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Abstract

It was hypothesized that single-nucleotide polymorphisms (SNPs) extracted from text-mined

genes could be more tightly related to causal variant for each trait and that differentially

weighting of this SNP panel in the GBLUP model could improve the performance of genomic

prediction in cattle. Fitting two GRMs constructed by text-mined SNPs and SNPs except text-

mined SNPs from 777k SNPs set (exp_777K) as different random effects showed better

accuracy than fitting one GRM (Im_777K) for six traits (e.g. backfat thickness: + 0.002, eye

muscle area: + 0.014, Warner–Bratzler Shear Force of semimembranosus and longissimus

dorsi: + 0.024 and + 0.068, intramuscular fat content of semimembranosus and longissimus

dorsi: + 0.008 and + 0.018). These results can suggest that attempts to incorporate text min-

ing into genomic predictions seem valuable, and further study using text mining can be

expected to present the significant results.

Introduction

Genomic prediction, which is the first step in genomic selection, is a method for calculating

genomic estimated breeding values (GEBVs) using large numbers of genetic markers, such as

single-nucleotide polymorphism (SNP), covering the whole genome [1]. The genomic predic-

tion methods that are currently applied to livestock populations use the extent of linkage dis-

equilibrium between markers and quantitative trait loci (QTL) because high-density SNPs

increase the chances of co-segregation of markers with causal mutations [2]. Genetic variation

in quantitative traits could be influenced by large numbers of loci affecting any given trait with

small to moderate effects. In some cases, however, there are loci with moderate to large effects

due to relatively recently selected mutations [3–5]. It is difficult to capture recently selected

causal mutations in genomic prediction because the linkage disequilibrium between these
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mutations and other markers is incomplete [6]. Therefore, it is necessary to understand the

genetic processes and information related to quantitative or complex traits more fully, as well

as linkage disequilibrium between causal variants and common SNPs, to increase the ability of

genomic prediction models. Genomic best linear unbiased prediction (GBLUP) is a commonly

used method that has been widely utilized for genomic prediction. The main assumption of

the GBLUP method is that most SNPs have small effects with a normal distribution, regardless

of prior biological information on the genetic architecture of the traits [7]. However, the effects

of SNPs associated with quantitative traits are not always normally distributed and the effects

may differ depending on the biological processes of the traits. For these reasons, it might be

necessary to incorporate previous biological knowledge into the GBLUP method for more

accurate genomic prediction. In previous studies, when selected SNP panels based on biologi-

cal information were weighted differentially in the GBLUP method, higher prediction accu-

racy was obtained compared with the normal GBLUP [8, 9]. In addition, using causal genes or

markers with prior biological knowledge resulted in much more accurate QTL discovery [10].

As mentioned in the paragraph above, it is necessary to understand the biological character-

istics of complex traits from previous studies for more accurate genomic prediction. However,

manually scanning previous studies to analyze biological information requires a lot of time

and effort because there are many published studies in the field of animal science, and the

number is expanding at an increasing rate. As of 2018, approximately 29 million papers were

cited in PubMed, one of the most commonly used life science databases (https://www.nlm.nih.

gov/bsd/licensee/baselinestats.html). In addition, the majority of published papers are com-

posed of unstructured text, which is difficult to use for other studies. Therefore, it is important

to use techniques to extract useful information from the textual data without spending a lot of

time. Text mining is one technique for resolving this problem [11]. In the biomedical field,

text mining has been used to assist studies in gene–disease associations and gene–gene associa-

tions, and to analyze clinical datasets to improve quality of health care [12–14]. In addition,

text mining has been widely applied in various fields other than biomedicine, such as business

and marketing [15]. However, in the field of animal breeding, studies using text mining are

still rare. The application of text mining to genomic prediction could be an interesting

approach to animal breeding studies. In this study, text mining was used to identify genes asso-

ciated with carcass and meat quality traits, and these text-mined genes with biological informa-

tion were used for genomic prediction. The hypothesis of this study was that SNPs extracted

from text-mined genes could be in tighter linkage disequilibrium with causal variants for car-

cass and meat quality traits, and weighting this SNP panel differentially in the GBLUP model

could improve the performance of genomic prediction in cattle.

