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Abstract: Polysaccharides such as β-2,1-linked fructans including inulin or fructose oligosaccharides
are well-known prebiotics with recognised immunomodulatory properties. In recent years, other
fructan types covering β-2,6-linked fructans, particularly microbial levans, have gained increasing
interest in the field. β-2,6-linked fructans of different degrees of polymerisation can be synthesised
by plants or microbes including those that reside in the gastrointestinal tract. Accumulating evidence
suggests a role for these β-2,6 fructans in modulating immune function. Here, we provide an overview
of the sources and structures of β-2,6 fructans from plants and microbes and describe their ability to
modulate immune function in vitro and in vivo along with the suggested mechanisms underpinning
their immunomodulatory properties. Further, we discuss the limitations and perspectives pertinent
to current studies and the potential applications of β-2,6 fructans including in gut health.

Keywords: fructan; levan; immunomodulatory; microbiota; gut health; immunity; fructose; polysac-
charide; fructooligosaccharide; exopolysaccharide

1. Introduction

Carbohydrates such as oligosaccharides and polysaccharides (PS) are one of the most
abundant compounds on earth comprising >50% of the world’s biomass [1]. These diverse
structures are derived from plants, microorganisms and mammals and synthesised by a
vast range of enzymes [1–3]. PS and oligosaccharides fulfil many critical functions in living
organisms including sustenance, storage reserves and as structural support [1,3–8]. PS are
homopolymers or heteropolymers that are typically made up of >20 sugar monomers [1].
The large diversity of PS reflects the range of natural monomeric sugars (e.g., D-glucose,
D-mannose, D-fructose, D-xylose, D-galactose, D-fucose, D-glucuronic acid, L-rhamnose,
among many others) and pyranose and furanose ring formations that can make up
countless assortments of di-, tri- and oligosaccharides and PS of wide ranging molec-
ular weights [1,3]. These structures can be linked by α-or β-glycosidic bonds and may
adopt many variations of branching combinations from simple structures to highly complex
macromolecules [1,3].

PS from plants, as well as from microbes, can be consumed as part of the human
diet [9–12] For example, starch can be broken down by host-derived enzymes to glucose
units for energy [13]. Alternatively, nondigestible PS (NDP) are primary components
of dietary fibres [12,14] and are resistant to human gut enzymes in the upper part of
the gastrointestinal (GI) tract [15,16]. These NDP are fermented by resident commensal
microbes in the large intestine [15,16]. Consumption of dietary fibres by humans has
been linked to several health and physiological benefits [15,17]. For example, a reduced
risk of death and mortality from diabetes, cancer, infections, and respiratory disease
was shown by meta-analysis to be associated with increased whole grain or cereal fibre
consumption [15,18], and diets rich in dietary fibres are linked to decreased blood insulin
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and glucose levels, reduced food transit time, increased satiety, weight loss promotion,
cholesterol-lowering effects, improved mineral absorption and reduced blood pressure,
among other effects [13,15]. Dietary β-glucans and fructans are well-known examples of
dietary fibres that contribute to some of these health benefits [19,20].

Microbial PS synthesised from pathogenic or commensal microbes comprise a vast
and complex array of structures [21–23] with many attached to other macromolecules to
form glycoconjugates such as glycolipids and glycoproteins [1,3,6,7]. Microbial PS can be
found in the cytoplasm as storage PS, or associated with the cell wall [24] including as
capsular PS on the outer surface [21,23] and lipopolysaccharides (LPS) anchored to the
cell membrane [24,25]. They are also found as exopolysaccharides (EPS) secreted into the
extracellular environment or loosely associated with the bacterial cell surface [1,24]. PS
from microbes, for example those inhabiting the human body such as the gut [26] play
biological roles ranging from biofilm formation to immunomodulators. For example, EPS
are a component of biofilms aiding in their function, stability and maintenance [27,28]. EPS
can interact with each other and form the matrix that encompasses microbial cells [28].
Biofilms have mainly be studied in pathogens [29]. Among commensal or probiotic
bacteria, L. johnsonii EPS has been shown to modulate biofilm formation in vitro [30],
and B. subtilis EPS has been reported to improve the stability of floating biofilms [31].
Further, it has been suggested that biofilms formed by EPS-producing probiotic bacteria
may aid host protection to injury or pathogenic insults [24]. Many microbial PS are also
known to influence host immune function [1,21,24,32–35]. For example, EPS-producing
strains of Bifidobacteria showed a reduced ability to induce host immune responses in vivo
compared to EPS knock-out strains, supporting the role of EPS from commensal bacteria in
maintaining host-microbial mutualism [32]. Microbial or plant PS have also been shown to
modulate cytokine production by immune cells in vitro [24,36–39].

Fructans represent an important class of PS in plants and microbes, in terms of occur-
rence and biological function. Poly- or oligosaccharide β-2,1 inulin-type fructans typically
contain only β-2,1-linked fructose residues ranging up to 60 monomeric units [40] and
are well-known prebiotics with recognised immunomodulatory properties as extensively
reviewed [41–43]. Another type of fructans, containing β-2,6-linked fructose residues, are
produced by microbes where they are named levan, and in plants, herein termed plant
β-2,6 fructans.

Here, we will provide an overview of plant and microbial β-2,6 fructans of different
structures, focusing on their in vitro and in vivo immunomodulatory properties (Table 1,
Figure 1). We will also discuss the suggested mechanisms underpinning their immunomod-
ulatory function while outlining the limitations and perspectives pertinent to the field, as
well as the potential applications of β-2,6 fructans including in gut health.
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Figure 1. Schematic structural representation of plant or microbial β-2,6 fructans with reported 
immunomodulatory properties. Microbial levan or plant β-2,6 fructans are shaded orange or blue, 
respectively. Green pentagons represent fructose, blue circles, glucose and black circles, O-acety-
lated glucose. *Tentative structure. Also see Table 1 and 2 for descriptive structures. 

