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Abstract

Background: Transcriptional activator-like (TAL) effectors, formerly known as the AvrBs3/PthA protein family, are
DNA-binding effectors broadly found in Xanthomonas spp. that transactivate host genes upon injection via the
bacterial type three-secretion system. Biologically relevant targets of TAL effectors, i.e. host genes whose induction
is vital to establish a compatible interaction, have been reported for xanthomonads that colonize rice and pepper;
however, citrus genes modulated by the TAL effectors PthA"s" and PthC's" of the citrus canker bacteria
Xanthomonas citri (Xc) and Xanthomonas aurantifolii pathotype C (XaC), respectively, are poorly characterized.

Of particular interest, XaC causes canker disease in its host lemon (Citrus aurantifolia), but triggers a defense
response in sweet orange.

Results: Based on, 1) the TAL effector-DNA binding code, 2) gene expression data of Xc and XaC-infiltrated sweet
orange leaves, and 3) citrus hypocotyls transformed with PthA2, PthA4 or PthC1, we have identified a collection of
Citrus sinensis genes potentially targeted by Xc and XaC TAL effectors. Our results suggest that similar with other
strains of Xanthomonas TAL effectors, PthA2 and PthA4, and PthCT to some extent, functionally converge.

In particular, towards induction of genes involved in the auxin and gibberellin synthesis and response, cell division,
and defense response. We also present evidence indicating that the TAL effectors act as transcriptional repressors
and that the best scoring predicted DNA targets of PthA"s” and PthC"s” in citrus promoters predominantly overlap
with or localize near to TATA boxes of core promoters, supporting the idea that TAL effectors interact with the host
basal transcriptional machinery to recruit the RNA pol Il and start transcription.

Conclusions: The identification of PthA“s” and PthC"s" targets, such as the LOB (LATERAL ORGAN BOUNDARY) and
CCNBS genes that we report here, is key for the understanding of the canker symptoms development during host
susceptibility, or the defenses of sweet orange against the canker bacteria. We have narrowed down candidate
targets to a few, which pointed out the host metabolic pathways explored by the pathogens.
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Background

Transcriptional activator-like (TAL) effectors of Xantho-
monas spp. had been featured as central determinants of
both bacterial pathogenicity and avirulence in numerous
plant species or cultivars [1-6]. However, it was not until
recently that the biochemical function of TAL effectors
as transcriptional regulators was discovered [6-13].

The tridimensional structure of TAL effectors showed
that these proteins are distinct from any other bacterial
effectors that are targeted to the interior of the host cell
by the type-III secretion system [14-17]. TAL effectors
striking signature is made by the polymorphisms in po-
sitions 12-13"™ of the 33-34 amino acids tandem repeats,
referred as repeat-variable diresidues (RVDs), which com-
prise the DNA-binding domain of the effector [12,13].
The consecutive repeats wrap around the DNA double
helix, accommodating the RVDs adjacent to the target
DNA bases in a one-to-one RVD-DNA base fashion,
which are stabilized by hydrogen bonds and/or Wan-der
Waals forces between the 13™ RVD residue and the DNA
base [15-17]. These TAL effector-targeted sequences have
been initially called UPT (up-regulated by TAL effector)
boxes, and later more broadly, Effector Binding Elements
(EBEs) [6,9]. The discovery of the TAL effector code has
provided an invaluable tool for genome engineering by
user-designed TAL effectors fused to catalytic domains,
or designer TAL effectors to activate gene expression
and explore their function during bacterial infection
processes [18-20].

Based on host-range, Xanthomonas citri strains belong
into different pathotypes being the Asian group A the
most aggressive that exhibit wide-host range. Strains from
groups B and C form a phylogenetically distinct clade
originated in South America that exhibit limited host
range [4,21]. The TAL effectors identified in X. citri strains
were designated PthA“s”, PthB“s” and PthC"s”, and despite
they are inherent in pathogenicity, the corresponding host
gene targets remain uncharacterized [2,4,21-23]. Interest-
ingly, a pioneering study showed that pathotypes A, B and
C carry at least one isofunctional PthA, PthB or PthC ef-
fector of 17.5 repeat domains, which is essentially required
to elicit hyperplastic canker lesions on citrus [4,21]. On
the other hand, none of the TAL effectors from the
limited-host-range strains (pathotypes B and C) was able
to trigger the hypersensitive response (HR) observed in
grapefruit plants when expressed heterologously in other
strain, suggesting that TAL effectors from citrus canker
pathogens do not limit host range but rather contribute to
virulence associated functions [4,21].

Recent reports have focused on the computational-
based prediction of EBEs in plant genomes to identify the
putative host gene targets of TAL effectors [13,24,25]. For
citrus, the in silico analyses to predict PthA“s” targets in
sweet orange provided a set of candidates but additional
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experimental evidence of, e.g. gene expression, is still
needed to validate such predictions [24]. Also, those
studies did not include PthB“s” or PthC“s” effectors
from the restricted host-range strains like Xanthomonas
aurantifolii pathotype C (XaC), which in turn trigger a
defense response in sweet oranges. Such analyses could
provide molecular candidates that regulate the citrus
defense response against Xanthomonas spp. [24,26]. In
other pathosystems, the identification of TAL effector-
induced genes of X. vesicatoria and X. oryzae has revealed
novel virulence mechanisms of plant bacteria mediated
by the targeted transcriptional induction of key regula-
tors of host susceptibility [3,6,8,11]. Therefore, identifica-
tion of TAL effector targeted factors that regulate citrus
canker susceptibility is a milestone to understand and im-
prove disease resistance.

Using microarray analyses, we have previously shown
that the genes up-regulated by XaC in sweet orange leaves
are involved in basal defense. In contrast, X. citri (Xc) in-
duced genes associated with cell division and growth at
the beginning of the infection process [26]. We also found
that many of the rapidly Xc-induced genes, including cel-
lulases, expansins and other cell-wall remodeling proteins,
are co-regulated by auxin and gibberellin, hormones that
are required for canker development [27] and control cell
growth and expansion in other plant species [28]. TAL ef-
fectors not only play a central role as major determinants
of host susceptibility, but are also capable of eliciting a re-
sistance response when targeting HR-executor genes
[3,6-8,29,30]. Based on these evidences, we hypothesized
that TAL effectors from Xc and XaC are directly regulat-
ing the transcription of sweet orange genes involved in
canker formation and defense response, respectively.