Materials and methods

Dataset

Hanwoo (Korean cattle) populations. The Animal Care and Use Committee of the

National Institute of Animal Science (NIAS), Rural Development Administration (RDA),

South Korea, approved the experimental procedures, and appropriate animal health and wel-

fare guidelines were followed. The Hanwoo were sourced from two different commercial pop-

ulations based on different phenotype measurements. The first commercial population

included 12,635 individuals (animals were born between 2013 and 2016 and samples were col-

lected between 2017 and 2019) evaluated for carcass traits (CWT, EMA, and BF). The second

population consisted of 1,039 steers evaluated for meat quality traits (Warner–Bratzler Shear

Force [WBSF] and intramuscular fat content). The two populations were half-sibs derived

from 339 sires for the first population and 82 sires for the second population, with unrelated
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dams. All animals of the two populations (n = 12,635, n = 1,039) were slaughtered at averages

of 918 and 920 days, respectively. The carcass traits (n = 12,635) consisted of three traits. The

carcass weight (CWT/kg), backfat thickness (BF/mm), and eye muscle area (EMA/cm2) were

measured after a 24-hour chill at the junction of the 12th and 13th ribs. Meat quality traits

(n = 1,039) were measured by evaluating two traits in two muscles. The WBSF values of the

longissimus dorsi muscle (D_SF) and semimembranosus muscle (S_SF) were measured

according to the method described by Wheeler et al. (2000) [16]. Briefly, beef steak 2.5 cm2

thick was kept in polyethylene bags for 48 hours postmortem. All of the bags were heated in a

water bath at 80˚C for 30 minutes, until the internal temperature of the steaks reached 70˚C.

The samples were stored at room temperature for 30 minutes prior to measurement. An

Instron Universal WBSF testing machine (Instron Corporation, Canton, MA) with a cross-

head speed of 200 mm/min and a 50-kg load cell was used to measure the WBSF. Each sample

was divided into six representative cores with a diameter of 1.27 cm and parallel to the muscle

fibers. The final phenotype of the WBSF was the mean of the maximum force required to

shear each core sample. The intramuscular fat contents of the longissimus dorsi muscle

(D_IMF) and semimembranosus muscle (S_IMF) were measured using the microwave solvent

extraction method described by AOAC International [17].

Genotyping and quality control. The genomic DNA of each animal group was extracted

from longissimus thoracis muscle samples using a DNeasy Blood and Tissue Kit (Qiagen,

Valencia, CA). DNA concentration and purity were determined using a NanoDrop 1000

(Thermo Fisher Scientific, Wilmington, DE). A total of 13,674 samples were genotyped using

the Illumina Bovine SNP50 BeadChip and the 1,295 samples were genotyped additionally

by the Illumina Bovine HD BeadChip to use as the reference population in imputation step.

All animals’ 50K genotypes were imputed to a high density level (777K) using Minimac3 [18].

r2 < 0.6 SNPs were excluded in the imputations step and SNPs on the sex chromosomes were

excluded from the analysis. SNP quality control for each group was performed using

PLINK1.9 software [19] based on the following criteria: minor allele frequency < 0.001 for car-

cass traits group and< 0.01 for meat quality traits group; gene call rate < 0.1. In the carcass

trait group, 23,415 SNPs were excluded by the above step, leaving 670,080 SNPs. In the meat

quality trait group, 56,477 SNPs were excluded by this step, and 637,017 SNPs were used for

the analysis. The imputed 777K SNPs of each group were annotated using the SnpEff program

[20].

Text mining and gene ontology term analysis. Published papers related to CWT, WBSF,

IMF, BF, and EMA were searched before text mining. The workflow of the text mining is

shown in S1 Fig. First, all the texts in the abstracts of papers containing queries related to traits

in their abstracts or titles were collected. This step was performed using functions in the

RISmed package of the R statistical programming language [21]. Words consisting of only cap-

ital letters or numbers were extracted to filter out words that were accidentally the same as

gene symbols (e.g., impact, pigs). Finally, only words matching the bovine gene symbols in the