3. The Immunomodulatory Properties of Microbial Levan and Plant β-2,6 Fructans in 
Vitro 
3.1. Effect of β-2,6 Fructans on Cytokine or Chemokine Production and Immunity 

Microbial levan and plant β-2,6 fructans have been shown to modulate cytokine pro-
duction by immune cells in vitro, as summarised in Table 1, which includes structural 
information. For example, the soil-bacterium B. licheniformis produces a high-molecular 
weight (Mw) levan EPS (2,000,000 Da) containing β-2,1 branching which induced the pro-
duction of proinflammatory cytokines IL-6 and TNF-α by human whole blood cells [101]. 
Another high Mw (>2,600,000 Da) but linear levan isolated from Paenibacillus sp. nov 
BD3526 induced TNF-α production by isolated murine splenocytes but not IL-2, IL-4, IL-
6, IL-10, IL17A or IFN-γ suggesting a marginal inflammatory effect [102]. The low Mw 
microbial levans produced by B. subtilis natto CCT7712, a β-2,6 fructooligosaccharide mix, 
increased expression of TNF-α and proinflammatory chemokine IL-8 in human-derived 
ovarian carcinoma cells [104]. Although these high and low Mw microbial levans both 
induce TNF-α, the discrepancy with other cytokines may be partly explained by the struc-
tural differences of levan such as branching/linearity and Mw, and/or the different cell 
types used in the assays. The mechanisms underpinning the proinflammatory immuno-
modulatory properties of microbial levan remain poorly understood. However, a study 
by Xu and colleagues (2006) showed that the production of proinflammatory cytokines 
TNF-α and IL-12 p40 by B. subtilis natto levan in monocyte/macrophage cell lines [10], was 
not due to bacterial LPS, a potent TLR4 ligand, as i) levan was sourced from Gram-positive 
bacteria and ii) IL-12 p40 production was not dampened using the LPS inhibitor, poly-
myxin B [10] (LPS contamination is further discussed in section 5). B. subtilis natto levan 
induced TNF-α and IL-12 p40 production in murine primary peritoneal and spleen cells. 
TNF-α production in peritoneal cells was strongly dependent on TLR4, and reduced in 
TLR2 KO cells [10]. In addition, microbial levan treated with LPS-inhibitor polymyxin-B 
activated human TLR4-transfected HEK293 cell lines at low concentrations, supporting 
that cytokine production by levan was TLR-mediated. In addition, some of the microbial 
levans tested were shown to induce anti-inflammatory cytokines in vitro. For example, 
levan from L. mesenteroides S81 found in sourdough did not induce cytokines TNF-α, IL-
12 or IL-10 in HT-29 cells (human epithelial cell line [114]) but did stimulate IL-4 produc-
tion [98]. IL-4 is an anti-inflammatory cytokine that plays a key role in the type 2 inflam-
matory response and allergy [115]. Furthermore, treatment of LPS-challenged RAW 264.7 

Figure 1. Schematic structural representation of plant or microbial β-2,6 fructans with reported immunomodulatory
properties. Microbial levan or plant β-2,6 fructans are shaded orange or blue, respectively. Green pentagons represent
fructose, blue circles, glucose and black circles, O-acetylated glucose. * Tentative structure. Also see Tables 1 and 2 for
descriptive structures.

2. Overview of β-2,6 Fructans: Occurrence, Synthesis and Function
2.1. Plant β-2,6 Fructans

Plants utilise fructosyltransferases to synthesise fructans by adding fructose residues
on to sucrose leading to the production of different fructofuranose-linked structures [44–48].
Plant fructans (β-2,6 fructans or β-2,1 inulin-type fructans) are polymers of fructose found
as storage PS in ~15% of higher plants such as forage grasses, cereals and vegetables [49].
Inulin, known as a common dietary fibre and prebiotic [17], has received much attention
for its immunomodulatory properties including the ability to induce beneficial effects via
the gut microbiota or through direct interactions with the immune system [41,43,46,50,51],
however, these effects are less known in plant fructans containing β-2,6 linkages.

Plant β-2,6 fructans include plant levans, also named phleins, which are fructans
that generally contain linear β-2,6-linked fructose chains and are found in a small num-
ber of plant species like grasses [52,53]. In addition, mixed linkage plant fructans can
contain β-2,6-fructose-linked residues with β-2,1-branching which are typically termed
graminians [52]. Plant graminians also can comprise more complex structures involving
additional fructose-linked branching or as neoseries structures [52]. Further, some plant
fructans contain a β-2,1-backbone with β-2,6 linkages, for example [54]. β-2,6 fructans
can be produced by some plant species including Agropyron cristatum [55], Pachysandra
terminalis [56] and Curcuma kwangsiensis [57], among others [44,48]. These plant β-2,6
fructans are nonstructural storage carbohydrates located in leaf and stem sheaths and
are generally low in molecular weight (Mw) [48]. In addition, this review includes plant
inulin-type fructans with β-2,6 branching points, for example ALP-1 produced by Arctium
lappa (discussed in Sections 3 and 4; see Table 1 for structure).

2.2. Microbial Levan

Microbial levan is typically a large β-2,6 fructofuranose polymer, a β-2,6 fructan [10],
that is linear or can contain β-2,1 branching [48,58,59]. Many bacteria are capable of syn-
thesising levan including gut commensal Lactobacillus reuteri [60], and Streptococcus mutans
or S. salivarius found in the oral cavity [61,62], as well as Bacillus subtilis [9,63], B. amyloliq-
uefaciens [64], L. citreum [65], Zymomonas mobilis [66], Pseudomonas syringae pv [67], Erwinia
herbicola [68], Microbacterium laevaniformans and Serratia levanicum [48,69]. In microbes,
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levan is synthesised by levansucrase (E.C 2.4.1.10), a fructosyltransferase belonging to
family 68 of glycoside hydrolases (GH68) according to the CAZy (carbohydrate-active en-
zymes) database (www.cazy.org, accessed on 13 April 2021) [48]. Generally, levansucrases
are secreted into the extracellular environment but can also be attached to the bacterial
cell surface [48,58]. Levansucrase binds to a substrate, such as sucrose, and adds fructose
molecules to a growing fructose chain [48,58]. Typically, this process produces a glucose-
capped β-2,6-linked fructofuranose polymer containing no or some β-2,1 branching [48].

