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Abstract

The majority of cancer-related deaths are due to metastasis, hence improved methods to

biologically and computationally model metastasis are required. Computational models rely

on robust data that is machine-readable. The current methods used to model metastasis in

mice involve generating primary tumors by injecting human cells into immune-compromised

mice, or by examining genetically engineered mice that are pre-disposed to tumor develop-

ment and that eventually metastasize. The degree of metastasis can be measured using

flow cytometry, bioluminescence imaging, quantitative PCR, and/or by manually counting

individual lesions from metastatic tissue sections. The aforementioned methods are time-

consuming and do not provide information on size distribution or spatial localization of indi-

vidual metastatic lesions. In this work, we describe and provide a MATLAB script for an

image-processing based method designed to obtain quantitative data from tissue sections

comprised of multiple subpopulations of disseminated cells localized at metastatic sites in

vivo. We further show that this method can be easily adapted for high throughput imaging of

live or fixed cells in vitro under a multitude of conditions in order to assess clonal fitness and

evolution. The inherent variation in mouse studies, increasing complexity in experimental

design which incorporate fate-mapping of individual cells, result in the need for a large

cohort of mice to generate a robust dataset. High-throughput imaging techniques such as

the one that we describe will enhance the data that can be used as input for the development

of computational models aimed at modeling the metastatic process.

Introduction

Metastasis is the migration of cancer cells from the primary tumor to distant organs to form

secondary tumors. It involves a series of steps, including detachment from the primary tumor,

intravasation, extravasation at a secondary site, invasion and proliferation [1,2]. The majority

of cancer-related deaths are due to metastasis [3–5], and experimental mouse models are

required to study metastasis. In order to study the metastatic process in such experimental
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models, the ability to quantify the extent of the metastases is needed. However, current meth-

ods of quantitatively analyzing metastases in vivo do not provide sufficient quantitative infor-

mation pertaining to metastatic colonies or their spatial distributions at the organ-level [6].

Different methods exist for analyzing the extent of experimental metastasis. Traditionally,

Hematoxylin & Eosin (H&E) stained tissue sections have been used to visualize metastatic

regions in organs. Region-Of-Interest (ROI) tracing on sections can provide an estimate of

individual metastatic colony sizes. However, this is highly time-consuming, especially when

dealing with organs that have a large metastatic burden and a large number of samples and

images. It is also difficult for the experimenters to differentiate between micrometastases and

immune infiltration in lung tissue [7]. Work on automated segmentation by Image analysis

with H&E staining is in progress, but remains problematic especially with micrometastatic

nodules (containing 4–5 cells) [8]. Another tool used to quantify overall metastatic burden in

mice organs is the quantitative polymerase chain reaction (qPCR). However, since qPCR is

performed on DNA extracts of organ tissues, the spatial fidelity of metastatic colonies is not

maintained. Hence no information of the size of metastatic colonies or their distribution can

be obtained [6,9]. Bioluminescence imaging (BLI) is a popular method of quantifying tumor

and metastatic loads based on measuring fluorescence values from cancer cells engineered to

emit photons via the luciferase expression. Tumor cells are genetically modified to express fire-

fly luciferase and introduced in the animal, where they form tumors in vivo. Upon injection of

the substrate luciferin, the tumor cells emit a signal that can be measured with a biolumines-

cence imager, while the mouse is anesthetized [10]. However, BLI suffers from rapid signal

attenuation in tissues hence any signal received is significantly weighted toward cells localized

closer to the surface of the organ. Furthermore, the method is affected by significant mouse-

to-mouse variation since the light-emitting reaction depends on a variety of factors (depth,

concentrations of luciferin, ATP and oxygen) [11].

Digital pathology has gained increasing importance over the past decade with increases in

computational power and the advent of sophisticated image analysis techniques. While tradi-

tional visual microscopy based pathology is the current gold-standard, it can be prone to lack

of standardization or variation between pathologists [12,13], and can be time-consuming [14].

These are the principal issues which digital pathology seeks to overcome. While digital pathol-

ogy is slowly gaining relevance in the clinical setting, there are some technical issues which

remain to be tackled [15–17]. For example, three-dimensional cell clusters or dense smears

make digital pathology difficult [18]. In research applications involving fluorescently labeled

cells, some of the limitations encountered in the clinical setting do not apply. Fluorescently

labeled cells are a popular choice in vitro and are becoming increasingly widespread for in vivo
experiments [19–21]. From a digital point-of-view, fluorescent cells have an advantage in that

they are easier to identify and can be segmented into colonies with greater ease than clinical

specimens stained with colorimetric dyes such as H&E. This facilitates the application of

image analysis techniques in obtaining quantitative data from histological sections.