BioMart databases were selected for analysis. The gene symbols were obtained from the Bio-

conductor package BiomaRT, and btaurus_gene_ensembl was used as the dataset [22]. SNPs

contained in text-mined genes (TMG) were then extracted from the imputed 777K SNPs. Fur-

thermore, SNPs from the intergenic region of TMG were also extracted because the intergenic

region often contains functionally important elements, such as promoters and enhancers. The

above two types of SNPs were used as text-mined SNPs. In this study, three marker sets—the

imputed 777K SNPs (Im_777K), the SNPs excluding the text-mined SNPs from imputed 777K

SNPs (exp_777K), and the text-mined SNPs—were used in genomic prediction. The Biocon-

ductor R package ‘clusterProfiler’ was used for Gene Ontology (GO) analysis to identify the

biological process of TMG [23]. The −log10 adjusted P-value (P.adj) by the Bonferroni method
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was used to examine the significance in GO analysis. To visualize the differences between QTL

regions obtained from Animal QTL DB [24] and text-mined regions, karyotypes were plotted

using the Circos program [25].

Statistical analyses

Genome-wide association study (GWAS) using text-mined gene-based SNP panels.

The phenotypic data on carcass and meat quality traits were pre-adjusted for fixed effects

including growing sites, birth year, season, and slaughter age using a linear model imple-

mented in R software 3.3.1 (R Foundation for Statistical Computing, Vienna, Austria). The

adjusted phenotypes and text-mined SNP panel were subsequently used for GWAS under a

linear mixed model. The linear mixed model can be written as:

yc ¼ m1N þDβþ gþ e

where yc is a vector of the corrected phenotype for N individuals; μ is the overall mean of the

term and 1N is a vector of N ones; D is a vector of genotype of the candidate SNPs recorded as

0, 1, or 2; β is the additive effect of the candidate SNPs; g is a vector of random polygenic

effects from the genetic relationship matrix (GRM) constructed by the Im_777K; and e is a

vector of residuals. This model was computed by GCTA 1.26 [26]. The GRM for the polygenic

effect (g) was constructed using all SNPs except those on the chromosome where the candidate

SNP was located. The P-values were adjusted using the Bonferroni method to correct multiple

hypotheses. The values calculated by dividing 0.05 by the number of text-mined SNPs were

used as the thresholds for obtaining significant SNPs associated with the trait.

Genomic models for estimation and prediction. The three genomic models were used to

estimate genetic and residual variances as well as to predict genomic estimated breeding values

(GEBV) in models 1 to 3. The two types of GRM constructed by lm_777K and exp_777K were

used for models 1 and 2, respectively. The equations can be written as:

y ¼ m1N þ Xbþ gall þ e ðmodel 1Þ

y ¼ m1N þ Xbþ g
� t þ e ðmodel 2Þ

where y is the vector of the observed phenotype for N individuals. X is an incidence matrix for

the fixed effects and b is the vector of fixed effects, which included growing site, birth month,

birth year, slaughter month, slaughter year, and slaughter age as covariates for all traits. In

addition, the carcass traits included slaughter place and sex, while the meat quality trait

included farm information (the owner’s name of steers). In the two equations, gall is the N vec-

tor of the additive effects from the GRM with lm_777K for additive genetic effects, and g−t is

the N vector of the additive effects from the GRM with exp_777K. The genetic and residual

effects were assumed to be normally distributed, with mean as zero. The variances estimated

by the above two models are given by:

Var
gall
e

" #

¼
Galls

2
all 0

0 Is2
E

" #

; Var
g
� t

e

" #

¼
G� ts2

� t 0

0 Is2
E

" #

where Gall and G−t are GRMs with lm_777K and exp_777K, respectively; and I is an N�N iden-

tity matrix.

In model 3, two GRMs constructed by exp_777K and text-mined SNPs were jointly used to

differentially weight the random effects. The model used can be written as:

y ¼ m1N þ Xbþ g
� t þ gt þ e ðmodel 3Þ
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where y is the vector of phenotypic observations, and gt is the N vector of the additive effects

from GRM with the text-mined SNPs. The genetic and residual effects were assumed to be

normally distributed, with mean as zero. The variances estimated by model 3 are given by:

Var

gt
g
� t

e

2

6
4

3

7
5 ¼

Gts
2
t 0 0

0 G� ts2
� t 0

0 0 Is2
E

2

6
4

3

7
5

where Gt is the GRM with the text-mined SNPs.