Levan can be produced by bacterial fermentation or in vitro using recombinant lev-
ansucrase heterologously made in Escherichia coli [48,70–72]. In addition, yeast such as
S. cerevisiae has been used for levan production, although, this is less common [48,73]. The
degree of branching (up to 13% branching has been reported [48]) and molecular weight
of microbial levan depend on the microbial source and the production method [48,59].
In addition, low-branched microbial levan has been shown to be produced by bacteria
such as S. levanicum [69]. Moreover, some species of acetic acid bacteria produce linear
levan [74]. In general, microbial levans form high molecular weight polymers [48] such
as levan produced by Serratia sp. which can reach up to 4,400,000 Da [48,69]. However,
some bacteria have been shown to produce both low and high molecular weight levans,
for example from B. subtilis natto [48,75]. The conditions known to affect the molecular
weight of microbial levan during its production include temperature and levansucrase
concentration [48].

Microbial levan is an amphiphilic molecule known to adopt a spherical conformation
in aqueous solution, and, therefore is commonly referred to as a nanoparticle [48,58,59,72].
Microbial levan has been proposed for its use in several industries including in aquacul-
ture [48,76] and as packaging/films [48]. Further, levan has been incorporated in products
from the food industry, for example in dairy products or bread [48,77,78]. It is also present
in fermented food such as natto (fermented soybean) [9,10]. Microbial levan may also be
relevant to the pharmaceutical industry, for example, as a nanoparticle for delivering drugs
including antibiotics [48,79].

In terms of its biological role, microbial levan acts as a constituent of biofilm matrices
in some bacteria [31,80] and has also been suggested to contribute towards plant pathogen
fitness and virulence [48,81,82]. Further, in soil-resident bacteria, levan has been shown
to aid in tolerance to salt and desiccation as well formation of cell aggregates on abiotic
surfaces suggesting a role for levan in environment adaptions of bacteria under high
osmotic stress and in biofilm formation [80]. In addition, levan has been suggested to act as
a nutritional reservoir [31] perhaps as an energy source under conditions like starvation [48].
Further, levan has been suggested to promote colonisation of bacteria in the gut [60] and
to act as a prebiotic in vitro [71,83–87] although in vivo evidence is scarce [88,89]. The
human gut symbiont B. thetaiotaomicron can utilise levan [90], supporting a potential role
of levan as a prebiotic in humans. In addition, isolates of levan-producing strains such
as B. subtilis sp isolates or L. reuteri LTH5794 have been detected in the faeces of healthy
humans [91–94], yet further work is warranted to verify that levan is produced in the gut by
resident commensal bacteria in the GI tract. In addition, microbial levan has been suggested
to elicit bioactivity or confer several health benefits including anticancer/antitumour [66],
antipathogenic [78], antidiabetic [95], cholesterol-lowering [48,96], antioxidant [97,98],
antiviral [99] or antiobesity properties [100].

The next sections provide an overview of the in vitro (Table 1) and in vivo (Table 2)
evidence for the immunomodulatory properties of β-2,6 fructans from plants and microbes.

www.cazy.org
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Table 1. Examples of studies describing the immunomodulatory effects of β-2,6 fructans in vitro.

Fructan Origin Source Reported Structure Mw (Da) Immunomodulatory Effect(s) Reference

B. subtilis natto levan EPS Microbial n.d n.d

↑ TNF-α and IL-12p40 production in
monocyte/macrophage cell lines and peritoneal and
splenic mouse primary macrophages; TNF-α production
in peritoneal cells was TLR4-dependent. The levan also
activated TLR4 reporter cells.

[10]

B. licheniformis levan EPS Microbial β-2,6-linked backbone with β-2,1 branching. 2,000,000 ↑ TNF-α and IL-6 production in human whole blood. [101]
Paenibacillus sp. nov BD3526

levan EPS Microbial Linear β-2,6 fructofuranose polysaccharide. >2,600,000 ↑ TNF-α production in mouse splenocytes; and ↑ mouse
spleen cell proliferation. [102]

B. licheniformis 8-37-0-1 levan EPS Microbial β-2,6-linked levan containing β-2,1 branching. 28,260 ↑mouse spleen cell proliferation [103]

B. subtilis natto CCT7712 FOS Microbial Mixed DP up to 7: β-2,6-linked fructooligosaccharides
(primarily 6-nystose). n.d ↑ gene expression of IL-8 and TNF-α in human

OVCAR-3 cells. [104]

Levan derived from L.
mesenteroides S81 (found

in sourdough)
Microbial Linear β-2,6 fructan; spherical form in aqueous solution. n.d ↑ IL-4 in human epithelial model HT-29 cells. [98]

Tanticharoenia sakaeratensis (from
soil) levan EPS Microbial β-2,6 fructofuranose polymer. ~100,000 to 680,000 ↑ NO production in RAW264.7 macrophages [105]

DFA-IV and Z. mobilis levan Synthetic and
Microbial

DFA-IV, disaccharide Di-D-fructose-2,6′:6,2′-dianhydride
is a levan derivative disaccharide consisting of 2 fructose
residues enzymatically produced using levan fructosyl

transferase [106]. Z. mobilis levan was n.d but is
compositionally described in [107].

DFA-IV, 324 [106]; Z.
mobilis 6,000,000

Both Z. mobilis levan (control) and DFA-IV ↑
phagocytosis of RAW264.7 macrophages; and ↑ iNOS
expression and NO production in
RAW264.7 macrophages.

[108]

Recombinant levansucrase levan
derived from leuconostoc

mesenteroides NTM048 found in
green pea

Recombinant
levansucrase Levan (similar NMR chemical shifts to B. subtilis levan). n.d ↑ IgA in isolated murine ↑ peyer’s patches; however no

IgA induction by B. subtilis levan. [109]

Fructan from Anemarrhena
asphodeloides (AAP70-1) Plant

β-2,6 fructofuranose linear chain with β-2,1 fructofuranose
branching point and terminal
α-glucopyranose (neokestose).