In this study, we present a combination of bioinformat-
ics, microarray analyses, and molecular assays to identify
sweet orange genes targeted by PthA2, PthA4 and PthCl
proteins. We show that the ectopic expression of PthA2,
PthA4 or PthCl in citrus epicotyls resulted in the up-
regulation of a group of genes involved in auxin and gib-
berellin response, cell growth, and defense response. Our
in silico studies using the TAL effector code, predicted
many EBEs for the PthA“s” and/or PthC effectors in the
promoter regions of genes induced in epicotyls expressing
the corresponding TAL effector. Interestingly, we noticed
that the EBEs overlap with, or localize close to TATA box
elements of the promoters. In addition, despite the differ-
ent RVD composition between PthA“s” and PthC“s”, our
results indicate a targeting of functionally-related genes,
which further support a model where TAL effectors dis-
play the functional convergence by selective evolution as
general TATA-binding proteins [24,25]. Finally, we present
experimental evidence suggesting that TAL effectors from
citrus canker pathogens also function as transcriptional
repressors.
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Results

Transcriptional changes in sweet orange triggered by Xc
TAL effectors

By extensive gene expression analyses, we had identified
numerous genes up-regulated during the canker disease
development of sweet orange leaves infiltrated with Xc
[26]. To test whether any of those genes are direct targets
of TAL effectors, we have undertaken two complementary
approaches. First, we performed microarrays assays of or-
ange leaves after bacterial infiltration in the presence or
absence of the protein synthesis inhibitor, cycloheximide
(Ch), a strategy that has early pinpointed AvrBs3 targets in
pepper plants [10,31]. We found that many of the genes
induced by Xc at 6 and/or 48 h after infiltration [26] are
also induced by Xc in the presence of Ch (Additional
file 1), thus indicating that Xc elicit major transcrip-
tional reprograming independent of protein synthesis.
Several of these differentially expressed genes are likely
involved in terpene and gibberellin synthesis, ethylene
production and signaling, cell-wall remodeling, cell div-
ision and defense responses (Additional file 1). In par-
ticular, we noticed that the ethylene synthesis pathway
represented by orthologs of ACC synthase, ACC oxidase
and AP2 factor genes, which play roles in cell wall soften-
ing [32-34], appears to be a primary mechanism elicited in
the host after Xc sensing. On the other hand, defense re-
sponse genes encoding chitinases, WRKY factors and
pathogenesis-related (PR) proteins are also rapidly induced
(Additional file 1).

Second, we transiently expressed the Xc TAL effectors
PthA2 and PthA4 in sweet orange epicotyls and com-
pared the transcriptional changes relative to epicotyls
transformed with GUS as a control (Figure 1A). We se-
lected PthA2 and PthA4 because they form heterodimers
and interact with several citrus proteins implicated in
transcriptional control [23,35-37]. By inspecting the RVD
sequences of PthA2 and PthA4 (Figure 1B), we presumed
that they would target common host genes. Consistent
with this observation, we found that the transient expres-
sion of PthA2 or PthA4 resulted in the up-regulation of a
similar group of genes that are functionally related to both
defense and disease development (Additional file 2). The
genes associated with canker development that were most
strongly induced by both PthA2 and PthA4, encode cell-
wall synthesis and remodeling enzymes, including a glyco-
syl transferase ortholog of upal5 (CV709535) that is read-
ily up-regulated by AvrBs3 in pepper plants [10]. In
addition, the defense response induced genes encode chiti-
nases, PR proteins and an ACC synthase, which are also
up-regulated by Xc in the presence of Ch, thus providing
initial evidence that they might be functional targets of
PthA2 and PthA4 (Additional files 1 and 2). Notably, nu-
merous genes up-regulated in response to PthA2 or PthA4
are functionally related to auxin and gibberellin synthesis
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and signaling, cell division and growth, and defense re-
sponses (Additional file 2). In particular, we noticed a
strong PthA4-dependent induction of genes encoding cell
division and expansion proteins including kinesins, tubu-
lins, histones, ribosomal proteins, and orthologs of dem
(defective embryo and meristems) and LOB (lateral organ
boundary) (Additional file 2). Besides, the transcriptional
profile of epicotyls expressing PthA4 is remarkably similar
to that of citrus leaves infiltrated with Xc 48 h post-
inoculation [26], as shown by the up-regulation of a large
number of genes related to auxin synthesis, mobilization,
and signaling, including two homologs of the auxin influx
carrier protein AUX1 (CV706455, CX053885) [38-40] (see
Venn diagram in Additional file 2). In contrast, epicotyls
expressing PthA2 showed the up-regulation of many genes
implicated in cell-wall remodeling and gibberellin synthe-
sis and signaling, including orthologs of upa6 and upa7
(alpha-expansins), and upa22 (GA-like protein), respect-
ively, which are putative targets of AvrBs3 in pepper [10,31]
(Additional file 2). PthA2 also induced several genes encod-
ing retrotransposons (Additional file 2), which were also
reported as off-targets of AvrXa7 in rice [25].

Gene onthology (GO) enrichment analysis showed that
while PthA2 modulate several genes categorized in cell-
wall organization and RNA-dependent DNA replication
and integration, PthA4 affected the expression of genes
grouped under the microtubule-based movement and cell
growth category. In addition, the GO analysis showed that
PthA2 and PthA4 commonly regulate a large number of
genes involved in carbohydrate (sucrose, glucan and glyco-
side) metabolism, and cell-wall organization and biogen-
esis (Figure 2 and Additional file 2). These evidences
support the functional convergence between Xc TAL ef-
fectors, and is in agreement with recent reports of X.
oryzae TAL effectors [24,25]. In addition, the common
targeting of PthA2 and PthA4 is a strong indicator that
they may have additive or even synergistic roles for activa-
tion of host genes required for citrus canker susceptibility.

Transcriptional changes in sweet orange triggered by
PthC1, a TAL effector of X. aurantifolii

We have shown previously that XaC elicit an HR-type
response in sweet orange leaves, which is characterized
by the up-regulation of multiple defense-related genes
[26]. To examine whether XaC TAL effectors are involved
in the host transcriptional defense response, we cloned
two TAL effectors from XaC strain ICMP 8354, desig-
nated PthC1 and PthC2. The essential differences between
XaC TAL effectors occur in the number of repeat domains
and the nature of the repeat variable diresidues (RVDs),
which altogether form the DNA-binding domain of the
protein [12,13]. PthC1 has 18 RVDs or 17.5 repeat do-
mains, and PthC2 is shorter with only 15 RVDs or 14.5
repeat domains (Figure 1B). Despite the overall structural
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Figure 1 Heterologous expression in citrus epicotyls, RVD
sequences and phylogeny of TAL effectors PthA2, PthA4 and
PthC1. (A) Western blot of protein extracts from sweet orange
epicotyls transfected with A. tumefaciens EHA105 carrying pBl121-
35S:pthA2 (PthA2), pBI121-35S:pthA4 (PthA4), pBI121-35S:pthCT
(PthC1), or the native plasmid pBI121-35S:uidA (GUS) for control of
TAL effectors expression. Total protein from epicotyls expressing
PthA2, PthA4 or, PthC1 proteins (~116 kDa) were separated by
electrophoresis on 10% SDS-polyacrylamide gels, transferred to PVDF
membranes, and detected with anti-PthA2 serum (left panel). The
expression of uidA gene was assayed histochemically for 3
glucuronidase (GUS) activity using 5-bromo-4-chloro-3-indolyl-3-D-
glucuronic acid (X-Gluc) as substrate (right panel). (B) RVD sequence
composition of X citri isolate 306 TAL effectors PthAT, PthA2, PthA3
and PthA4, and PthC1 and PthC2 from X aurantifolii ICMP 8435,
aligned with the corresponding predicted DNA targets. According to
the TAL effector code, only the first and second bases associated
with higher frequency for each RVD are represented. (C) Phylogenetic
tree of TAL effectors from different Xanthomonas strains that cause
citrus canker disease and blight or leaf streak of rice. The maximum
likelihood analysis was built with the PhyML tool using a bootstrapping
procedure of 500 repetitions. Only the C-terminal domains (~278
residues) of TAL effectors from Xanthomonas spp. were used for the
analysis. The four PthA“s” of Xc strain 306 belong into a group close
to other TAL effectors from pathotype A strains; meanwhile, PthCs
and PthBs from X aurantifolii integrate a distinct group of pathotypes B
and C strains, respectively. The tree is displayed with the TAL effectors
from X oryzae strains rooted as outgroup. Amino acid sequences were
aligned using MUSCLE and analyzed on phylogenetic pipeline of
Phylogeny.fr [41].