Variance component estimation and GBLUP. The variance components, s2
all; s

2
� t , and

s2
t , and heritability were estimated using an average information restricted maximum likeli-

hood (AIREML) model by implementing the AIREMLF90 program in the BLUPF90 family

[27]. The proportion of genomic variance explained by each model can be written as:

h2 ¼
s2
all

s2
all þ e

ðmodel 1Þ

h2 ¼
s2
� t

s2
� t þ e

ðmodel 2Þ

h2 ¼
s2
t þ s2

� t

s2
t þ s2

� t þ e
ðmodel 3Þ

GEBVs were predicted using GBLUP methods and a 10-fold cross-validation scheme was

used to evaluate the accuracy of the GEBVs. Samples were divided into 10 groups of equal size.

Nine of these groups were used as the reference set and the other group was used as the valida-

tion set in each cross-validation. The GEBVs for the model 1 and model 2 were calculated

using the following mixed model. The matrix for the model used can be written as:

b

û

" #

¼
X0X X0Z

Z0X Z0Z þ lG� 1

" #� 1
X0y

Z0y

" #

where û is the vector of the GEBVs distributed as g~(0,Gs2
g); G is genomic relationship matrix

for individuals; Z is a design matrix designed one column for each GEBV and one row for

each phenotype (if an individual would have no phenotype, Z would have a column with zero’s

only for this individual). λ is shrinkage value calculated by (σ2
e /σ2

g). The GEBV for the model

3 is calculated using two random effect linear mixed model followed by

b

û � t
ût

2

6
4

3

7
5 ¼

X0X X0Z X0Z

Z0X Z0Z þ l� tG� t
� 1 Z0Z

Z0X Z0Z Z0Z þ ltGt
� 1

2

6
6
4

3

7
7
5

� 1
X0y

Z0y

Z0y

2

6
4

3

7
5

Where û � t and ût are vectors of GEBVs calculated by exp_777K and text-mined SNPs; G−t

and Gt are GRMs with exp_777k and text-mined SNPs. The final GEBV of model 3 is the sum

of the two GEBVs (û � t þ ût). The GRM (G) is defined as

G ¼
MM0

2
P

pjð1 � pjÞ

where M contains genotypes adjusted by allele frequency and pj is the allele frequency for
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marker j [28]. All of these estimates were performed using BLUPF90 [27]. The accuracy of pre-

dicted breeding values was calculated as the Pearson’s correlation between the GEBVs and

adjusted phenotypes (yc) of the validation set, and the equation can be represented by:

Accuracy ¼ rðGEBV;ycÞ

Results

Text mining and gene ontology term analysis

The queries used to search the papers and a statistical summary of the text mining are shown

in Table 1. Regarding number of searched articles, CWT ranked first with 1893 papers, fol-

lowed with IMF, WBSF, BF, EMA with (1854, 1097, 602, 546), respectively. In the number of

calling genes, IMF showed the largest number of genes with 576, although a similar number of

papers with CWT were searched. Other traits were ranked in order of CWT, BF, EMA, WBSF

with (288, 195, 167, 156). The 30 genes that appeared with highest frequency in text mining are

shown in Table 2. The most matched gene to bovine gene symbols in each trait were (CWT:

IGF1(36 times), WBSF: CAST(110 times), IMF: SCD(105 times), BF: MC4R(35 times), and

EMA: MSTN(19 times)), respectively.

In the results of Gene Ontology (GO) term analysis (Table 3), CWT, BF, EMA-related

TMG showed significance relatedness with growth regulator and growth factor (“response to

hormone”, “regulation of signaling receptor activity”, and “response to endogenous stimulus”,

“response to peptide”). WBSF-related TMG were identified to be associated with organic acid

(“carboxylic acid metabolic process”, “oxoacid metabolic process”, “monocarboxylic acid bio-

synthetic process”, “organic acid metabolic process”, “monocarboxylic acid metabolic pro-

cess”). For IMF, the biological process terms with lipid synthesis and lipid metabolism were

statistically significant (“regulation of lipid metabolic process”, “lipid metabolic process”,

“fatty acid metabolic process”, “regulation of lipid biosynthetic process”). The karyotypes of

the QTL regions registered in animal QTLDB, text-mined regions, and the intersection of the

two regions are shown in Fig 1. The highest percentage of intersecting regions within the text-

mined regions corresponded to regions of CWT-related TMG (36.3%), and the lowest corre-

sponded to IMF regions (5.5%).