2720 ↑ IL-6, IL-1β and TNF-α in RAW 264.7 macrophages; ↑
phagocytic function of macrophages. [110]

Fructans from Polygonatum
odoratum (POP-1) and P.

cyrtonema (PCP-1)
Plant β-2,1 fructofuranose linear chain with β-2,6 side

branching and an internal α-glucopyranose (neokestose). 5000 ↑ IL-6 and phagocytic activity of
RAW264.7 macrophages. [111]

Fructan from Arctium
lappa (ALP-1) Plant β-2,1 backbone with β-2,6 branching and a

terminal α-glucopyranose. 5120

Treatment of LPS-challenged RAW 264.7 macrophages
with ALP-1:
↓ TNF-α, IL-6 and IL-1β yet ↑ IL-10; and ↓ LPS-induced
NO production in RAW 264.7 macrophages

[54]

Fructan from Curcuma
kwangsiensis Plant

β-2,6-linked main chain (81.8% total sugar residues)
consisting of single β-fructofuranose branch points (4.9%
branching) with both terminal glucose (3.1%) and terminal

fructose (5.3%).

5300 ↑ phagocytic activity of RAW264.7 macrophages; and ↑
RAW264.7 macrophage proliferation. [57]

Fructans from agave salmiana
N.d, however, agave fructans have been described as

highly branched fructose polymers comprising both β-2,6
and β-2,1 linkages [112].

n.d ↑ T-cell-associated transcription factors FOXP3 and Tbet
in human PBMCs-showed prebiotic effects [113]

Abbreviations: ↑, induced or increased; ↓, decreased; DFA-IV, disaccharide Di-D-fructose−2,6′:6,2′-dianhydride (a levan derivative disaccharide consisting of two fructose residues enzymatically produced using
levan fructosyl transferase [106]); EPS, exopolysaccharide; FOXP3, forkhead box P3; HPSEC-MALLS, high-performance size-exclusion chromatography coupled with online multiangle laser light scattering; Ig,
immunoglobulin; IL, interleukin; iNOS, nitric oxide synthase; n.d, not described; NO, nitric oxide; PBMCs, peripheral blood mononuclear cells; Tbet, T-box transcription factor., TLR, toll-like receptor; TNF,
tumour necrosis factor.
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3. The Immunomodulatory Properties of Microbial Levan and Plant β-2,6 Fructans
In Vitro
3.1. Effect of β-2,6 Fructans on Cytokine or Chemokine Production and Immunity

Microbial levan and plant β-2,6 fructans have been shown to modulate cytokine
production by immune cells in vitro, as summarised in Table 1, which includes structural
information. For example, the soil-bacterium B. licheniformis produces a high-molecular
weight (Mw) levan EPS (2,000,000 Da) containing β-2,1 branching which induced the pro-
duction of proinflammatory cytokines IL-6 and TNF-α by human whole blood cells [101].
Another high Mw (>2,600,000 Da) but linear levan isolated from Paenibacillus sp. nov
BD3526 induced TNF-α production by isolated murine splenocytes but not IL-2, IL-4,
IL-6, IL-10, IL17A or IFN-γ suggesting a marginal inflammatory effect [102]. The low Mw
microbial levans produced by B. subtilis natto CCT7712, a β-2,6 fructooligosaccharide mix,
increased expression of TNF-α and proinflammatory chemokine IL-8 in human-derived
ovarian carcinoma cells [104]. Although these high and low Mw microbial levans both in-
duce TNF-α, the discrepancy with other cytokines may be partly explained by the structural
differences of levan such as branching/linearity and Mw, and/or the different cell types
used in the assays. The mechanisms underpinning the proinflammatory immunomodula-
tory properties of microbial levan remain poorly understood. However, a study by Xu and
colleagues (2006) showed that the production of proinflammatory cytokines TNF-α and
IL-12 p40 by B. subtilis natto levan in monocyte/macrophage cell lines [10], was not due to
bacterial LPS, a potent TLR4 ligand, as (i) levan was sourced from Gram-positive bacteria
and (ii) IL-12 p40 production was not dampened using the LPS inhibitor, polymyxin B [10]
(LPS contamination is further discussed in Section 5). B. subtilis natto levan induced TNF-α
and IL-12 p40 production in murine primary peritoneal and spleen cells. TNF-α production
in peritoneal cells was strongly dependent on TLR4, and reduced in TLR2 KO cells [10].
In addition, microbial levan treated with LPS-inhibitor polymyxin-B activated human
TLR4-transfected HEK293 cell lines at low concentrations, supporting that cytokine pro-
duction by levan was TLR-mediated. In addition, some of the microbial levans tested were
shown to induce anti-inflammatory cytokines in vitro. For example, levan from L. mesen-
teroides S81 found in sourdough did not induce cytokines TNF-α, IL-12 or IL-10 in HT-29
cells (human epithelial cell line [114]) but did stimulate IL-4 production [98]. IL-4 is an
anti-inflammatory cytokine that plays a key role in the type 2 inflammatory response and
allergy [115]. Furthermore, treatment of LPS-challenged RAW 264.7 macrophages with
ALP-1 (see Table 1 for structure) stimulated anti-inflammatory cytokine IL-10 and reduced
proinflammatory cytokines TNF-α, IL-6 and IL-1β in a dose-dependent fashion [54].

Similar variations in cytokine production are observed for plant β-2,6 fructans (Table 1).
Anemarrhena asphodeloides, a plant commonly found in eastern Asia and used as a tradi-
tional medicine in China, produces a low Mw neokestose β-2,6 fructan termed AAP70-1
which was shown to induce the production of IL-6, IL-1β and TNF-α in RAW 264.7
macrophages [110]. Moreover, Polygonatum odoratum and P. cyrtonema, plant species of the
Asparagaceae family produces neokestose fructans with β-2,1-linked linear chains (instead
of β-2,6 backbone) and β-2,6 branching, POP-1 and PCP-1, respectively. POP-1 and PCP-1
induced IL-6 production by RAW264.7 macrophages with PCP-1 exhibiting a higher po-
tency [111]. The authors suggested that the acetyl group on the glucose residue of PCP-1
fructan may be responsible for the difference in IL-6 production, as the immunomodu-
latory properties of other acetylated PS exhibited stronger immunomodulatory activity
than nonacetylated PS [111,116]. This supports the notion that different levan structures
may explain in part some of the discrepancies observed in cytokine production in vitro.
However, branching structures are only seldom reported (Table 1) and more thorough and
systematic carbohydrate analyses such as GC-MS linkage analysis would help advance our
understanding of structure-activity of levans, as shown in other studies [57,60]. The mech-
anisms underpinning the immunomodulatory properties of plant β-2,6 fructans remain to
be investigated. Agave fructans isolated from Agave salmiana comprising highly branched
fructose polymers with both β-2,6 and β-2,1 linkages [112] appeared to directly induce the
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expression of T-cell-associated transcription factors FOXP3 and Tbet in peripheral blood
mononuclear cells [113].