This paper presents a high-throughput image analysis scheme to obtain size distributions of

lung metastases, including the ability to estimate number of cells within a metastatic colony,

colony size and colony counts for fluorescently labeled cells. This method is sensitive enough

to identify micrometastases consisting of 4–5 cells. Obtaining quantitative metrics would be

particularly useful in investigating clonal competition in genetically heterogenous tumors and

visualizing genetic exchange between cancer cells both in vivo and in vitro [22–24]. Further-

more this method would be useful for computational modeling of cancer metastasis. One of

the motivations for a predictive model for metastasis is to obtain metastatic colony size distri-

butions and hence estimate the formation of micrometastases that are below the detection

limit of clinical diagnostics [25,26]. As of now, there are a limited number of mathematical

A quantification scheme to analyze metastatic colony growth dynamics and size distributions

PLOS ONE | https://doi.org/10.1371/journal.pone.0209591 December 27, 2018 2 / 17

Foundation (CCR17483484), by The Jayne

Koskinas Ted Giovanis Foundation for Health and

Policy and the Breast Cancer Research Foundation

(DMG).

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0209591


models that describe metastasis as opposed to models describing tumor growth, which usually

use BLI or computational tomography for their experimental validation [27]. The lower detec-

tion limit, higher resolution, consistency and speed of the method presented here would assist

in obtaining quantitative data for the purpose of developing and experimentally validating

mathematical models of metastasis [28–30].

Apart from in vivo analyses, this methodology can be applied to in vitro systems as well.

Clonogenic assays are a widely-used tool for cancer biologists and are used to obtain the

growth potential of cells and to quantify differences in sensitivity to cytotoxic agents [31].

However, clonogenic assays are not suitable for co-culturing different cell lines and are unable

to visualize proteins of interest, and unable to accurately segment individual cells or colonies

when they are close together. The assay described in this paper provides confluence, colony

cell-count and size distributions, and reveals synergistic and co-culture effects in fluorescently

labeled cells. Furthermore, the tool is able to quantify expression of immunofluorescently

labeled proteins at the colony level. To demonstrate this, we used the proliferation marker Ki-

67 as our protein of interest. The methods described here are especially relevant for lineage

tracing in populations of cells labeled with a reporter construct [32,33].

Materials and methods

Cell culture

MCF7 and MDA-MB-231 cells were cultured in Dulbecco’s Minimum Essential Media

(DMEM) (Sigma-Aldrich, St. Louis MI—USA) supplemented with 10% Fetal Bovine Serum

(FBS) and 1% penicillin-streptomycin (Invitrogen, Carlsbad) in a humidified atmosphere of

5% CO2 at 37˚C.

Fluorescent cell lines

DsRed-expressing MDA-MB-231 and MCF-7 cell lines were generated by transducing them

with vector 1 as shown in S1A Fig. Vector 1 expresses a DsRed reporter with a stop codon

flanked by tandem loxP sites (‘floxed’) located adjacent to a GFP gene. To generate GFP-

expressing cells, we transduced the DsRed-expressing cell lines with Cre-recombinase (vector

2, S1B Fig). Deletion of the DsRed site by Cre-recombinase results in the rapid loss of DsRed

protein and permanent GFP expression. All cell lines were sorted using a SH800 Cell Sorter in

sterile conditions, to guarantee purity and high fluorescence levels.

In vitro colony formation assay

The methods described in this section were used as a part of the in vitro colony analysis scheme.

Preculture in Paclitaxel. Prior to plating, GFP-expressing cells were cultured in media

containing 2 nM Paclitaxel for 48 hours. DsRed-expressing cells were cultured in normal

media alone. After 48 hours of preculture, 2000 DsRed+ and 2000 GFP+ cells were mixed and

co-cultured in a 6-well plate.