similarities with PthA“s” of Xc, PthCl and PthC2 are
phylogenetically more closely related to PthB“s” and
PthC"s” from other pathotype B and C strains, respect-
ively (Figure 1C), that are distinguished by their limited
host range [4,21]. In terms of the RVD composition,
PthC1 appears also more similar to PthB and PthC of
other citrus canker strains reported to induce weak disease
symptoms or hypersensitive response in sweet oranges
[4,21]. Despite the fact that PthC from a group C strain
was not required for the HR elicited on grapefruit [4], we
decided to test whether PthC1 induce the expression
of defense-related genes in sweet orange, as we observed
during XaC infection [26]. Therefore, we transfected PthC1
in sweet orange epicotyls and compared the transcriptional
changes relative to epicotyls expressing PthA2, PthA4, or
the GUS gene as reference (Figure 1A). We found that
PthCl1 elicit not only a different but also an opposite effect
of PthA2 and PthA4, because its expression resulted in a
general down regulation of genes involved in auxin and
gibberellin synthesis and signaling, cell-wall remodeling,
cell division, and defense responses (Additional file 3).
The fact that auxin and gibberellin promote initial canker
pustule formations [27] indicate that PthCl, in contrast to
PthA2 and PthA4, do not contribute to canker symptoms
in sweet orange. Nevertheless, we found Aux/IAA and
bZip orthologous genes repressed by PthCl (CV713157,
CV704184, CK701644, CN182471), which function as
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Figure 2 GO enrichment analysis for PthA2 and/or PthA4-regulated genes. GO enrichment analysis performed with agriGO [42], showing
that PthA2 and PthA4 modulate several genes in sweet orange associated with canker development. Despite the fact that PthA2 and PthA4
regulate distinct, but related sets of genes implicated in cell-wall remodeling, cell division and growth, they both altered group of genes involved
in carbohydrate metabolism and cell-wall organization and biogenesis. The identity of the enriched genes can be found in Additional file 2.

negative regulators of the auxin and gibberellin signal-
ing pathways affecting plant growth and development
[43-45]. In addition, the down-regulation of genes en-
coding GH3-like enzymes (CF837666, CF837443) [46]
and indole-3-acetic acid amido synthase (CV714093)
suggest that PthC1 operates to increase the active pools
of free auxin. On the other hand, we found no obvious
HR-like executor among the genes up-regulated by PthC1
in sweet orange epicotyls (Additional file 3), although
an AP2-domain transcription factor orthologous of the
tomato Pti4 [47] might be an interesting candidate
(Additional file 3).

Together, these data show that PthCl, in contrast to
PthA2 and PthA4, regulate a different set of genes in sweet
orange. Although these genes may not significantly favor
host susceptibility, they do not appear to be elicitors of an
HR response either. This idea is consistent with the obser-
vation that a knockout mutation of pthC in a group C
strain resulted in loss of pathogenicity on lime, but still
triggers the HR response on grapefruit [4].

Computational prediction of EBEs for PthA and PthC in
citrus genomes

The public release of the Citrus sinensis and Citrus
clementina genomes together with the TAL effector
code of DNA binding [12,13], provides a suitable model
to investigate in silico the TAL effector-targeted genes in
citrus. Because the computational tools available for TAL
effector targets prediction do not yet support analyses of

the citrus genomes [24,25,48], we designed a position
weight matrix based on TAL effector-DNA association
frequencies to predict and score EBEs for Xc and XaC
TAL effectors in citrus gene promoters (Additional file 4).
Putative EBEs for the four PthA“s” and the 2 PthC“s” of
strains Xc 306 and XaC ICMP 8354, respectively, were
identified in nearly one thousand promoters. We then se-
lected the top one hundred best scoring C. sinensis pro-
moters ranging from 85 to 17.4 for further analysis
(Additional file 5). In order to test the performance of our
computational matrix analysis, we used the target finder
function of the TAL Effector-Nucleotide Targeter 2.0
(TALE-NT) tools [48] to search for PthA“s” and PthC“s”
EBEs in the top twenty best scoring promoters. We re-
trieved virtually the same EBE predictions with equivalent
score values [data not shown], indicating a similar achieve-
ment between our prediction method and the TALE-NT
tools.

Next, we functionally categorized our candidates based
on sequence homology to plant, yeast, or animal gene
orthologs with known biological function (Additional
file 5). In addition to genes implicated in auxin and gib-
berellin synthesis and signaling, and in cell-wall remod-
eling, we found a substantial number of genes involved
in cell division and morphogenesis, transcription regu-
lation and defense (Additional file 5). Although most of
our best scoring promoters do not correspond with the
genes identified in our microarray analyses (see below),
these data seem to be meaningful because the predicted
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candidates belong to the same functional categories of
those up-regulated in citrus epicotyls in response to
PthA/PthC expression or in Xc-infiltrated leaves in the
presence of Ch (Additional files 1, 2, 3). Remarkably, we
predicted two PthCl1 targets, orangel.1g035902m.g and
orangel.1g035488m.g (Additional file 5), with a strong
similarity to the Bs3 gene of pepper, which is an HR
executor transcriptionally activated by AvrBs3 of X.
vesicatoria [7]. We also found that several PthA“s” puta-
tive targets are involved in abscisic acid (ABA) synthesis,
signaling and response, particularly for PthA1 (Additional
file 5). Interestingly, some of these genes, including
an ABAS8-hydroxilase (orangel.1g012199m.g), ABI3 (oran-
gel.1g038867m.g) and ABI3-interacting protein-1 (oran-
gel.1g044737m.g), also participate in the cross-talk between
auxin and gibberellin, and in plant growth and develop-
ment [49-51] (Additional file 5).