Using well-characterised high-purity microbial levans and plant β-2,6 fructans to assay
immune modulation across multiple cell types as well as in vivo (Section 4) is required to
address the discrepancies between the effect of levans on cytokine modulation.

3.2. Effect of Levan on Macrophage NO Production, Phagocytic Activity and Cell Proliferation

Associated with their ability to influence immune cell responses, microbial levan
and plant β-2,6 fructans have been reported to modulate nitric oxide (NO) production, a
well-known immunomodulatory product of activated macrophages [117], as well as affect
macrophage phagocytosis (see Table 1 for structural details when available). For example,
plant β-2,6 fructan ALP-1 showed an anti-inflammatory effect by decreasing LPS-induced
NO production in RAW 264.7 macrophages [54] while AAP70-1 showed no induction
of NO [110]. Plant AAP70-1, POP-1 and PCP-1 also showed an ability to enhance the
phagocytic activity of RAW 264.7 macrophages, and PCP-1 stimulated macrophage cell
proliferation at high concentrations (>200 µg/mL) [111]. In line with these findings, a low
Mw branched β-2,6 fructan with a β-2,6-linked main chain from the plant species Curcuma
kwangsiensis also increased the phagocytic activity of RAW264.7 macrophages (by 39%),
while LPS resulted in an 82% increase and induced macrophage proliferation [57]. The
levan soil bacterium Tanticharoenia sakaeratensis, which produces a high Mw levan EPS,
was also shown to induce NO production in RAW264.7 macrophages in a dose-dependent
manner and the use of the LPS-inhibitor polymyxin B confirmed that the effects were not
attributable to LPS contamination [105]. Similarly, both Z. mobilis levan and di-D-fructose-
2,6′:6,2′-dianhydride (DFA-IV)-a levan derivative disaccharide consisting of 2 fructose
residues enzymatically produced using levan fructosyl transferase [106] were found to
increase NO production as well as NO synthase (iNOS) expression [108]. Other microbial
levans have been reported to induce immune cell proliferation. This is for example the
case for levans from B. licheniformis 8-37-0-1 and Paenibacillus bovis sp. nov BD3526 which
were shown to induce the proliferation of murine splenocytes [102,103]. However, it is not
known whether spleen cell proliferation by microbial levan or plant β-2,6 fructans includes
macrophage proliferation, and what is the biological impact of the proliferative potential
of microbial levan or plant β-2,6 fructans on immune cells.

Overall, microbial levan as well as plant β-2,6 fructans were shown to increase phago-
cytic activity of macrophages, which may be applied to promote animal health or reduce
infection (as described in Section 4). Further, the contrasting findings of microbial levans
(and levan derivative DFA-IV) or plant β-2,6 fructans on NO production is unclear but may
be related to their purity, Mw or compositional structure. Further studies are warranted
to compare how different β-2,6 fructan structures from plant and microbial sources may
affect macrophage function which could be used for beneficial applications.

3.3. Effect of Microbial Levan on Gut Barrier Function

Intestinal epithelial cells are being increasingly recognised for their role in immune
function and are important for providing protection to the host against microbial in-
vaders [118,119]. Levan nanoparticles produced in vitro using recombinant levansucrase
Lsc3 from P. syringae pv. Tomato, were tested for their effect on epithelium integrity using
human Caco-2 cells grown on transwells by transepithelial electrical resistance (TEER) [72].
While sodium dodecyl sulfate (SDS) increased membrane permeability, cells treated with
levan nanoparticles showed a dose-dependent moderate decrease in intestinal permeability
compared to medium controls, supporting a possible role of levan in strengthening the gut
barrier [72]. In another study, pretreatment of IPEC-J2 cells (porcine enterocyte model [120])
with β-2,6-linked fructose disaccharide DFA-IV led to decreased membrane permeability
post LPS-challenge, determined by TEER and fluorescein isothiocyanate (FITC) dextran
measurements [121]. The authors also showed that DFA-IV was associated with intestinal
wound healing properties in vitro and in vivo through measuring specific genes associated
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with differentiation, proliferation and cell migration [121]. Together, these studies indicate
that levan shows potential to improve intestinal barrier function in vitro or associated
wound healing in the intestine, although due to the limited amount of studies and different
methodologies between studies, further work is required to confirm these in vitro findings
as well as test the effect of levan on intestinal barrier function in vivo.

IgA, the most abundant immunoglobulin (Ig) in animals, is secreted primarily in
mucosal tissues such as the intestine [122]. IgA plays a key role in gut barrier function,
protecting the host by neutralising pathogenic threats such as viruses, halting bacterial
contact to the intestinal epithelium, and facilitating the clearance of large biomolecules,
among other functions [122]. L. mesenteroides NTM048 levansucrase-synthesised levan and
L. mesenteroides NTM048 EPS but not B. subtilis levan were shown to induce IgA production
in isolated murine peyer’s patches [109]. These differences may be due to the capacity of
IgA to target different microbial antigens [123]. For example, IgA was proposed to target
proteins associated with the B. thetaiotaomicron fructan-associated PS utilization locus [123].
Therefore, this mechanism may play an indirect role in gut colonisation and host-microbial
mutualism [123]. However, further work is needed to assess the role of microbial levan (or
its derivative DFA-IV) from different sources on IgA induction, and whether this can be
used as a route to modulate beneficial members of the gut microbiota.