Fixing and staining. Cells were fixed by removing culture media, adding 4% paraformal-

dehyde (PFA) in phosphate-buffered-saline (PBS) for 15 minutes and washing with PBS. Next,

to stain for Ki-67, 1% Triton-X was added for 5 minutes, followed by 2% bovine serum albu-

min (BSA) for 30 minutes, and finally a 1:100 solution of anti-Ki-67 monoclonal antibody

(Alexa Fluor 647 Mouse anti-Ki-67, BD Biosciences) in BSA for 90 minutes. The wells were

washed with PBS after each step. After Ki-67 staining, nuclei were stained by adding 5 μg/mL

Hoechst 33342 solution in PBS for 15 minutes. Fixed and stained samples were stored (at 4˚C)

in PBS.
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Imaging well plates. Well plates were imaged using a Cytation 5 imaging reader (BioTek,

Winooski, VT, USA) equipped with an incubated stage, which was set at 37˚C when imaging

live cells. Plates were imaged at a magnification of 4x. DAPI, GFP, RFP and CY5 images were

obtained when imaging fixed and stained cells, whereas only GFP and RFP channels were used

for live cell imaging. A montage of 180-images in each channel was obtained such that it cov-

ered approximately 80% of the well area, which provided a sufficient number of colonies to

obtain size distributions. The images were stitched with NIS Elements software (Nikon Instru-

ments Inc., Melville, NY, USA) and reduced by 50% to facilitate processing.

Mice

Female 5- to 7-week-old NSG mice were used according to protocols approved by the Johns

Hopkins University Animal Care and Use Committee. Mice were anesthetized, and 5 × 104

MDA-MB-231 cells were directly injected into the tail vein, in a mixture of 1:1 DsRed- and

GFP-expressing cells. After 3 weeks, the mice were sacrificed and the lungs were inflated with

a solution of PBS and OCT(Optimal Cutting Temperature Compound, Fisher Healthcare,

Pittsburgh, PA, USA), harvested and immediately fixed in 10% neutral buffered formalin for 1

hour, followed by an overnight soak in 30% sucrose solution at 4˚C. The lungs were then fro-

zen in OCT and cryosectioned into 15 μm slices, that were immediately stored at -20˚C.

In vivo metastatic colony analysis

The methods described in this section were used as a part of the in vivo scheme to analyze

metastases in lung sections.

Preparing tissue slides. Tissue slides were washed 3 times in a PBS-T solution (1% Tween

in PBS 1X) and incubated with Sudan Black (0.1% w/v) for 25 minutes at room temperature to

reduce tissue background fluorescence. After 3 additional PBS-T washes the tissue slides were

stained with DAPI (1:1000 in PBS) for 15 minutes at room temperature. After washing, the

slides were mounted with a 90% Glycerol mounting solution and covered with a coverslip that

was sealed with nail polish.

Imaging tissue sections. Similar to the in vitro imaging step, slides were imaged at a mag-

nification of 4x in the DAPI, GFP and RFP channels. A montage of images was used to cover

the entire lung section on the slide, and the images produced were stitched using Gen5 (Bio-

Tek). The stitched images were reduced to 50% in size in order to facilitate processing.

Statistical analysis. Differences in median colony sizes were verified through a Wilcoxon

Rank Sum test, and distributions were analyzed by the Kruskal-Wallis test. Ki-67 expression

was analyzed using an unpaired t-test. All tests were evaluated through functions available in

MATLAB (Mathworks, Natick, MA, USA) or GraphPad Prism (GraphPad Software, Inc., San

Diego, CA, USA).

Results

In vitro colony analysis of fixed samples

We developed a ready-to-use MATLAB script (available from GitHub: https://github.com/

sbhoyar1/ColonySizeDistributions) to determine colony size distributions, proliferation and

to analyze protein expression at the colony level. To demonstrate the utility of the algorithm,

we prepared fixed and stained colonies of GFP-expressing (GFP+) and DsRed-expressing

(DsRed+) MCF7 cells. We introduced differences in growth rates and colony sizes between the

GFP+ and DsRed+ cell lines by preculturing GFP+ cells in 2 nM Paclitaxel for 48 hours.

DsRed+ cells were pre-cultured in drug-free media. Next, we mixed 2000 of each GFP+ and
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DsRed+ cells and plated them in 6-well plates. On day 2 and 4, cells were fixed, stained and

imaged. Nuclei were stained with DAPI and the proliferation marker, Ki-67 (CY5). Images

were taken in the DAPI, CY5, GFP and RFP channels. We observed that the GFP+ cells

(which were pre-treated with Paclitaxel) formed smaller colonies with a lower proportion of

Ki-67 expressing cells (Fig 1). Each image was analyzed using the following image-processing

scheme. The image processing steps involved in segmenting fixed and immunostained colo-

nies in vitro are given in Fig 2 and described below.