Genome-wide association study (GWAS) with text-mined SNPs

The Manhattan plots for each trait are shown in Fig 2. The Bonferroni correction method was

used for the significance test (0.05/number of SNPs) in the genome-wide association study,

Table 1. Summary statistics of text mining and SNP calling.

Trait Article6 Gene7 SNP8 Used query9

CWT1 1,893 288 17,662 carcass weight[TIAB] OR dressed weight[TIAB]

WBSF2 1,097 156 6,143 Warner-Bratzler Shear Force [TIAB] OR cuttability [TIAB] OR meat

tenderness [TIAB]

IMF3 1,854 576 30,983 intramuscular fat [TIAB]

BF4 602 195 9,335 back fat [TIAB]

EMA5 546 167 12,371 eye muscle area [TIAB] OR ribeye [TIAB] OR rib eye [TIAB]

CWT1: Carcass weight; SF2: Warner-Bratzler Shear Force; IMF3: intramuscular fatty acid content; BF4: Backfat

thickness; EMA5: Eye muscle area; Article6: number of articles searched in PubMed; Gene7: number of mined genes

from searched articles; SNP8: number of SNPs called from imputed 777K markers; Used query9: queries used to

search articles in PubMed.

https://doi.org/10.1371/journal.pone.0241848.t001
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and the SnpEff annotation information was referenced for marker locations. Three significant

clusters were found in CWT. The most significant markers at position 10710350 in chromo-

some 4 are involved in the intron region of CALCR gene (P = 10−29.6). In the genomic region

of chromosomes 6 and 14, markers involved in the LCORL–SLIT2 (position: 39,932,557) and

PLAG1–CHCHD7 (position: 25,015,640) intergenic regions showed the most significance

(P = 10−40.2 and P = 10−105.3). There are four significant genomic regions in BF. The most sig-

nificant marker on chromosome 22 is located at a downstream gene variant of PPARG (posi-

tion: 57,362,666; P = 10−6.5). The other most significant markers in chromosomes 2, 13, and 23

clusters are located in INSIG2–EN1 (position: 70,895,063; P = 10−5.97), APCDD1L–VAPB
(position: 58,449,824; P = 10−7.3), and BMP5–HMGCLL1 (position: 4,622,146; P = 10−16.9)

intergenic region. Three clusters showed significance in EMA. The most significant markers

in chromosomes 3, 6, and 14 are involved in the S100A10–THEM4 (position: 18,822,190;

P = 10−6.2), LCORL–SLIT2 (position: 39,932,557; P = 10−12.5), and PLAG1–CHCHD7 (position:

25,015,640; P = 10−26.6). For meat quality traits, only one marker at position 98,540,675 on

chromosome 7 showed significance for D_SF (P = 10−7.4), located in an intron variant of the

CAST gene.

Table 2. The 30 genes symbol that appeared with highest frequency in text mining.