4. The Immunomodulatory Properties of Microbial and Plant β-2,6-Associated
Fructans In Vivo

There are limited studies investigating the impact of β-2,6 fructans on human
health [124,125], and to the best of our knowledge, there have been no reports investi-
gating the immunomodulatory properties of plant β-2,6 fructans or microbial levans in
humans. Below we discuss studies that reported the immunomodulatory properties of
microbial levan and plant β-2,6 fructans in vivo which have mostly been demonstrated
using murine or fish models (Table 2).

4.1. Effect of β-2,6 Fructans on Immune Responses in Mice

The first studies investigating microbial levan and immunity-associated modulations
in mice date back as far as 1948, with levan from S. salivarius on MUMPs virus multipli-
cation [126]. Levan from Aerobacter laevenicum was later shown to induce levan-specific
antibody responses which may also be cross-reactive with the β-2,1 fructose polymer
inulin [127,128]. More recent evidence for immune modulation by microbial levan or β-2,6
fructans in mice is limited to studies using microbial levans from L. reuteri and B. subtilis
natto and plant fructan ALP-1.

In vivo, L. reuteri 100-23, which produces a relatively low Mw branched levan (see
Table 1 for structure), was found to modulate T cell responses in the spleen of rats, as
splenic FOXP3+ CD4+ regulatory T cells were higher in rats colonised with the wild-type
strain as compared to a fructosyltransferase (ftf) KO L. reuteri strain incapable of producing
EPS levan [60]. This study indicates that levan produced in situ may play a role in the
evolutionary adaptation of L. reuteri to a sucrose-rich gut environment by modulation of
the immune system [60]. Microbial levan has also been suggested to modulate Th2 helper
cell responses in allergy models. Here, B. subtilis natto levan orally-administered to mice
decreased levels of ovalbumin-(OVA)-induced serum IgE while there was no difference
seen with IgG2a or IgG1 [10]. IgE as well as IL-4 are involved in Th2 responses while
IgG2a for example is associated with Th1 responses [10]. Following immunisation with
OVA, B. subtilis natto levan decreased IL-4 levels in splenic T cells isolated from mice,
but there was no difference in IFN-γ levels, suggesting that levan suppressed the Th2
response [10]. Interestingly, an older study by Bartocci and colleagues (1982) reported that
levan from Aerobacter levanicum elevated the delayed-type hypersensitivity response in
mice, also known as a type IV hypersensitivity reaction: a type of cell-mediated allergic
immune reaction [129,130]. These studies, although limited to discrete microbial levans,
provide some mechanistic insights into the immunomodulatory properties of levan re-
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ported in vitro, particularly through the modulation of T cell responses and interaction
with TLR4 (see Section 3.1).

Dietary ALP-1 led to increased IL-10 in the serum and colon of dextran sodium
sulfate (DSS)-induced mice, while proinflammatory cytokines TNF-α, IL1β and IL-6 were
decreased, and IgA levels also increased in the colon [131]. In addition, ALP-1 intake
appeared to alleviate the damaging effects to the colon induced by colitis [131]. ALP-1 was
also investigated in a separate study by Zhang and colleagues (2019) using mice challenged
with LPS [54]. Levels of serum proteins TNF-α, IL-1β, IL-6 were significantly decreased
in the LPS-challenged mice receiving ALP-1 supplementation whereas IL-10 was further
elevated [54]. These studies suggest that the anti-inflammatory properties of levan are
associated with the host physiological status, which may explain some of the discrepancies
with and limitations of the in vitro assays which, for the vast majority, were carried out in
nonchallenged conditions e.g. without LPS pretreatment (see Section 3.1).

Lastly, a recent study by Ragab and colleagues (2020) investigated the effect of levan
from B. subtilis isolates associated with honey (see Table 2 for structure) on peptic ulcers in
rats [132]. This low Mw levan induced ulcer alleviation, as well as decreased NF-κB levels
but had no antimicrobial effect in vitro on Helicobacter pylori, a pathogen associated with
producing gastric ulcers [133], suggesting that the mechanism was due to levan’s prebiotic
and/or anti-inflammatory properties [132]. These effects are in accordance with previous
reports showing that DFA-IV could improve intestinal wound healing in vivo [121], again
supporting the view that the anti-inflammatory effects of levans may only be tractable in a
disease model.

4.2. Effect of β-2,6 Fructans on the Immune Response in Fish

There have been several studies reporting microbial levan as immunomodulators or
prebiotic agents in aquaculture [76] by modulating cytokine production and/or conferring
improved resistance to pathogenic or chemical insults [76,134–136]. For example, fish
(Cyprinus carpio fry) fed levan derived from Bacillus megaterium that were exposed to
low doses of the insecticide Fipronil to induce stress responses, showed elevated serum
globulin, total protein and lysosome activity, and increased white blood cell (WBC) counts,
which are likely associated with increased phagocytic activity [135]. Moreover, Gupta
and colleagues (2018) found that high Mw (750,000 Da) branched levan derived from
Acetobacter xylinum NCIM 2526 induced TNF-α, IL-1β, and IL-12p40 expression in several
organs and reduced the expression of IL-10 in the intestines of Labeo rohita fingerlings after
challenge with Aeromonas hydrophila, a common pathogenic bacteria in fish [137]. Dietary
levan supplementation after pathogenic challenge also increased lysozyme activity and
the respiratory burst (release of reactive oxygen species) in serum and blood. Gupta and
colleagues (2020) then showed that A. xylinum levan fed to A. hydrophila-challenged L. rohita
fingerlings, led to increased Ig levels [138]. This levan also upregulated TLR22 expression
(a PRR exclusive to fish) and IFN-γ in several organs of the fish including the intestine
while the expression of TGF-β was mostly reduced [138].

Taken together, studies in fish exposed to insults showed multiple immunomodulatory
properties across several studies. Microbial levan may elevate the immune response
to aid in response to chemical or pathogenic challenge such as inducing or lowering
proinflammatory cytokine induction, respectively, or increasing TLR expression or Ig
responses, all contributing to mounting an appropriate immune response, that may be
beneficial for aquaculture.