Preprocessing. The following preprocessing steps were applied to each image (Fig 2A,

2E1, 2E2 and 2I) to reduce background signal and lens artifacts:

1. Top-hat filtering is applied to the image as a background correction step.

2. Gaussian filtering is utilized to eliminate jagged boundaries and obtain smooth colony-

regions.

3. A final contrast adjustment step ensures that the fluorescent regions are above the segmen-

tation threshold.

The results of the preprocessing steps are shown in S2A and S2B Fig. After this step, the

image is binarized. The binarized image consists of pixels of size 1.81 um2 labeled with ‘1’ if

they are part of a colony and ‘0’ if they are part of the background.

Fig 1. Fixed and stained in vitro images. A: GFP, RFP channel overlay. B: DAPI, CY5 (Ki-67) channel overlay. C: Individual channels from the inset region shown in

1A. Scalebar = 1 mm.

https://doi.org/10.1371/journal.pone.0209591.g001
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Distance transform. A distance transform is then performed on the complement of the

binarized image (Fig 2B), which effectively replaces the value of each pixel within a colony

with the Euclidean distance to the nearest boundary. The image shown is inverted, and the

intensity of the background pixels was raised to saturation (S2C and S2D Fig) The dark regions

at the center of each colony function as catchment regions for a watershed segmentation step.

This method takes advantage of the fact that the colonies are roughly circular. The top-hat fil-

ter applied in the preprocessing stage mitigates uneven illumination, which otherwise leads to

a variation in greyscale intensity values and affects segmentation accuracy. This, and the

smoothening effect of the Gaussian blur is sufficient to eliminate noise, which eliminates the

need for a median filtering step, and ensures that the subsequent watershed segmentation step

Fig 2. Image processing steps for in vitro images. A: Nuclear staining (DAPI channel). B: Preprocessing steps and distance transform identifies watersheds. C:

Segmentation of colonies by watershed algorithm. D: Individual colonies analyzed. E: DsRed and GFP signal captured in RFP and GFP channels respectively. F: DsRed

+/GFP+ regions obtained by preprocessing steps and binarization. G: Segmented colonies classified as DsRed+/ GFP+ based on input from images F1 and F2. G: Cell

count and area of individual colonies obtained from colony-level DAPI image. I: Ki-67 staining imaged in the CY5 channel. J: Regions of MCF7 cells expressing Ki-67

obtained by binarization. Scale bars: 5 mm (A, E, I, J), 1 mm (G, D).

https://doi.org/10.1371/journal.pone.0209591.g002
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successfully identifies colony regions. Finally, we use an h-minima transform to suppress small

minima which would otherwise lead to over-segmentation.

Watershed segmentation. The watershed transform is a commonly used method for

image segmentation. The algorithm views the subject image as a topographical map, view-

ing bright pixels as ‘high’ and dark ones as ‘low’. It segments the image into catchment

areas based on dark ’basins’, which are then used as foci for segmenting objects corre-

sponding to each basin [34,35]. In our application, we use a distance transform to obtain

’high’ or bright regions, invert them so that they become ’basins’, and subsequently use

them as foci for segmenting colonies in vitro (Fig 2C). An example of the segmentation

step is provided in S3 Fig, where a large group of connected colonies is accurately seg-

mented into individual colonies. While the script works well with clustered or partially

overlapping colonies, it cannot distinguish sheet-like areas or areas where multiple colo-

nies may have fused into a ‘super-colony’.

Colony-level analysis. The output of the segmentation step is a complete colony map that

contains the size (in terms of both area and number of constituent cells) and location of each

colony of cells in a given well (Fig 2D and 2H). The number of constituent cells is obtained by

counting nuclei in the DAPI channel image. The algorithm for segmenting nuclei closely

resembles the colony segmentation step in that it also involves a distance transform followed

by an application of the watershed algorithm. Segmented colonies are then classified as DsRed

+ or GFP+ based on input from the binarized RFP/GFP channel images (Fig 2E–2G). This is

sufficient information to obtain distinct colony size distributions of the two cell lines (DsRed+

and GFP+) in co-culture and make quantitative comparisons.

