-

performing parcellations were based on resting-state data, including the

Yeo 7 (DCBC = 0.0213, SE = 0.0021), Power (DCBC = 0.0261,

SE= 0.0025), andGordon (DCBC= 0.0236, SE= 0.0018) parcellations.

3.6 | Comparison to parcellations derived from the
evaluation data set

How well do these group-based resting-state parcellations predict

task-based functional boundaries, relative to what would be possible?

Given the inter-individual variability of boundaries, and the fact that

even individual boundaries are not perfectly sharp, there is an upper

limit to the highest achievable DCBC on our evaluation data set. To

obtain an idea of this “noise ceiling” (Nili et al., 2014), we derived a

set of clustering solutions from the MDTB data itself (see Section 2,

Figure 4a), spanning the range from 14 to 1000 parcels.

While we cannot determine the noise ceiling directly, we can

obtain a lower and upper performance estimate. For the lower esti-

mate, we derived the parcellation on 23 of the participants, and evalu-

ated it on the remaining, left-out participant. For the upper estimate,

we over-fitted the data by deriving and evaluating the parcellation on

all 24 participants. The gap between these two performance curves
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indicates how much of the performance advantage of the MDTB

parcellation is due to the over-fitting to the particular set of subjects.

As expected, the MDTB-based parcellations (gray area in

Figure 5a) generally outperformed other group parcellations on this

data set. Nonetheless, some existing resting-state parcellations

showed performance very close or even slightly higher than the

MDTB parcellation (Power et al., 2011; Yeo et al., 2011).

When evaluated the task-based MDTB parcellations on the

resting-state data (Figure 5b), it performed remarkably well, and was

only outperformed by three resting-state parcellations. This again

demonstrates the consistency of functional boundaries across task-

and resting-state data.

3.7 | Anatomical parcellations do not predict task-
based functional boundaries

We then evaluated three commonly used anatomical group

parcellations of the human neocortex: The Desikan parcellation

(Desikan et al., 2006), the Dextrieux atlas (Fischl et al., 2004), and the

Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer

et al., 2002). On the task-based data (Figure 5a), the averaged correla-

tion between any vertex pairs within a predefined anatomical parcel

was not much greater than the correlation between vertex pairs across

anatomical boundaries, resulting in very low DCBC values (Dextrieux:

DCBC = 0.0112, SE = 0.0022; AAL: DCBC = �0.0066, SE = 0.002).

The Desikan parcellation (DCBC = �0.0215, SE = 0.0028) even

showed significantly negative DCBC values across the 24 subjects.

These parcellations, based on the macroanatomical folding structure of

the neocortex, therefore define boundaries that are systematically mis-

alignedwith the functional subdivisions in task-evoked activity profiles.

A similar pattern emerged when anatomical parcellation were

evaluated on resting-state data. All anatomical parcellations showed

relatively low performance (average DCBC = 0.0066). In contrast to

the task-based evaluation, the DCBC of all three parcellations was

significantly positive, when tested against zero (all

t23 > 9:4466,p<2:21�10�9), implying that they aligned with the

boundaries of the resting-state networks slightly better than chance.

3.8 | Multi-modal parcellations do not perform
better than resting-state parcellations

We also applied DCBC evaluation to two multi-modal parcellations

(Fan et al., 2016; Glasser et al., 2016) to determine whether combining

anatomical and functional data is superior to unimodal parcellations.

The Glasser parcellation had a higher DCBC score (DCBC = 0.0483,

SE = 0.0038) as compared to the Fan parcellation (DCBC = 0.0275,

SE = 0.0019). However, both were lower than the average DCBC

across the resting-state parcellations (0.0766). It therefore appears that

the combination of multiple modalities does not systematically lead to

a better prediction of task-relevant function boundaries than

parcellations that are derived on resting-state data alone.

3.9 | Comparison across different spatial
resolutions

For simulated random functional maps, we have shown that the

expected value of the DCBC is zero, no matter how fine the

parcellation (Figure 3b). In contrast, the value of the global Homoge-

neity and Silhouette coefficient increases for finer parcellations even

for random maps (Figure 3a).