Experimental validation of putative gene targets of PthA
and PthC effectors

Although computational identification of TAL effector-
targeted genes have been recently conducted for TAL
effectors of X. oryzae and Xc in their corresponding
host genomes, the studies for Xc are largely deficient on
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experimental validation for novel candidate targets [24,25].
Nevertheless, the combination of in silico predictions with
gene expression data, demonstrated to be a suitable strat-
egy to identify new biologically relevant TAL effector tar-
gets [52]. Thus, in order to verify our in silico target
predictions, we used the whole set of microarray data in
our hands to search for experimental evidence of gene
regulation of our predicted TAL effector targets. We
found that nearly 20% and 3% of the computational-
predicted targets were up and down-regulated, respect-
ively, indicating that TAL effectors not only induce but
may ultimately repress the expression of host predicted
targets (Additional files 1, 2, 3 and 5). Using a cross-check
criteria we were able to select targets that 1) are differen-
tially expressed in epicotyls expressing the corresponding
TAL effector, 2) are also differentially expressed after infil-
tration of Xc in the presence of Ch, and 3) are functionally
associated with the mechanisms of canker development or
defense response (Table 1).

To verify these data, we first confirmed the TAL effector
protein accumulation in epicotyls transiently expressing
pthA2, pthA4 or pthCl (Figure 1A), and subsequently ex-
amined the mRNA levels of the predicted targets by quan-
titative RT-PCR on the transgenic tissues. Totally, sixteen

Table 1 Predicted TAL effector targeted genes in C. sinensis that are transcriptionally regulated by Xc in the presence

of Ch or, by the heterologous expression of the TAL effector

Microarray data (fold change)

Sweet orange genes with Homologous gene description

Functional category References

PthA2 binding sites
PthA2 x GUS (4.0) orange1.1g032466m.g
orange1.1g031880m.g
orange1.1g001197m.g
PthA2 x GUS (-3.1) orange1.1g023431mg
orange1.1g040761m.g
PthA2 x GUS (-3.1) orange1.1g037640m.g
PthA4 binding sites
Xc+Ch x Ch (3.8)
PthA4 x GUS (11.4)

PthA4 x GUS (5.2)

orange1.1g024897m.g
orange1.1g017949m.g
orange1.1g018649m.g
orange1.1g037138m.g
PthC1 binding sites
orangel.1g041266m.g
orange1.1g010756m.g
orange1.1g039072m.g
orange1.1g042296m.g
Multiple EBEs

PthA2, PthA4, PthC1
orange1.1g046669m.g
PthA4, PthC1

Xc+Ch x Ch (88) orange1.1g026556m.g

Aspen LOB domain 1 (LOBT1)

Pepper UPA22 (UPA22) GA response [10,31]
Tobacco rac-like GTPase 1 (RAC) Auxin response [53]
Rat transcription activator BRG1 (BRGT1) Cell growth [54]
Xyloglucan endotransglucosylase (XET) Cell growth [55]
Castor bean LOB domain protein (LOB2) Defense [56]
Tobacco UDP-glucosyltransferase (UDPGT) Defense [57]
Tobacco 14-3-3 protein (14-3-3) Cell growth [58-60]
Citrus limetta dioxygenase (DIOX) Cell growth [61,62]
Tobacco cysteine proteinase (CP) Defense [63,64]
C. trifoliata NBS-LRR protein (CCNBST) Defense [65]
Tomato self pruning-interacting protein 1 (SIP1)  Cell growth [66]
Potato Ca*>-dependent protein kinase (CDPK)  Cell growth [67]
Potato CC-NBS-LRR protein (CCNBS2) Defense [68]
Sunflower CC-NBS-LRR protein (CCNBS3) Defense [69]
Tobacco Avr9/Cf9 elicited protein 146 (AE146) Defense [70]

Cell growth [71]
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genes implicated in symptom development or defense re-
sponse, were selected for target validation (Table 1). These
candidates were differentially expressed in response to
Xc infiltration and also after TAL effector expression in
epicotyls, and encoded at least one predicted EBE for
the corresponding TAL effector in their promoters. Ini-
tially, we tested the expression of four putative PthA2
targets, including an ortholog of the pepper upa22, which
encodes a xyloglucan endotransglucosylase (XET), a RAC-
GTPase gene (RAC), and an ortholog of the rat BRG1, im-
plicated in cell wall strengthening, auxin response, and
tumor development, respectively (Table 1). Consistent with
the microarray data (Table 1), the citrus upa22 and the
BRGI genes were slightly but preferentially up-regulated by
PthA2 compared to PthA4, PthC1 or GUS in epicotyls; in
contrast, XET was significantly down-regulated in response
to PthA2 (Figure 3A). The RAC gene, which was induced
in epicotyls expressing PthA2 and PthA4, also appeared
down-regulated in tissues expressing PthCl (Figure 3A).
Despite the strong induction of RAC by PthA4 (Figure 3A),
we found no good scoring candidate EBEs for PthA4 in the
RAC promoter. Presumably, this is part of false negative
predictions that account for the current limitations of com-
putational analyses of TAL effector targets [17,52,72,73].

To test the PthA4 candidate targets, we selected 4 genes
encoding orthologous of a tobacco 14-3-3 protein, a two-
domain dioxygenase (DIOX), a cysteine protease (CP), and
a CC-NBS-LRR protein (CCNBS1), which play roles in gib-
berellin synthesis, cell elongation and defense (Table 1).
Consistent with the microarray data (Table 1), we found
that the four selected genes were strongly (more than 6
fold-change) up-regulated in epicotyls expressing PthA4,
which support the computational prediction of best scor-
ing targets of PthA4 (Figure 3B). Although 14-3-3 and
DIOX were induced moderately (between 2 to 3 fold-
change) in epicotyls expressing PthC1, no EBEs for PthC1
were identified in these targets.

We also tested the PthCl predictions using 4 selected
candidate genes, including the orthologs of a potato Ca**-
dependent protein kinase (CDPK) and tomato self-pruning
interacting protein 1 (SIP1), and two CC-NBS-LRR re-
sistance genes (CCNBS2 and 3) (Table 1). An ortholog
of the pepper Bs3 gene (orangel.1g035488m.g) was also
tested; however, we were not able to detect this gene by
qPCR analysis, even using large amounts of ¢cDNA in-
put. We found that SIPI and CCNBS3 genes were signifi-
cantly induced in response to PthC1 expression relative to
GUS, although CCNBS3 was also up-regulated by PthA2
and 4 (Figure 3C). In addition, SIPI and CCNBS2 ap-
peared also induced in response to PthA4 expression.
Interestingly, we found an EBE for PthA4 in the SIPI
promoter with a score value of 6.2 that explains the ob-
servation. In contrast, CDPK was 3-fold repressed by
PthC1 (Figure 3C).
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Altogether, these results partially confirm the TAL ef-
fector targets prediction but also suggest that more than
one TAL effector might induce the same gene, and that
TAL effectors can ultimately cause transcriptional repres-
sion of targets, although we have not tested whether this
is a direct or indirect (secondary) effect of the protein.