Ki-67 analysis. Using our script, we quantify expression of the proliferation marker Ki-67

within each colony (Fig 2I, 2J and Fig 3). In order to do this, nuclei are segmented in the DAPI

channel using a distance-transform followed by application of the watershed algorithm, similar

to the scheme described previously for segmenting whole colonies (Fig 3A and 3B). Ki-67 was

stained using a conjugated antibody that was imaged in the CY5 channel (Fig 3C). The pixels

constituting each nucleus (in the DAPI channel) are compared with corresponding pixels in

the binarized Ki-67 image (Fig 3D). Thus the fraction of total pixels (or area) positive for Ki-67

are obtained for each nucleus, i.e. the fraction of nuclear area that overlaps with the Ki-67 sig-

nal. If this fraction is greater than a fixed arbitrary threshold (which is 0.25 in our assay), the

nucleus is considered to be positive for Ki-67. Thus, we can identify and count the cells that

express ki-67 in each colony (Fig 3E). The distribution of this metric can be obtained for the

entire population of colonies and compared. While we have limited our analysis to Ki-67, this

assay can be applied to any protein of interest that can be stained and imaged using immuno-

fluorescent labeling.

In vitro fixed-cell experimental results: Paclitaxel pretreatment reduces median colony

size and Ki-67 expression levels. The MATLAB script was able to accurately segment

DsRed+ and GFP+ colonies. GFP+ cells that had been pretreated with Paclitaxel before plating

show significantly reduced median colony size, as compared to non-pretreated DsRed+ cells

in co-culture (Fig 4A). This difference in colony sizes was also observed visually (S4A Fig).

We developed a method to quantitatively compare protein-expression between cell lines.

The ‘Ki-67 index’ statistic was defined as the fraction of cells in a colony expressing Ki-67. A

colony with a Ki-67 index of 1.0 displays Ki-67 expression in all of its constituent cells The

effects of Paclitaxel pretreatment on Ki-67 index are shown (Fig 4B and 4C). The cumulative

frequency curve for RFP+ (non-pretreated) cells is relatively steep, indicating that majority of

the colonies had >80% of cells expressing Ki-67. On the other hand, the GFP+ curve shows

that a large number of low Ki-67 colonies were formed by Taxol pre-treated cells (Fig 4B).

Approximately 20% of the GFP+ colonies were observed to be completely non-proliferative
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and did not express Ki-67 at all, as seen in the y-intercept of the GFP+ curve in Fig 4B. Images

of DsRed+ and GFP+ colonies with Ki-67 staining are shown in S4 Fig.

Control wells, in which neither GFP+ nor DsRed+ were pretreated with paclitaxel show no

differences in colony size distributions or Ki67 expression (S5 Fig). There was no significant

difference between the proliferation rates of the untreated DsRed+ and GFP+ cell lines (S6A

and S6B Fig). Finally, we validated colony segmentation by comparing our method to ImageJ

algorithms. Colony images were binarized using Otsu’s algorithm, available in the ImageJ tool-

box. The size distribution of the binarized objects was obtained by using the object counter

available in ImageJ (S6C Fig). While the overall shape of the resulting colony size distribution

is similar between methods, the probabilities for areas >5000 pixels are larger with ImageJ

than with our method. We suspect that this is due to the fact that a binarization step alone, as

used in ImageJ, is unable to distinguish between connected colonies.

In vitro colony analysis of live samples

Image processing steps in live-cell mode. Next, we wished to determine whether we

would get similar results using a single 6-well plate of cells imaged over time. We utilized our

algorithm to analyze live, unstained samples. Twenty-four hours after mixing and plating

DsRed+ and pre-treated GFP+ cells, we imaged each well to detect DsRed and GFP expression.

The wells were re-imaged on days 2 and 4. This ‘live-cell’ mode has the advantage that it

requires fewer materials, no sample preparation and less imaging time. It is a dynamic assay

and allows colonies to be imaged over time (S7 Fig). Since there is no nuclear staining or

immunofluorescence staining, individual cells and protein expression cannot be identified.