This bias can also be observed for real parcellations. The value of

the global Homogeneity (Figure 5c) and Silhouette coefficient

(Figure 5d) when calculated on the task-based evaluation data set

clearly increases for finer parcellations, whereas there is no strong

relationship between the DCBC and the number of parcels

(Figure 5a,b).

In this context, the set of Schaefer 2018 parcellations (Schaefer

et al., 2018) is especially interesting, as it provides a nested set of sub-

divisions with an increasing number of parcels, all aligned with Yeo

7 or 17 networks (we use the one aligned with Yeo 7 networks in the

experiment). To statistically evaluate the change in evaluation metric

with parcel size, we conducted a repeated-measures analysis of vari-

ance (ANOVA) across the 10 Schaefer parcellations, ranging from

100 to 1000 parcels. As expected, both the Homogeneity

(F9,207 ¼1730:6, p¼1:55�10�189) and the Silhouette coefficient

(F9,207 ¼667:6, p¼1:11�10�147) clearly showed significant increases

for an increasing number of parcels. Given that such increases were

also found for random functional maps and parcellations, it is not clear

whether the finer parcellations identified functional boundaries better,

the same, or worse than coarser parcellations.

In contrast, the unbiased DCBC shows that the Schaefer

parcellation reaches the best performance around 200 parcels, and

then slowly declines for finer parcellations (Figure 5a). The ANOVA

showed a significant change with number of parcels

(F9,207 ¼189:4576, p¼8:19�10�95). Indeed, for the finest

parcellation (1000 parcels), performance did not differ significantly

from chance (t23 ¼1:0253, p¼0:3159). One possible reason for this is

that when defining more than 200 functional parcels, the new bound-

aries do not consistently predict discontinuities in the functional orga-

nization at the group level anymore.

In summary, the application of the novel DCBC criterion to

known cortical parcellations allowed for the following conclusions:

(1) anatomical parcellations based on cortical folding do not align with

functional boundaries in the neocortex; (2) resting-state parcellations

predict task-relevant functional boundaries, outperforming other

types of cortical parcellations; (3) multi-modal parcellations did not

improve performance as compared to pure resting-state parcellations.

3.10 | Open-source toolbox/data support
evaluation

The code for DCBC evaluation is published as an open-source toolbox

written in Python at Zhi and Diedrichsen (2021). The package also

contains the pre-processed contrast maps for all task conditions of
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the MDTB data set (n = 24 subjects), sampled to the standard fsLR-

32k template.

4 | DISCUSSION

In this study, we introduce a novel evaluation criterion for brain

parcellations, the DCBC. The method takes into account the spatial

smoothness of the data by controlling the distance of the vertex pairs

when comparing within-parcel and between-parcel correlations. We

used an earlier form of this approach for volume-based data (using

the Euclidean distance instead of a surface-based distance) to evalu-

ate cerebellar parcellations (King et al., 2019). Here, we further

improve the approach by adaptively weighting over the spatial dis-

tance bins, resulting in a global measure with low bias and variance.

Our evaluation on simulated smooth data shows that the new crite-

rion overcomes the size- and shape-dependent bias of other

homogeneity-type evaluation criteria (Craddock et al., 2012;

Rousseeuw, 1987). The advantage of the DCBC is twofold: (1) it

enables a direct comparison between group brain parcellations that

have different spatial resolutions, and (2) it provides a direct test of

how well a parcellation subdivides the brain into homogeneous

regions than expected by chance.

One important caveat is that DCBC only removes the bias

completely if the difference between within- and between correla-

tions is stable across spatial distances. This is because different

parcellations use different weighting across spatial distances

(Figure 4b). There are a number of practical solutions to ameliorate

this problem. First, by choosing a maximal distance for vertex dis-

tances (here 35 mm) the evaluation is constrained to be relatively local

in all cases. While future users of the method may want to choose a

different range of spatial distances, we believe that 35 mm provides a

good compromise for cortical parcellations. Second, it is always useful

to plot the DCBC as a function of the spatial distance before averag-

ing (see King et al. [2019], Figure 4c,e) to investigate whether differ-

ent parcellations may behave differently across the distances

considered. Finally, if the DCBC varies substantially across spatial dis-

tances, one could use a common, averaged weighting for all

parcellations, or simply decide on a more specific set of spatial dis-

tances. Nonetheless, the biases from differential weighting were rela-

tively small for our evaluation data sets - and the DCBC successfully

removed the main biasing influence of parcel size (Figure 5a

vs. Figure 5c,d).