Trait Symbol Freq Trait Symbol Freq Trait Symbol Freq

CWT IGF1 36 BF MC4R 35 EMA MSTN 19

MSTN 28 SST 26 CAPN1 18

MC4R 25 IGF1 24 ADIPOQ 15

LPL 24 FTO 18 LEPR 15

TNF 24 GAA 16 PPARGC1A 15

BLM 20 SLA 15 DES 13

CAPN1 19 FASN 14 POMC 13

IGFBP2 19 IGF2 14 GHR 12

MGA 19 BSG 11 LEP 12

NCAPG 19 MGA 11 PIK3C3 11

POMC 18 RBP4 10 SLA 11

IGF2 17 UCP2 10 CAST 9

GHR 16 SPR 9 GH1 9

AFP 15 CSTB 8 IGF2 9

CRH 13 FABP3 8 LRIT3 9

DGAT1 13 IGFBP3 8 LCORL 8

FASN 13 LSR 8 MC4R 8

GAA 13 MAP2K6 8 RPE 8

LCORL 13 MTTP 8 ANGPTL3 7

TRH 13 SCD 8 CRH 7

CAPN3 11 STAT6 8 FABP4 7

CAST 11 TNF 8 GRP 7

SCD 11 CTSL 7 MAP2K6 7

ABHD5 10 EZH2 7 AGAP3 6

ASL 10 IRS4 7 BPI 6

GNAS 10 MARK4 7 ERG 6

IGFBP3 10 QSOX1 7 IGF1 6

IGFBP4 10 SLC13A5 7 ADRB3 5

IRS1 10 TGFBR1 7 EMD 5

STAT6 10 UCP3 7 ME1 5

(Continued)
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Variance component estimation

A statistical summary of the variance component estimation is shown in Table 4. In carcass

traits, CWT showed the highest heritability (0.42) when Im_777K was used in the estimation.

BF and EMA showed no difference in heritability between the three different estimation mod-

els (BF: 0.41, EMA: 0.39). In meat quality traits, the heritabilities of WBSF in the two muscle

types semimembranosus and longissimus dorsi were 0.1 and 0.19, respectively, when estimated

using the Im_777K panel. S_IMF and D_IMF showed heritabilities of 0.21 and 0.32, respec-

tively, when estimated using Im_777K. All four traits showed similar heritabilities between the

three models.

Genomic prediction

The accuracy of GEBV are shown separately for the carcass traits (CWT, BF, EMA) and meat

quality traits (WBSF, IMF) in Table 5. Fitting two different GRMs constructed with two differ-

ent SNP panels (exp_777K + tm_SNPs) as random effects in the GBLUP model showed better

accuracy than fitting one GRM with exp_777K in all traits. In CWT, the prediction accuracy

Table 2. (Continued)

Trait Symbol Freq Trait Symbol Freq Trait Symbol Freq

WBSF CAST 110 IMF SCD 105

CAPN1 104 LPL 80

CAPN3 19 FABP4 70

KCNJ11 18 FAS 54

NES 17 FABP3 52

DNAJA1 16 FASN 52

MSTN 14 LEPR 47

ADAMTS4 11 PPARG 38

DGAT1 11 DGAT1 36

HSPB1 9 MC4R 36

SCD 8 AFP 27

TNNT3 8 MSC 26

UCP3 8 CAST 25

ANGPTL3 7 PRKAG3 23

IGFBP2 7 FTO 22

ADAMTS5 6 SREBF1 22

CAPN2 6 CAPN1 20

DLK1 6 MAT2B 19

MYOD1 6 PLIN2 17

PRKAG3 6 RYR1 16

STAT6 6 KLF6 15

UCP2 6 ACACA 14

LEP 5 ADH1C 14

MMP2 5 GPAM 14

APP 4 IGF2 14

FABP4 4 PDHB 14

GEN1 4 PPARA 14

IGF2 4 ASIP 13

LOX 4 MSTN 13

MAP3K5 4 VRTN 13

https://doi.org/10.1371/journal.pone.0241848.t002
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with Im_777K was 0.453, which was 0.002 higher than in the model with exp_777K +

tm_SNPs. Conversely, for BF, using exp_777K + tm_SNPs resulted in an accuracy of 0.421,

which was 0.002 higher than that using Im_777K. EMA also exhibited its highest prediction

accuracy (0.437) when using two GRMs with exp_777K + tm_SNPs. The accuracy of genomic

prediction using two GRMs for WBSF in the two muscle types, semimembranosus and longissi-
mus dorsi, were calculated as 0.129 and 0.189, respectively, and those for IMF were 0.168 and

0.225, respectively, which were better than those using Im_777K. In order to validate the effect

of text-mined SNPs in the multi-GRM model, GBLUP using evenly-mined SNPs (em_SNPs)

and except SNPs was additionally conducted (Table 6). For all four meat quality traits, the

GBLUP using tm_SNPs showed higher accuracy than em_SNPs. It seems that CWT and EMA

may have more polygenic characteristics than other traits, because em_SNPs showed higher

accuracy than tm_SNPs in these two traits.