Fig 3. Ki-67 analysis. A: DAPI Image. B: Segmented Nuclei. C: Ki-67 staining image (CY5 Channel). D: Binarized Ki-67 Stain. E: Overlap of B and D, to identify Ki-67

+ nuclei (white arrows) and Ki-67- nuclei (red arrows). Scale bars = 50 microns.

https://doi.org/10.1371/journal.pone.0209591.g003
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The image processing scheme followed is similar to the fixed-cell mode in that we again

employ a distance transform to identify ‘basins’, which are used to segment colonies by apply-

ing the watershed algorithm. The difference between the fixed-cell and live-cell modes is in the

channels to which the segmentation step is applied. In the fixed-cell mode, DAPI channel

images displaying nuclear staining are used to identify individual colonies. In the live-cell

mode, we directly segment colonies using images obtained from the RFP/GFP channel (i.e.

displaying the native DsRed/ GFP fluorescence of the cell-lines under analysis).

The GFP+ cell-line treated with paclitaxel prior to drug treatment produced smaller colo-

nies than the untreated DsRed+ cells in co-culture (Fig 5, S7 Fig). Furthermore, it was possible

Fig 4. In vitro results. A: Colony size distributions 2 days and 4 days after plating. The Y-axis shows probability density (relative

probability) and the X-axis shows colony size in number of cells. Mean and standard deviations are shown for populations of

colonies (n>150, per well) obtained from a set of 3 wells of a 6 well-plate and represent biological replicates. Significance was

determined using the two-tailed Wilcoxon rank-sum test. B: Cumulative frequency distribution of Ki-67 index over a population of

colonies (n>150, per well) obtained from a set of 3 wells of a 6 well-plate. Dashed lines show Ki-67 index value of 0.8. C: Fraction of

cells with Ki-67 index> 0.8, showing mean and standard error over 3 wells. Significance was determined using unpaired t-test. �

p<0.05, �� p<0.01, ��� p<0.001.

https://doi.org/10.1371/journal.pone.0209591.g004
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to monitor colony growth and the associated change in colony size distributions over time. The

live-cell mode produced similar colony size distributions and responses to paclitaxel pre-treat-

ment over time, which makes it a useful approximation for the fixed-cell experiment (Fig 5).

Since the live-cell images do not have nuclear staining, it is not possible to segment individ-

ual cells as is done in the fixed-cell mode. Instead, in the live-cell mode, colony area is used to

approximate colony size. However, colony areas and cell counts are well correlated and can be

used to estimate the number of cells in a colony in live-cell experiments (S8 Fig).

In vivo metastatic colony analysis and image processing

Introduction. A modified version of the colony segmentation algorithm described in the

previous section was applied to analyze the size distribution of metastatic colonies across entire

mice lung tissue sections. Slides were prepared from mouse lung tissue sections, which con-

tained metastases constituted by DsRed+ and GFP+ MDA-MB-231 cells.

The slides were imaged, and the image processing scheme shown in Fig 6 was applied to

obtain quantitative data. The algorithm is divided into two parts—Part 1 segments large meta-

static colonies but not micrometastases (Fig 6A) which are eliminated during the blurring

step. Once large colonies are segmented, they are masked and the remaining area is scanned

for micrometastases, i.e. seeding events which are only a few cells large in size, shown in Part

2. Any such events that are within an arbitrary distance of 40 pixels from the large metastatic

colonies are not counted, since we cannot know whether such a colony has been seeded from a

primary tumor or represents cells migrating from the nearby metastatic colony in the organ.

The DAPI channel is only used to identify lung regions from background and plays no role in

the colony segmentation steps.

Extended-maximum transform. The extended-maximum transform is used to identify

local maxima—which are regions of densely packed cells—in metastatic colonies, which serve

as the foci (‘basins’/ ‘troughs’) for the subsequent watershed transformation step. A similar

method has been discussed for other applications in existing literature [35]. The segmentation

step is accurate even for regions of dense colonies as shown in S9 Fig. In such cases, a thresh-

old-based binarization step alone is unable to distinguish between adjacent metastases. The

Fig 5. Live-cell assay results. A: The probability density functions of colony sizes as they change over the duration of the live cell experiments. Mean and standard

deviations of probability distribution functions are shown, and represent biological replicates obtained from 3 wells of a 6 well-plate. Number of colonies> 150 per well.

The X-axis shows colony area and estimated cell counts. Significance between mean ranks was determined using the Kruskal-Wallis test (��� p<0.001).

https://doi.org/10.1371/journal.pone.0209591.g005
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extended-maximum transform is used instead of a distance transformation step in the in vivo
algorithm. While distance transformation can be successfully employed in the in vitro segmen-

tation algorithm, the greater variability inherent in lung tissue sections renders it unsuitable

for the in vivo method.