We used the DCBC to evaluate a range of existing cortical

surface-based parcellations in their ability to predict functional bound-

aries on task-based and resting-state data. We found that the

parcellations derived from resting-state fMRI data largely succeed in

predicting task-evoked activity boundaries, replicating earlier work

(King et al., 2019; Tavor et al., 2016). These results demonstrate again

the practical utility of resting state data in identifying brain networks

that work together during active task performance. Even though the

correlation structure across the cortex does clearly change in a task-

dependent fashion (Hasson et al., 2009; Salehi, Greene, et al., 2020;

Salehi, Karbasi, et al., 2020), our results emphasize the existence of a

basic scaffold that determines functional specialization across a wide

range of tasks, as well as during rest. In the opposite direction,

parcellations derived from a rich task-based battery (MDTB) also

achieved relatively high DCBC values when evaluated on rs-fMRI

data, further confirming that structure of neural fluctuations during

rest aligns with co-activation across tasks.

In contrast, anatomical parcellations (Desikan et al., 2006; Fischl

et al., 2004; Tzourio-Mazoyer et al., 2002) did not perform better than

chance to predict functional boundaries in the task-based data, and

only slightly better than random for rs-fMRI data. The Desikan

parcellation even showed a negative DCBC score on the MDTB data

set. This finding corroborates previous work that shows a mis-

alignment between macroanatomical folding structure and functional

boundaries in the neocortex (Arslan et al., 2018) and the cerebellum

(King et al., 2019). An inspection of the differences between func-

tional and anatomical parcellations (Figure 4a) suggest an explanation

of why this may be the case. Cortical motor areas, for example, are

subdivided in all anatomical parcellations along the central sulcus,

which separates the primary motor cortex (M1) from primary somato-

sensory cortex (S1). In this case, the macro-anatomical folding roughly

aligns with the cyto-architectonic boundaries between the two

regions (Amunts & Zilles, 2015; Brodmann, 1909; Fischl et al., 2008).

In contrast, functional parcellations typically separate the motor

regions along a ventral-dorsal axis, that is, into foot, hand and mouth

regions. Within each body zone, these parcellations leave M1, S1, and

premotor regions in the same parcel, likely reflecting the high

functional correlations between regions responsible for the control

of a body part. Similar observations can be made in the visual system -

with functional parcellations separating areas associated with foveal

and peripheral vision, rather than subdividing known cytoarchitectonic

regions (V1, V2, V3). This anti-correlation of functional and anatomical

boundaries partly explains why the Desikan atlas showed a signifi-

cantly negative DCBC.

It is therefore also unsurprising that multi-modal parcellations

that combine functional and anatomical criteria did not outperform

the pure resting-state parcellations. For example, Glasser et al. (2016)

used resting-state connectivity, intra-cortical myelin signal, and corti-

cal folding, thereby improving alignment with cytoarchitectonically

defined areas. The inclusion of anatomical information likely also led

to the division of functionally correlated brain regions. This does not

imply that cytoarchitectonic parcellations of the neocortex are of

lesser value. Instead, our finding simply illustrates that the goal of iso-

lating anatomically consistently organized regions is unrelated to, and

in some cases conflicts with, the goal of defining brain regions with

homogeneous functional profiles.

Therefore, the evaluation results in our study would have a differ-

ent look if we used anatomical data rather than task-evoked activity

profiles as an evaluation data set. It is worth stressing, however, that

the DCBC as a method to control for the influence of spatial smooth-

ness can be used with any suitable data set. For instance, anatomical

data, such as myelin measures (Tozer et al., 2005) or anatomical

connectivity fingerprints derived from diffusion data (Behrens
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et al., 2003; Johansen-Berg et al., 2004) could be used to evaluate

how well parcellations isolate anatomically homogeneous regions.