Discussion

Biological relatedness of text-mined gene with carcass and meat quality traits

Carcass traits. The top three mined genes for carcass traits were IGF1, MSTN, MC4R,

SST, CAPN1, and PPARGC1A. Many previous studies have investigated the biological effect of

Table 3. The top five significant biological processes for each trait.

Trait GO_ID Biological process GeneRatio1 −log10P.adj2:

CWT GO:0009725 response to hormone 19.8% 9.5

GO:0010469 regulation of signaling receptor activity 21.4% 8.2

GO:0009719 response to endogenous stimulus 24.6% 7.5

GO:0043066 negative regulation of apoptotic process 19.0% 6.9

GO:0043069 negative regulation of programmed cell death 19.0% 6.7

WBSF GO:0019752 carboxylic acid metabolic process 21.7% 2.6

GO:0043436 oxoacid metabolic process 21.7% 2.4

GO:0072330 monocarboxylic acid biosynthetic process 12.0% 2.3

GO:0006082 organic acid metabolic process 21.7% 2.3

GO:0032787 monocarboxylic acid metabolic process 14.5% 1.8

IMF GO:0019216 regulation of lipid metabolic process 11.5% 12.7

GO:0032787 monocarboxylic acid metabolic process 15.3% 12.2

GO:0006629 lipid metabolic process 23.4% 11.5

GO:0006631 fatty acid metabolic process 11.1% 9.4

GO:0046890 regulation of lipid biosynthetic process 7.7% 9.3

BF GO:0009725 response to hormone 23.4% 9.6

GO:0032868 response to insulin 12.8% 8.2

GO:1901700 response to oxygen-containing compound 28.7% 8.1

GO:0009719 response to endogenous stimulus 28.7% 8.0

GO:0043434 response to peptide hormone 12.8% 5.7

EMA GO:1901652 response to peptide 14.1% 4.1

GO:0032868 response to insulin 11.3% 4.0

GO:0010243 response to organonitrogen compound 19.7% 4.0

GO:0043434 response to peptide hormone 12.7% 3.6

GO:0062013 positive regulation of small molecule metabolic process 9.9% 3.5

GeneRatio1: gene calling rate, i.e., the ratio of genes involved in each biological process among entire set of text-mined genes; −log10P.adj2: −log10 P-value adjusted by

the Bonferroni method.

https://doi.org/10.1371/journal.pone.0241848.t003
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these genes on the quantitative traits. Insulin-like growth factor (IGF) plays a key role in cell

differentiation, growth, and metabolism regulation [29]. The myostatin (MSTN) gene, also

known as GDF8, encodes a member of the transforming growth factor β superfamily, which is

associated with the proper regulation of skeletal muscle mass and carcass yield in cattle [30].

The melanocortin 4 receptor (MC4R) gene plays an important role in energy balance and is

associated with beef economic traits [31]. Peroxisome proliferator activated receptor gamma

coactivator 1 alpha (PPARGC1A) have been standing out as a candidate gene for beef fat syn-

thesis [32]. Although somatostatin (SST) inhibits growth hormone, there has been little

research on the association between the SST gene and carcass traits. This gene seemed to have

been mined because the abbreviation “SST” was used with other meanings, such as “sole soft

tissue”, in the literature.

Fig 1. The karyotype of QTL regions registered in QTLDB, text-mined region, and the intersection of both regions. Each karyotype

represents the region for the trait indicated above. Percentages in parentheses beside the trait names indicate the ratio of text-mined region

within QTLDB region.

https://doi.org/10.1371/journal.pone.0241848.g001
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In addition to these high ranked genes, other genes (i.e., NCAPG, POMC, LCORL, FTO,

IGF2, FABP3, LEPR, and ADIPOQ) were also found to be associated with growth-related traits

in multiple breed [33–40]. The significant genes in GWAS results (CALCR, PLAG1, INSIG2,

PPARG, BMP5, S100A10) also have been identified to have relationship with growth perfor-

mance and obesity of adipose tissue for pig and cattle [35, 41–45]. In addition, many other

TMG also seems to be associated with growth related traits because the GO term results

revealed that carcass traits-related TMG were associated with growth regulator and growth

factor.