To further investigate these observations, we evalu-
ated the expression of a predicted PthA2 target, a phe-
nylpropanoid:UDP-glucosyltransferase (UDPGT), which
was nearly 3-folds down-regulated in PthA2-expressing
epicotyls (Table 1). We also tested a predicted target of
PthA2, PthA4 and PthCl1 encoding an Avr9/Cf9-elicited
protein 146 homolog, AE146, as well as two Lateral Organ
Boundaries genes, LOBI and LOB2, indentified as targets
of PthA4/PthC1 and PthA2, respectively (Table 1). A pre-
vious report predicted that the citrus LOB1 was targeted
by PthA4 [24]. We found that AE146 is induced in re-
sponse to PthA2 and PthA4 expression, but in contrast,
PthA2, PthA4 and PthC1, down-regulate the expression of
UDPGT (Figure 4A). Consistent with our microarray data
(Table 1), LOBI was predominantly induced by PthA4,
but repressed by PthCl, while all the three TAL effectors
tested induce the expression of LOB2 (Figure 4B).

We also used a pthA4 knockout derivative of Xc, which
is not pathogenic in sweet orange neither it induces hyper-
plasic lesions [23], to analyze the expression levels of can-
didate PthA4 targets. We found that three of the predicted
PthA4 targets, DIOX, CP and 14-3-3, are induced at higher
levels in leaves infiltrated with the wild type Xc strain rela-
tive to the pthA4-deletion mutant; however, these genes
were also up-regulated by the pthA4 mutant relative to
water infiltration, which indicates that these genes present
a more complex mechanism of induction where PthA4 is
not absolutely required (Figure 5A).

We also evaluated the expression of two PthA2 pre-
dicted targets RAC and LOB2, and two PthCl targets
LOBI1 and SIP1, which were highly up-regulated in epi-
cotyls expressing PthA4 (Figure 3A and C). Although
RAC expression was under the level of detection by quan-
titative PCR (not shown), we found that the transcript
accumulation of SIPI was lower in response to pthA4-
deletion mutant relative to leaves infiltrated with the
wild type Xc (Figure 5A). Similarly, the expression levels
of LOB1 and LOB2 were significantly lower in leaves infil-
trated with the pthA4-deletion mutant (Figure 5B). Never-
theless, LOBI, LOB2 and SIPI were also up-regulated in
leaves infiltrated with the pthA4-deletion mutant relative
to water-infiltrated leaves, suggesting an alternative mech-
anism of target induction, potentially by other TAL effec-
tors that our analysis failed to predict.

Taken together these results confirm our previous ob-
servations, and point out to LOBI, LOB2, SIP1, CP and
DIOX as primary targets of Xc and XaC TAL effectors,
in particular of PthA4 (Figure 5).
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. ) Lo Figure 3 Gene expression levels of predicted targets of PthA2,
A 14- Genes with predicted PthAi binding sites Pt?:A4 and PthC1 ‘i)n epicotyls transzcted with thge
[1BRG1 corresponding TAL effector. (A) Quantitative RT-PCR (qPCR) of four
o 12 quagz sweet orange genes with best-scoring effector-binding elements
o B XET (EBEs) predicted for PthA2 in their promoters. (B) gPCR of four sweet
) 4 orange genes with best-scoring EBEs predicted for PthA4 in their
<C promoters. Predicted PthA4 target genes are significantly and
5 3 predominantly up-regulated by PthA4 expression. (C) gPCR of four
c sweet orange genes with best-scoring EBEs predicted for PthC1 of
o XaC in their promoters. The expression levels are the mean of three
.E 2 independent biological replicates. The error bars denote standard
% deviations whereas asterisks indicate statistically significant
14 differences (p < 0.05) in the mRNA levels in epicotyls expressing the
r‘_}_i ' l * TAL effectors relative to GUS. )
0
PthA2 PthA4 PthC1
PthA and PthC EBEs overlap with or localize close to
B Genes with predicted PthA4 binding sites TATA box elements in citrus promoters
167 * [ prox Including AvrBs3, several TAL effectors bind to EBEs that
0 144 9 (1:3:33 overlap with TATA-like sequences [6-8,29]. In some cases
2, B conas1 this causes a downstream shift of the transcriptional start
L . site in the targeted gene, suggesting that TAL effectors
<Z( 101 might have a similar function of TATA-binding proteins
DE: 8- * [6-10]. Here, we found that approximately 73% of the pre-
0 6l dicted EBEs for PthA“s” and PthC"s” localize between 16
% A and 300 bp upstream the translation start codon of the
o ] . * genes (Additional file 5). This observation and a recent
x5 . w study in rice suggesting that TAL effectors of X. oryzae are
0 i predicted to bind within 300 bp upstream the start codon
GUS PthA2 PthA4 PthC1 and frequently overlap with TATA-box elements of the
promoter [24], prompted us to evaluate whether the
C Genes with predicted PthC1 binding sites overlap or close proximity between TATA boxes and
8- ] coPk * EBE positions, also occurs for TAL effectors of Xc and
w7 ; oS XaC in citrus promoters. We found that most of the
0] EMsP EBEs predicted for PthA“s” and PthC“s” show a tendency
2 to overlap with, or localize within 30 bp of putativeTATA-
<Z( 51 box elements (Figure 6 and Additional file 5). For instance,
X 4. in five of the candidate targets (LOBI, LOB2, AEI46,
E 3] * CCNBS1 and CDPK) the EBEs overlapped with a putative
2 * TATA box (Additional file 5). Thus, our data suggest that
% 21 despite the RVD variations among these TAL effectors,
o 1_ . they are likely to have an evolutionary selection pressure
0 towards the targeting of TATA-rich regions of host se-
PthA2 PthA4 PthC1 quences that are critical for the transcriptional regulation.

Discussion

Despite the fact that many TAL effectors targets and
their molecular functions have been coming to light in
recent years [3,6-11,74,75], citrus genes directly activated
by PthA“s” or PthC"s” effectors, and their role in canker
development or host defense against Xanthomonas spp.,
remain poorly characterized. In this study, we have identi-
fied a number of genes putatively targeted by PthA“s” and
PthC“s” in sweet orange, and shown that most of them
impinge on disease and/or host defense responses. We
also observed that PthA2 and PthA4, yet bearing distinct
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Figure 4 Expression levels of possible common targets of
PthA2, PthA4 and/or PthC1. (A) Expression levels of the Avr9/Cf9-
elicited 146 (AF146) and UDPGT genes in response to TAL effector
expression in citrus epicotyls. Although binding sites for PthA2,
PthA4 and PthC1 were identified in the AET46 gene promoter, AET46
is strongly induced by PthA2 and 4 only. The UDPGT gene, which
was down-regulated by PthA2 in microarray experiments, and has a
predicted PthA2-binding site in its promoter, is repressed by all three
effector proteins. (B) Expression levels of two citrus LOB genes (LOBT
and LOB?2) in response to TAL effector expression in citrus epicotyls.
LOB1, identified as a target of PthA4 and PthC1 was preferentially
modulated by these effectors, whereas LOB2, identified as a PthA2
target by EBE prediction is apparently up-regulated by all three
effectors. The expression levels are the mean of three independent
biological replicates. The error bars denote standard deviations
whereas asterisks indicate statistically significant differences (p < 0.05)
in the mRNA levels in epicotyls expressing the TAL effectors relative
to GUS.