In the current study, we focused on task-evoked and resting-state

fMRI data as evaluation targets. While the two data sets led to a simi-

lar pattern of results when comparing parcellations, the overall DCBC

values for rs-fMRI data were substantially lower that the DCBC values

for task-based fMRI data. This is likely due to the lower signal-to-

noise level for fMRI time-series, as compared to task activity

estimates, which are averaged over 16 runs. Note that the high corre-

lation for vertex pairs with small spatial distances ( < 5 mm) are likely

driven by the interpolation across neighboring voxels (motion realign-

ment, surface mapping, minimal smoothing) inherent in both pre-

processing pipelines. One advantage of evaluating parcellations on

task-activity data is the obvious face validity of the results: If the goal

of the brain parcellation is to define regions with a homogeneous

response across a wide range of tasks and mental states, then it

should be best to evaluate the parcellation that way, rather than rely-

ing on the possibly more restricted mental states during rest.

A possible extension of the current work is to develop a

parcellation algorithm that explicitly optimizes the DCBC. Given the

nature of the DCBC, such an algorithm would have to be a local,

rather than a global parcellation algorithm (Schaefer et al., 2018), such

as a region-growing algorithm proposed in Gordon et al. (2016) or

Salehi, Greene, et al. (2020). The algorithm to be proposed would very

likely improve the DCBC beyond what was achieved by spectral clus-

tering, which does not consider the spatial arrangement of the

vertices.

Even more substantial improvement in the quality of the

parcellations can be expected when moving from a group to an indi-

vidual parcellation. Recent results have shown that the inter-individual

differences in the exact spatial location of functional boundaries are

substantial (King et al., 2019; Salehi, Karbasi, et al., 2020). Of course,

individual parcellations can suffer from having too little individual data

to reliably establish the parcellation. Optimal ways of fusing group

and individual-level data (Buckner et al., 2013; Kong et al., 2019),

which also makes parcels comparable across subjects (Salehi, Greene,

et al., 2020) clearly provides a promising future addition to the neuro-

imaging toolkit. In these efforts, the DCBC can provide a bias-free and

reliable evaluation criterion that can be calculated without computa-

tionally expensive simulation studies.

When developing, using, and evaluating brain parcellations, it is of

course important to consider the much more fundamental issue of

whether this form of representation (Bijsterbosch et al., 2020) is a

valid description of brain organization. In our mind, it remains an open

question to what degree segmenting the brain into discrete regions

with hard boundaries (van Essen & Glasser, 2018) is a useful descrip-

tion at all, or to what degree this functional organization is better

explained through a set of smooth gradients (Dohmatob et al., 2021;

Guell et al., 2018; Huntenburg et al., 2018; Tononi et al., 1994). Either

way, we believe that the DCBC evaluation provides a useful tool to

advance this debate. If brain functions only varied in smooth gradients

across the cortical surface, the DCBC should not be systematically

above zero, at least not when evaluated on a novel set of tasks.

However, most resting-state parcellations identified boundaries that

also aligned with more rapid changes in the active functional

response. Thus, as for the human cerebellum (King et al., 2019), this

demonstrates the existence of task-invariant functional boundaries on

the cortical surface. On the other hand, not all boundaries are equally

strong, and not all boundaries are equally stable across tasks. The abil-

ity of DCBC to evaluate individual boundaries, as done in King

et al. (2019), therefore provides an important tool to evaluate both

functional segregations, as well as continuous functional integration

(Eickhoff et al., 2018) in a region-specific way.

A Python-based software toolbox for the evaluation of surface-

based parcellations on the MDTB activity maps is made publicly avail-

able at Zhi and Diedrichsen (2021). The toolbox is also designed to

allow users to evaluate parcellations on other types of data. We hope

that the new evaluation criterion will support and facilitate

researchers in understanding the functional compartmentalization of

the human brain.
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