4.3. Indirect Effects of β-2,6 Fructan-Induced Immune Responses

An inherent factor influencing the immunomodulatory properties of fructans in vivo
may be through the modulation of the gut microbiota, as demonstrated for β-2,1 fruc-
tans [43]. However, little is known on the indirect immunomodulatory effects of microbial
levan or plant β-2,6 fructans via the microbiota in vivo and most studies are based on
models of pathogenic or inflammatory challenge. ALP-1 supplementation was shown to
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modulate gut microbiota composition, including a slight increase in beneficial Lactobacillus
genus in the colon of DSS-induced mice compared to control [131]. In LPS-challenged
mice, ALP-1 appeared to increase Proteobactera and Firmicutes. At the genus level, ALP- 1
led to an increase of Lactobacillus and Odoribacter and decreased Bacteroides in the LPS-
induced mice [54]. In line with these changes in microbial profiles, ALP-1 treatment in
LPS-challenged mice also increased faecal short chain fatty acids (SCFA). Together, these
studies suggest that the observed anti-inflammatory effects of ALP-1 in diseased models
may be attributed to its prebiotic properties through a modulation of the gut microbiota.

In pigs, Li and Kim (2013) investigated changes in microbiota composition, and the pre-
biotic and immunomodulatory activity of a commercial fructan, a Z. mobilis levansucrase-
derived high Mw levan [139] (See Table 2). Dietary Z. mobilis levansucrase-derived levan
was shown to increase Lactobacillus levels in faeces, indicating a possible prebiotic ac-
tivity. In addition, prolonged dietary supplementation of this levan to pigs prior to an
LPS-challenge modulated immune system factors in blood including increased blood leuko-
cytes, and inhibited serum IL-6 and TNF-α production [139] as also similarly reported
using ALP-1 [131], as described above. It is noteworthy that in another study, EPS dextran
and levan (from B. paralicheniformis; 55,170 Da) was suggested as a potential natural alter-
native to antibiotics in reducing the growth of intestinal enteric pathogens in broilers [140].
Together, these data suggest that the anti-inflammatory properties of plant and microbial
levans in diseased models may be via the modulation of the gut microbiota.
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Table 2. Examples of studies describing the immunomodulatory effects of β-2,6 fructans in vivo.

Fructan Origin Source Reported Structure Mw (Da) Immunomodulatory Effect(s) Species Reference

Lactobacillus. reuteri 100-23
levan EPS Microbial β-2,6 main chain with β-2,1

branching and terminal fructose 5700 - 7700 ↑ splenic CD4+ FOXP3+ regulatory T cells Rats [60]
Bacillus subtilis natto
(fermented soybean)

levan EPS
Microbial n.d. n.d. Oral administration ↓ OVA-specific serum IgE levels in mice

post-OVA immunisation; ↓ IL-4 levels in splenic T cells. Mice [10]

Bacillus megaterium 1 (soil)
levan EPS Microbial n.d n.d ↑ white blood cell counts, and serum globulin, total protein

and lysosome activity. Fish [135]

Acetobacter xylinum NCIM
2526 levan EPS Microbial

β-2,6 fructofuranose backbone with
β-2,1 branching (Authors refer to the

following reference for structural
analysis: [97])

750000
After pathogenic challenge, dietary levan: ↑ TNF-α, IL1β, and
IL-12p40 expression in several organs, and ↓ expression of
intestinal IL-10.

Fish [137]

Acetobacter xylinum NCIM
2526 levan EPS Microbial β-2,6 fructofuranose backbone with

β-2,1 branching (as described in [97]) n.d

Dietary supplementation to A. hydrophila-challenged Labeo
rohita fingerlings:
↑ Ig levels and ↑myeloperoxidase;
↑ survival rates; and ↑ TLR22 and ↑ IFN-γ and ↓ TGF-β
expression in liver, gill, kidney and intestine.

Fish [138]

Arctium lappa inulin-type
fructan, ALP-1 Plant

Glucopyranose-capped β-2,1
fructofuranose main chain with β-2,6

fructofuranose branch points.
5120

Dietary ALP-1: ↑ IL-10 in serum and colon isolates of
DSS-induced mice; also ↓ in TNF-α, IL1β and IL-6; and ↑ IgA
response in colon; and ameliorated DSS-induced colitis.

Mice [131]

Arctium lappa inulin-type
fructan, ALP-1 Plant

Glucopyranose-capped β-2,1
inulin-type fructan containing β-2,6

branch points (see [131])
5120

↓ serum TNF-α, IL-1β and IL-6; and↑IL-10 in LSP-challenged
mice; andmodulation of faecal microbiota andSCFA content
was observed.

Mice [54]

Zymomonas mobilis levan EPS Microbial Described as a microbial levan 700,000

Dietary administration to pigs challenged with LPS or saline
(control) via intraperitoneal injection:
↑ blood leukocytes and ↓ IL-6 and TNF-α production in the
serum; and Dietary administration also increased
Lactobacillus levels in faeces.

Pigs [139]

Bacillus sp. (bacterial honey
isolates) levan EPS

Levan comprising β-2,6
fructose-linkages 21,000 Dietary administration promoted gastric ulcer alleviation and

↓ NF-κb production in the gastric mucosa. Rats [132]

Abbreviations: ↑, induced or increased; ↓, decreased; DFA-IV, disaccharide Di-D-fructose−2,6′:6,2′-dianhydride (a levan derivative disaccharide consisting of 2 fructose residues enzymatically produced using
levan fructosyl transferase [106]); EPS, exopolysaccharide; FOXP3, forkhead box P3; Ig, immunoglobulin; IL, interleukin; n.d, not described; NO, nitric oxide; OVA, ovalbumin; PBMCs, peripheral blood
mononuclear cell; TLR, toll-like receptor; TNF, tumour necrosis factor.
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5. Conclusions and Perspectives

This review gathered in vitro and in vivo evidence for the immunomodulatory prop-
erties of microbial and plant β-2,6 fructans. The large heterogeneity of experimental
approaches and in vitro and in vivo models used in these studies, as well as the large range
of β-2,6 fructans tested (in terms of structure and biological source) and their degree of
purity, render it challenging to attribute distinct effects to specific structures.