RVDs composition (Figure 1B), exhibit functional conver-
gence, in particular to regulate genes of the auxin and gib-
berellin synthesis and response pathways, as well as their
downstream signaling cascade genes like those for cell wall
remodeling, cell division and expansion. In citrus, target-
ing these hormonal pathways appear to be the headline of
canker-causing Xanthomonas spp. since endogenous auxin
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Figure 5 Expression levels of potential targets of PthA4.
Expression levels of DIOX, CP, 14-3-3 (1433), CCNBST and SIP1 (A), or
LOBT and LOB2 (B), in sweet orange leaves infiltrated with Xc or its
mutant derivative lacking pthA4 (pthA4-deletion mutant), 72 h post-
inoculation, relative to water-infiltrated leaves. All target genes were
induced by Xc and pthA4-deletion mutant, relative to water infiltration;
however, the expression levels of most genes, including DIOX;, SIPT,
LOBT and LOB2, were significantly lower in the leaves infiltrated with
the pthA4 mutant, suggesting a role of PthA4 in gene activation.
The expression levels are the mean of three independent biological
replicates. The error bars denote standard deviations whereas
asterisks indicate statistically significant differences (p < 0.05)
between the mRNA levels found in the leaves infiltrated with the

pthA4 mutant, relative to the wild type X. citri.

and gibberellin are required for initial canker formation in
leaves infiltrated with the pathogen, and the exogenous
application of the hormones transcriptionally regulate
specific genes also induced by Xc during the onset of in-
fection [26,27]. How these hormones contribute to the
canker disease needs further exploration, but it is clear
their relationship with the canker symptoms, hypertrophy
and hyperplasia of mesophyll cells [2], which generate
enough internal pressure to prompt the epidermal rupture
and facilitate pathogen release to the leaf surface for dis-
ease propagation [21,27]. Besides, auxin also increase the
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the citrus promoters predicted as targets of PthA/PthC proteins. The
great majority of PthA and PthC-binding sites overlap with, or are
located within 30 bp of the predicted TATA-box elements in the
corresponding citrus promoters.

host susceptibility on other plant-pathogen interactions
[76-79], pointing it out as a conserved mechanism of bio-
trophic microbes to elicit cell wall softening to e.g., leak
nutrients from the host cell, and/or to improve effectors
translocation that promote host susceptibility and bacter-
ial fitness. Overall, it is tempting to speculate that, in the
case of the citrus canker pathogens, manipulating the
auxin signaling pathway via TAL effector-targeting would
be an effective way to disarm host defense responses for
bacterial survival and pathogenicity. Notably, many of
the AvrBs3 up-regulated (UPA) genes are also auxin-
responsive and some of them including upa?, upals,
upal7 and upa20, are known to enhance cell hyper-
trophy and the synthesis of cell-wall polymers [8,10,31].

These data reflect on recent studies suggesting that the
redundancy and convergence in TAL effector repertories
occurring within and across X. oryzae strains, respectively,
may be a conserved feature of TAL effector evolution as a
consequence of an arms race of the host-bacteria inter-
action [24,25]. The biological meaning of such functional
redundancy of TAL effectors in strain 306, particularly be-
tween PthA2 and PthA4, denote a cooperative, or eventu-
ally a synergistic role of these effectors as transcriptional
activators (Figures 3, 4, 5, Additional files 2 and 5). In
addition, it is interesting to note that PthA2 physically
interacts with PthA4, and that both proteins bind inde-
pendently to the C-terminal domain of RNA Pol II [37].
Hence, TAL effector-mediated transcriptional regula-
tion in citrus appears to be further influenced by the
multiple protein-protein interactions occurring at the
assembly locus of RNA Pol II. According with this
assumption, the up-regulation of LOBI and LOB2 in
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epicotyls expressing PthA2 or PthA4 (Figure 4B), and in
sweet orange leaves infiltrated with Xc or its pthA4 mu-
tant derivative (Figure 5B), emerges as an evident ex-
ample of a redundant targeting of a presumably major
gene for canker susceptibility. We also predicted an-
other gene encoding a LOB-domain protein targeted by
PthA3, orangel.1g048558m.g (Additional file 5). Interest-
ingly, LOB genes have been associated to auxin signaling
pathways, including cell growth control and organ devel-
opment [56,71,80]. From an evolutionary point of view,
it seems advantageous for a single Xc strain to target a
family of potential susceptibility genes, i.e. LOB genes
with different TAL effectors, which function cooperatively
or synergistically, because it will assure the induction of
the critical set of genes involved in disease symptoms de-
velopment. The observation is convincing since it implies
a mechanism that the pathogen uses to overcome poten-
tial natural polymorphisms in TAL effector targeted pro-
moters, in particular those occurring in susceptibility
genes among different host varieties [6].

Beyond the functional redundancy of Xc TAL effectors,
we found that PthA4 predominantly induce genes encod-
ing ribosomal proteins and proteins of cell division and
growth, like kinesins, tubulins and histones (Additional
file 2). This is noteworthy because PthA4 also physically
interacts with the citrus MAF1 protein (CsMAF1), which
is a negative regulator of RNA Pol III that controls ribo-
some biogenesis and suppresses canker symptoms [23,36].
Thus, the specific PthA4-induction of ribosomal protein
genes appears to be a causal feedback mechanism of ribo-
some biogenesis that is required for cell division and
growth. On the other hand, although PthA2 does not
interact with CsMAF]I, it binds to and inhibits the prolyl-
isomerase activity of the citrus cyclophilin CsCYP, a puta-
tive negative regulator of the RNA Pol II complex
[23,35,37,81]. Therefore, it remains to be determined how
these protein specific interactions between TAL effectors
and components of RNA Pol II and III complexes affect
the outcome of the host expression profiles in response to
bacterial infection.

In contrast to PthA“s”-induced genes, epicotyls express-
ing PthC1 showed a general down-regulation of auxin
and gibberellin response genes suggesting that this
TAL effector is not an elicitor of susceptibility. For in-
stance, LOBI that is induced by PthA4, appears signifi-
cantly down-regulated by PthC1 (Figure 4B), which is
consistent with the PthCl-mediated repression of auxin
response genes, since LOB proteins have also been impli-
cated in auxin signaling [80,82]. However, it remains to be
determined whether the general down-regulation of
the auxin responsive genes by PthC1 in sweet orange is
the major cause for the lack of host susceptibility (i.e.
no hyperplasic lesions) after infiltration of sweet orange
with XaC [26].
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In pepper plants ecotype ECW-30, the Bs3 resistance
gene induced by the X. vesicatoria TAL effector AvrBs3,
executes an HR response after bacterial infiltration [7].
Our computational analyses have predicted EBEs of PthC1
in the promoters of two sweet orange genes orthologous
to Bs3, orangel.1g035488m.g and orangel.1g035902m.g
(Additional file 5); however, we were not able to detect
their expression in response to PthC1 or after XaC infiltra-
tion (Additional file 3), and neither were them detected by
any other gene expression analyses we conducted before
i.e., differential display PCR and suppression subtractive
hybridization [26]. Besides, though the results discussed
above indicate that XaC cannot induce host susceptibility,
we do not yet discard the possibility that an HR-like
elicitor is mediating the sweet orange defense against XaC.