In vivo experimental results: Lung colonies in tissue sections show no difference in size

distributions. Metastatic colonies in lung sections of mice injected with DsRed+ and GFP+

MDA-MB-231 cells are shown (Fig 7A and 7B). The algorithm segments lung images (Fig 7B)

and obtains size distributions for metastatic colonies (Fig 7C and 7D). No significant differ-

ence was obtained in the size distributions of the DsRed+ and GFP+ metastatic colonies in

lungs.

The segmentation accuracy was validated by comparing the number of metastatic colonies

obtained using our algorithm and by manual counting (Fig 8A), or by visual comparison of

segmented areas (Fig 8B).

Furthermore, we compared experimental mouse-to-mouse variation, and variation within

a single lung across 8 serial sections (Fig 9). The set of intra-mouse lung sections consisted of

eight GFP-channel images, serially sectioned at 8 different points along a 1 mm thickness. The

inter-mouse set consisted of single images obtained from 8 different mice lungs. The

highlighted data point represents the mouse from which the intra-mouse lung sections were

generated. We observe that the mouse-to-mouse variation is greater than across the serial sec-

tions in the same mouse (Fig 9A).

Discussion

Quantitative data on metastatic colony sizes and their spatial distribution in the organ allows

the experimenter to view metastatic seeding events and analyze growth rates in vivo [36].

Fig 6. Image processing steps for in vivo images. A: Overall scheme for segmenting colonies in mice lung tissue sections. B: Flow diagram listing individual steps in the

MATLAB script.

https://doi.org/10.1371/journal.pone.0209591.g006
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Metastatic seeding and growth at the metastatic site are required for developing computational

models for cancer metastasis. However, existing methods of analyzing metastasis in mice are

unable to capture this information. The MATLAB tool described in this work segments meta-

static colonies in mice lung tissue sections and obtains colony size distributions for fluorescent

cell lines. The in vitro scheme of this tool can be used to segment fluorescent cell colonies in

well plates and quantify expression of immunostained proteins. This represents an improve-

ment over the clonogenic assay, which has seen wide use over the years in cancer research

[31,37].

While currently available software such as ImageJ allows plugins that use similar morpho-

logical operators, we believe this script offers an easy way to control and change various

parameters of the algorithm to suit the needs of a given experimental set. For example, within

the MATLAB script and its functions changing binarization threshold, the limit of the h-mini-

mum transform, etc. can be quickly and easily carried out and the results visualized.

Fig 7. In vivo results. A: Composite RFP/GFP image. B: Metastatic colonies were identified. C: Colony size

distribution of DsRed+ and GFP+ metastatic colonies in a single lung. D: Mean Probability Densities and standard

deviations of GFP+ and DsRed+ colonies, from a set of three mice. Number of DsRed+ or GFP+ colonies in each mice

section are greater than 10. No significant difference was obtained between the median colony sizes using the two-tailed

Wilcoxon rank-sum test.

https://doi.org/10.1371/journal.pone.0209591.g007
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Watershed-based segmentation methods have been used to identify objects in digital

pathology [38–40]. Our work represents another application of watershed segmentation for

identifying objects, namely cell colonies in lung tissue sections and well plates. In our work

both, the in vitro and in vivo segmentation schemes make use of the watershed algorithm in

identifying colonies. The segmentation algorithm we employ is fast, accurate and reliable for

even densely seeded samples. It is suitable for quantitatively analyzing fluorescently tagged cell

lines which are becoming increasingly popular in cancer research. Given the high resolution

and brightness of fluorescent markers, imaging at a magnification of 4x is sufficient for effec-

tive analysis. This obviates any need for specialized whole slide imaging platforms and software

requirements for image acquisition or large-image handling[41].