However, despite the variability of the findings, β-2,6 fructans from plants and mi-
crobes consistently showed modulation of cell cytokine production in vitro using
macrophages, human blood cells, mouse splenocytes, or human epithelial cells. Although
the exact mechanisms underpinning the immunomodulatory activities of both microbial
and plant β-2,6 fructans as well as other immunomodulatory PS remain elusive, several
pathways have been implicated including the modulation of the gut microbiota or their
metabolites, or direct interaction with immune cells. One potential underpinning mech-
anism for microbial levan specifically is through the interaction with TLR4, as proposed
for levan from B. subtilis natto using TLR4-transfected cells [10], in line with other im-
munomodulatory PS which have been proposed to interact with PRRs such as TLRs and
C-type lectin receptors (CLRs) [10,24,26,36,37,41,141] including β-(2,1) fructans [142,143].
Furthermore, CLRs [144], are expressed in the gut where they play an immunomodulatory
role by binding to carbohydrates [145–148], and may therefore interact with dietary or en-
dogenously produced microbial fructans when accessible to the underlying gut-associated
lymphoid tissue (GALT) or systemic circulation.

When assessing the modulation of immune cell function of microbial levan or plant
β-2,6 fructans, or other PS in vitro, it is important to consider their composition
and purity [149]. For example, by removing microbe-associated molecular patterns
(MAMPs) [26,150–152] such as LPS which can induce immunostimulatory effects at
very low levels in vitro [150,153]. Current methods include the use of LPS inhibitor
polymyxin B [153], Triton-X-114 and alkali-based treatments [152,154,155] but there is
a need for more sensitive and efficient methods to remove and more accurately quantify
LPS [153,156]. In addition, the huge diversity and complex structural features of plant
and microbial PS presents challenges and difficulties when determining their full struc-
tures [157,158]. For example, with regards to fructan characterisation, degradation of
fructose can occur during hydrolysis-based protocols such as monosaccharide analysis
which relies on the use of trifluroracetic acid [3,159] and fructose interconversion to glucose
or mannose has been reported to occur under acidic conditions [160]. There is also a need
to better characterise the degree of branching which may affect microbial levan or plant
β-2,6 fructan bioactivity.

In vivo studies suggest that microbial or plant β-2,6 fructans show anti-inflammatory
properties using models of infection or inflammation. However very little work has been
done to assess the contribution of the gut microbiota in this process, which is in contrast
to the more frequently-studied β-(2,1) fructans for example [43,161,162] and reviewed
in [41]. Most in vivo studies investigating the health effects of β-2,6 fructans, particularly
microbial levan, reported in this review have been performed in fish or murine experimen-
tal models, and studies in humans are lacking. One of the mechanisms supporting the
immunomodulatory properties of microbial levan specifically in vivo involves the modu-
lation of regulatory T cell responses in the spleen, but whether this also occurs in GALT
remains to be determined. Further work is warranted to determine how β-2,6 fructans
from plants or microbes from different sources and of diverse structures and molecular
weights may affect cytokine production and gut barrier function in murine models such as
DSS-induced colitis in mice where altered permeability may provide facilitated access to
GALT as suggested using other PS [163,164].

In conclusion, despite the limitations highlighted above, plant and microbial β-2,6
fructans represent a promising group of immunomodulatory PS. Further mechanistic work
is warranted to uncover their mode of action using differently-sourced fructans of different
molecular weights and structures in well-controlled animal models including if they can
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directly or indirectly affect the immune system. Human trials combined with metagenomic,
transcriptomic, and metabolomic studies will help advance our understanding of how
these β-2,6 fructans influence gut health.

At present, it is too early to select a β-2,6 fructan structure based on plant or mi-
crobial sources that could be used in prophylactic or therapeutic treatments of specific
conditions although evidence from in vitro and animal studies indicates that microbial
levans show great promise as immunomodulatory and/or prebiotic agents, that could
be used in the pharmaceutical or food industry, or in animal husbandry. It should be
noted that a factor limiting the wide study and application of microbial levan specifically
is its low purification yield, high costs or bottlenecks in processing associated with its
production on a large scale [165,166]. Plant β-2,6 fructans remain under-studied compared
to microbial levan. Further work is required to harness the full potential of microbial levan
and/or plant β-2,6 fructans as immunomodulatory and/or prebiotic agents for health and
industrial applications.
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Abbreviations

ATR-FTIR attenuated total reflectance Fourier-transform infrared spectroscopy;
CD4 cluster of differentiation 4;
CLRs C-type lectin receptors;
DFA-IV disaccharide Di-D-fructose-2,6′:6,2′-dianhydride;
DP degree of polymerisation;
DSS dextran sodium sulfate;
ELISA enzyme-linked immunosorbent assay;
EPS exopolysaccharide;
FITC fluorescein isothiocyanate;
FOS fructooligosaccharide;
FOXP3 forkhead box P3;
FT-IR Fourier transform infrared spectroscopy;
FTF fructosyltransferase;
GALT Gut-associated lymphoid tissue;
GC-MS gas chromatography-mass spectrometry;
GPC gel permeation chromatography;
GI gastrointestinal;
HPSEC-MALLS High-Performance Size-Exclusion Chromatography coupled with on-line

multi-angle Laser Light Scattering;
Ig immunoglobulin;
IL interleukin;
iNOS nitric oxide synthase;
KO knockout;
LPS lipopolysaccharide;
MAMPs microbe-associated molecular patterns;
NDP non-digestible polysaccharides;
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NMR nuclear magnetic reasonance;
NO nitric oxide;
OVA ovalbumin;
OVCAR-3 human-derived ovarian carcinoma cells;
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide;
PBMC peripheral blood mononuclear cell(s);
PRR pathogen recognition receptor;
PS polysaccharides(s)
RT-qPCR reverse transcription quantitative polymerase chain reaction;
SDS sodium dodecyl sulfate;
Tbet T-box transcription factor;
TEER transepithelial electrical resistance;
TLR toll-like receptor(s);
TNF tumour necrosis factor;
WBC white blood cell(s);
WT wild type.
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