It has been verified and predicted that nodulin and
flavone-3-hydroxylase (F3H) genes, respectively, represent
common targets of Xanthomonas ssp. TAL effectors
[11,24,25]. Here, we found four nodulin-related genes,
which are significantly up-regulated in sweet orange leaves
infiltrated with Xc in the presence of Ch, DN620509, or
in epicotyls expressing PthA2, CX675781, and PthA4,
DN958192 and CV710110. However, we were not able
to predict EBEs for PthA“s” in their promoters suggesting
a potential gap for false negative predictions of computa-
tional analyses, or eventually indicating that their induc-
tion is consequential of other primary targets of the TAL
effectors. On the other hand, we predicted EBEs of PthA
and/or PthC in the promoters of the nodulin-related
genes orangel.1g007766m.g and orangel.1g042021m.g,
but none of these genes were up-regulated in our micro-
array dataset (Additional files 1, 2 and 5).

One of the predicted targets of PthA4 is the citrus
dioxygenase gene DIOX (Table 1, Figures 3B and 5A,
Additional file 5) that is similar to the rice gene F3H,
also a predicted target of TAL effectors from X. oryzae
strains [25]. Although the F3H was linked to flavonoid
biosynthesis [25], both F3H and DIOX are similar to
Gibberellin-20-Oxidases (GA200x), a group of enzymes
that catalyze gibberellin biosynthesis [83]. Interestingly,
as observed for the LOB genes, a citrus gene encoding a
putative GA20 oxidase (orangel.1g019643m.g) was iden-
tified as a target of PthA1l, PthA2 and PthA3 (Additional
file 5). This protein has the same domain architecture
found in DIOX, which suggests they are functional ortho-
logs. In addition, both PthA4 and PthCl transactivate a
regulator of gibberellin synthesis namely 14-3-3, and a SIPI
gene in epicotyls (Figure 3) whose protein products interact
with a SELE-PRUNING factor involved in the control plant
architecture and flowering of tomato [58,66,84]. These evi-
dences together support the susceptibility effect of inducing
gibberellin genes during the process of infection.

Another outcome of our study is the proximity of the
predicted EBEs relative to putative TATA boxes of
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promoter regions (Figure 6). This is in line with the fact
that EBEs for X. oryzae TAL effectors have been also
identified close to TATA elements in rice promoters [6].
Similarly, AvrBs3 binding sites are found within 100 bp
upstream of the transcription start site [10], raising the
idea that TAL effectors might functionally replace gen-
eral TATA-binding factors, as recently proposed [24]. In
addition, our data indicates that TAL effectors can func-
tion as transcriptional repressors, in particular PthCl, as
discussed above (Additional files 2 and 3; Figures 3 and 4).

Conclusion

In conclusion, we have identified candidate targets of
PthA“s” and PthC"s” in citrus that will not only strengthen
our understanding on canker symptoms formation, but
also provide novel information about host susceptibility or
defenses against Xanthomonas pathogens, which will assist
in the selection and generation of canker resistant plants.

Methods

Bacterial strains, plasmids and growth conditions

PthA2 and PthA4 were amplified from the Xc strain 306
[85] and cloned into pET28a and pBI121 for bacteria and
plant expression, as previously described [35]. Plasmids
were introduced into E. coli strain DH5alpha and/or Agro-
bacterium tumefaciens strain EHA105 by electroporation.
E. coli cells were incubated at 37°C in Luria-Bertani (LB)
medium, whereas Xc and A. tumefaciens were grown in LB
without NaCl at 28°C and in YEP (Bacto peptone 10 g/l,
NaCl 5 g/l, Yeast extract 10 g/l, and Agar 15 g/l) at 30°C,
respectively [86]. Bacterial cultures were grown at different
time periods until they reached the desired optical dens-
ities. Antibiotics were added to the media in the following
final concentrations: ampicillin, 100 pg/ml; kanamycin,
50 pg/ml; rifampicin, 50 pg/ml; streptomycin, 25 ug/ml.

Plant material, bacterial infiltration

Six-month-old plants of sweet orange “Pera” were ob-
tained from certified nurseries and kept in a growth
room at 25-28°C with a 14 h light photoperiod. For
plant infiltration, Xc strains were inoculated from single
colony plates and grown over night at 28°C in liquid LB
without NaCl. Cells colonies were suspended in sterile
water to an optical density at 600 nm (ODgg) of 0.1
(nearly 10° CFU/ml). Leaves were infiltrated with bac-
terial suspensions in water or, in 50 pM cycloheximide
(Ch) (Sigma-Aldrich, USA). Water and Ch only were in-
dependently infiltrated as mock controls. For quantita-
tive PCR (qPCR) assays, fully expanded “Pera” leaves
were infiltrated with a water suspension (ODggo =0.1)
of wild type Xc strain 306, or its pthA4-deletion mutant
derivative [23].



Pereira et al. BMC Genomics 2014, 15:157
http://www.biomedcentral.com/1471-2164/15/157

Cloning TAL effectors from X. aurantifolii

PthC genes were PCR amplified using total DNA extracted
from the XaC strain ICMP 8435 [26] as template. Primers
targeting conserved 5" and 3’ regions were designed based
on the four available Xc pthA genes (5-CATATGGATCC
CATTCGTTCG-3 and 5-GAATTCTCACTGAGGCAA
TAGCTC-3). PCR products were amplified using the Pfu
turbo DNA polymerase in a 50 pL reaction, following the
supplier’s instructions (Stratagene, USA), with an anneal-
ing temperature of 52°C and extension time of 4 min. PCR
products were gel-purified and cloned into of pET28a vec-
tor using the restriction sites Ndel/EcoRI. At least twenty
independent clones were analyzed by restriction mapping
with Sspl enzyme, or by DNA sequencing and only two
different variants designated PthC1 and PthC2 were iden-
tified. None of the PthA effectors of Xc isolate 306 were
found in our screening of XaC TAL effectors sequences.