Fig 8. In vivo validation. A: Validation of metastatic counts. Each red/green point represents DsRed+/GFP+ metastatic colonies in one lung

section respectively. B: Metastatic colonies and corresponding segmented areas.

https://doi.org/10.1371/journal.pone.0209591.g008

Fig 9. Intra-mouse vs mouse-to-mouse variation. A: Metastatic counts in intra-mouse (N = 8) and inter-mouse (N = 5) lung

tissue sections. Blue data point represents mouse used for generating intra-mouse lung sections. B: Metastatic counts from the

intra-mouse set, arranged according to distance across the lung width.

https://doi.org/10.1371/journal.pone.0209591.g009
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As a next step, the in vitro assay could be modified to also identify cell-cycle phases (G1, G2,

S) of cells. Successful image analysis based cell-cycle quantification has been demonstrated in

literature [42] and could add an interesting dimension to the colony-formation assay we

describe. The in vivo assay could be expanded to include measurements of immunostained

proteins-of-interest, such as Ki-67.

Furthermore, improvements to segmentation accuracy and sensitivity of the algorithm,

especially for different metastatic organs, such as brain, liver, lymph nodes would be useful.

The liver suffers from high autofluorescence leading to lower segmentation accuracy.

Machine-learning techniques are a promising avenue for improving segmentation, since we

expect to produce a large number of fluorescence-microscopy images which may be used as

training sets. Extending this methodology to H&E stained sections would widen the scope of

this work significantly. While some efforts have been taken in this direction, accurate segmen-

tation in H&E stained images remains challenging [8,39].

Supporting information

S1 Fig. Lentiviral vectors. A: Vector 1, leading to expression of DsRed. B: Vectors 1 and 2,

leading to cleavage of vector 1, expression of GFP and degradation of DsRed.

(TIF)

S2 Fig. In vitro image processing steps. A: Colony image in the GFP channel. B: Preprocess-

ing steps applied to A. C: Single Colony DAPI channel image. D: Distance transform applied

to C.

(TIF)

S3 Fig. In vitro segmentation examples. A-C: Successful segmentation of connected colonies

(A) via distance transform (B) and subsequent watershed segmentation (C). D-F: Fused colo-

nies segmented incorrectly. Scalebars = 1 mm.

(TIF)

S4 Fig. Segmentation of dense colonies in vivo. A: DsRed+ and GFP+ colonies, GFP and RFP

channel composite B: DAPI and CY5 channel composite, showing higher fraction of nuclei

positive for Ki-67 in DsRed+ colonies. Scale bars = 450 microns.

(TIF)

S5 Fig. In vitro negative control results. A: Colony size distributions show no significant dif-

ferences between DsRed+ and GFP+ cell lines. Significance was tested using the Wilcoxon

rank-sum test. B: Identical cumulative frequency distribution of Ki-67 Index. C. Ki-67 expres-

sion levels show no significant difference between DsRed+ and GFP+ cell lines. Significance

was tested using unpaired t-test.

(TIF)

S6 Fig. Native proliferation rates and method validation. A: Non-pretreated DsRed+ and

GFP+ cells show no significant difference in confluence fold change. For cells pretreated with

Paclitaxel, confluence values are reduced (��� p<0.001) B: Cell proliferation rates tested using

hemocytometer counts over time. No significant differences between proliferation rates of

DsRed+ (Red) and GFP+ (Green) cells. C: Comparing segmentation by MATLAB tool to

binarizing and object counting in ImageJ.

(TIF)

S7 Fig. In vitro live cell image processing steps. A,B: RFP/GFP channel images after prepro-

cessing. C: Combined results of segmenting RFP and GFP channels by distance transform and
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a subsequent watershed algorithm. D: Colony level metrics obtained from segmented images.

E. Colony size distributions obtained sorted according to cell line (Significance tested by Krus-

kal-Wallis test, ��� p<0.001). Scale bars = 1 mm.

(TIF)

S8 Fig. Correlation between colony area and cell counts for MCF7 cells in vitro. Using the

in vitro fixed-cell assay, we obtain both areas and cell counts for each colony. This information

can be used for a given cell line to estimate colony cell counts for subsequent live-cell experi-

ments.

(TIF)

S9 Fig. Segmentation of dense colonies in vivo. A: Lung GFP channel image of metastatic col-

onies. B: Results obtained by MATLAB tool. C. Binarization step in ImageJ does not segment

individual colonies. Scalebar = 1 mm.

(TIF)

S10 Fig. Example of reducing image size. To cover the majority of a single well in a 6-well

plate required imaging 180 images (4X objective) per channel that were stitched. Each original

image consists of 13346 X12300 pixels at 1.346 micron per pixel (left) which was reduced to

6673 X 6150 pixels at 2.692 micron per pixel (right) as shown.

(PDF)
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