Expression of Xanthomonas TAL effectors in citrus
epicotyls

Agrobacterium strains transformed with pBI121 vector
(bearing the uidA gene under the control of the CaMV
35S promoter) or its derivative carrying the TAL effectors
pthA2, pthA4 or pthCl in place of the uidA gene, were used
to transform sweet orange. Epicotyls from young plantlets
of Citrus sinensis ‘Hamlin’ were wounded, transversely sec-
tioned and incubated at room temperature (21°C) for 15 mi-
nutes in a fresh suspension of A. tumefaciens (ODgoo = 0.6)
containing 100 pM acetosyringone. Co-cultivation assays
were conducted on semi-solid 1x Murashige and Skoog
medium supplemented with 25 g/l sucrose, vitamin cocktail
(10 mg/l thiamine-HCI, 10 mg/l pyridoxine, 1 mg/l nico-
tinic acid, 0.4 mg/l glycine), 100 mg/l of myo-inositol and
0.2 mg/!1 of 2,4-dichlorophenoxyacetic acid (pH 5.8) during
72 h in dark [87]. Transformation efficiency was confirmed
by western blot analyses and histochemical GUS assay
prior to RNA isolation for microarray and qPCR analysis.

Western blot detection of PthA/PthC expression

Citrus epicotyls transfected with the native pBI121 vector
or, its derivatives carrying the effector genes pthA2, pthA4
or pthCl, were grinded to homogeneity in SDS-PAGE
sample buffer and resolved on a 10% SDS-polyacrylamide
gel. The proteins were transferred onto PVDF mem-
branes and probed with anti-PthA2 serum as previously
described [35].

GUS assay

The A. tumefaciens strain EHA105 transformed with the
pBI121 vector carrying the reporter gene uidA, which
encodes beta-D-glucuronidase (GUS), was transfected in
citrus epicotyls as described previously and the transient
expression of GUS was tested using colorimetric assay
72 h after bacteria-tissue co-cultivation [88].
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RNA isolation and microarray and RT-qPCR analysis
Messenger RNA (mRNA) was extracted from infiltrated
leaves or from transformed epicotyls as described previ-
ously [26]. For microarray hybridization, approximately
0.6 ug of mRNA was used to synthesize cDNAs, which
were subsequently used as template to generate the
biotin-labeled complementary RNAs (cRNAs) using the
One-Cycle target labeling assay (Affymetrix). Gene-
Chips of citrus genome arrays (Affymetrix) were hybrid-
ized with cRNAs following standard instructions of
Affymetrix kits. The hybridized arrays were rinsed, stained
and scanned with an Affymetrix Genechip Scanner
3000-7G. Two CEL files per treatment, corresponding
to biological replicates, were analyzed with the ArrayAssit
software package (ArrayAssit x.5, Stratagene, USA) using
the MASS5 algorithm.

Total RNA samples were prepared from sweet orange
leaves infiltrated with Xc, its pthA4-deletion mutant, or
water as control, 72 h after bacterial inoculation, using
the Trizol method (Invitrogen, Carlsbad, CA) and subse-
quently treated with DNase I (Promega, Madison, WI).
Nearly 10 pg of total RNA was reverse-transcribed using
the Maxima First Strand cDNA Synthesis Kit (Fermentas)
according to the supplier’s instructions, and used as tem-
plate in real-time qPCR reactions conducted in 96-well
plates. Primer sequences (Additional file 6) corresponding
to the Citrus sinensis genes listed in Table 1 were designed
using the Primer Express 2.0 software (ABI, Foster City,
CA). Each 25-pL qPCR reaction was composed by 12.5 pL
of SYBR green 2x master mix (ABI, Foster City, CA), 1 uL
of forward and reverse primer mix (7.5 uM), 1 pL of
¢DNA and 10.5 pL of diethyl pyrocarbonate-treated water.
qPCR amplifications were carried out using the 7500
system “Universal” cycle condition in an ABI Prism
7300 instrument (Applied Biosystems, Foster City, CA).
The Citrus sinensis gene encoding a malate translocator
was selected as internal control for normalization [86].
Total RNA from three different leaves were used in qPCR
reactions as independent biological replicates, and three
technical replicates for each biological sample were con-
sidered for statistical T-tests to determine the significant
changes of gene expression across the treatments.

In silico prediction of TAL effector binding sites

A position-specific weight matrix was designed based on
the TAL code of associations frequencies between DNA
bases and RVDs, and used to score putative effector
binding elements (EBEs) of PthA1l, PthA2, PthA3 and
PthA4 of Xc strain 306, and PthC1 and PthC2 of XaC
strain ICMP 8435, considering a thymidine (T) at pos-
ition -1 of the EBE as preferential base [12,13]. The al-
gorithm was used to perform systematic similarity
searches within 1500 bp of promoter regions relative to
the translation start site of genes annotated in the
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genomes of C. clementina (http://www.citrusgenomedb.
org/species/clementina/genomel.0) and C. sinensis (http://
www.citrusgenomedb.org/species/sinensis/genomel.0).
Identification of orthologous relationships between these two
species was based on nucleotide sequence similarities
(BLASTn) and best bidirectional hit (BBH) method [89,90].
Reciprocal sequence similarity searches between C. clemen-
tina and C. sinensis genes were performed using the
BLASTn algorithm [91], with an E-value cutoff of 1xE™°,
and a homemade Perl script to parse both BLASTn out-
puts to identify the BBH BLAST relationships (Additional
file 4). The search was performed using the MOODS algo-
rithm [92], which provided a list of possible EBEs for the
PthA/PthC TAL effectors with a corresponding score for
each sequence. The p-value cutoff was set to 0.001 in
order to reduce false positives prediction alignments.

The final set of C. sinensis promoters having one or
more putative PthA/PthC binding sites (top 100 hits) was
derived from a conserved region analysis between the C.
clementina and C. sinensis orthologous promoters, an
approach that is widely used to identify new regulatory
motifs in many organisms [93-95]. Thus, only the citrus
genes with PthA/PthC binding sites in both C. sinensis
and C. clementina promoters were selected.

In silico TATA-box prediction

The DNA sequences corresponding to the promoters of
C. sinensis genes having potential EBEs (top hits) were
submitted to the Plant TATA-box prediction server using
the TSSP program [96] at the http://linux1.softberry.com/
berry.phtml site.

Availability of supporting data

The sequences of PthCl and PthC2 were deposited in
the GeneBank as ADI48327 and ADI48328 accessions,
respectively. The microarray data files (Affymetrix CEL
files) for all the experiments described here have been
deposited to GEO under the superseries GSE51379.

Additional files

Additional file 1: Microarray analyses of sweet orange leaves
infiltrated with Xc in the presence or absence of cycloheximide
(Ch), 8 h after bacterial inoculation.

Additional file 2: Microarray analyses of sweet orange epicotyls
expressing PthA2 or PthA4.

Additional file 3: Microarray analyses of sweet orange epicotyls
expressing PthC1.

Additional file 4: Perl script developed to parse both BLASTn
outputs to identify the best bidirectional hit (BBH) BLAST
relationships.

Additional file 5: Top one hundred best scoring C. sinensis
promoters with predicted EBEs for PthA and PthC proteins.

Additional file 6: List of primers used in the gPCR experiments.
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