Meat quality traits. The CAST and CAPN1 were included in the two most frequently

mined genes related to the WBSF. Calpain 1 (CAPN1) encodes the large subunit of calcium-

activated neutral proteases (calpain), and the calpastatin (CAST) gene inhibits μ- and m-cal-

pain activity. These two proteins, as key myofibrillar proteins, mediate proteolysis during post-

mortem storage of the carcass and cuts of meat at refrigerated temperatures and play

important roles in meat tenderness [46]. The association between these CAST/CAPN1 and

WBSF has been studied extensively [47–50]. In IMF, SCD, LPL, and FABP4 were the three

most frequently mined genes. The stearoyl-CoA desaturase (SCD) gene encodes an enzyme

involved in fatty acid biosynthesis, primarily the synthesis of oleic acid [51]. The lipoprotein

Fig 2. Manhattan plots with results of genome-wide association study using text-mined SNPs for each trait. The y-

axis shows the −log10P-value of each SNP and the x-axis is the marker index. The green line is the Bonferroni-line

representing 0.05/number of markers. The blue line is the suggestive-line representing 0.1/number of markers.

https://doi.org/10.1371/journal.pone.0241848.g002

Table 4. Variance components at different marker set.

Trait Value Im_777K1 exp_777K2 exp_777K + tm_SNPs3

CWT σ2
u 913.66 908.35 705.05 + 171.76

σ2
e 1287.6 1297.2 1307.3

h2 0.42 0.41 0.4

BF σ2
u 9.51 9.44 8.91 + 0.63

σ2
e 13.65 13.71 13.64

h2 0.41 0.41 0.41

EMA σ2
u 50.37 50.04 48 + 2.43

σ2
e 77.59 77.87 77.55

h2 0.39 0.39 0.39

S_SF σ2
u 0.11 0.11 0.07 + 0.04

σ2
e 1.02 1.02 1.02

h2 0.1 0.09 0.09

D_SF σ2
u 0.13 0.12 0.07 + 0.04

σ2
e 0.55 0.55 0.55

h2 0.19 0.18 0.17

S_IMF σ2
u 0.66 0.67 0.65+ 0.000024

σ2
e 2.46 2.44 2.47

h2 0.21 0.22 0.21

D_IMF σ2
u 5.28 5.24 4.34 + 0.73

σ2
e 11.51 11.55 11.72

h2 0.32 0.31 0.3

Im_777K1: estimated variance components with imputed 777K SNPs; exp_777K2: estimated variance components with imputed 777K SNPs except text-mined SNPs;

exp_777K + tm_SNPs3: estimated variance components when using two marker sets (exp_777K, text-mined SNPs) to different genetic variance. First genetic variance

was a component of exp_777K and second was a component of text-mined SNPs.

https://doi.org/10.1371/journal.pone.0241848.t004
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lipase (LPL) gene encodes lipoprotein lipase, which provides triglyceride-derived fatty acids to

adipose tissue [52]. Fatty-acid-binding protein 4 (FABP4) plays a number of important roles,

including fatty acid uptake, transport, and metabolism in the muscle [53].

In addition to these genes, CAPN3, KCNJ11, DNAJA1 are also known to be associated with

beef tenderness [54–56] and FABP3, LEPR, FASN, DGAT1 were reported to associated with

IMF in previous studies [57–59]. In the results of GO term analysis for WBSF, biological pro-

cesses related to the carboxylic acid biosynthetic and metabolic processes were significant. Car-

boxylic acid is an organic acid that was shown in previous studies to affect beef tenderness [60,

61]. In addition, IMF related TMG showed a significant association with the regulation of lipid

metabolic and biosynthetic processes. According to these biological processes, GO term results

can support that WBSF, IMF–related TMG have been associated with WBSF and IMF.

Genomic prediction

When excluding text-mined SNPs from the Im_777K marker panels, the prediction accuracy

for CWT, BF, WBSF, and IMF were decreased. In a previous simulation study, a panel that

excluded QTL from the 50K SNP panel showed lower accuracy than a panel that included the

QTL [2]. These results indicated that text-mined SNPs may be more strongly functionally asso-

ciated with QTL for CWT, BF, WBSF, and IMF and include markers in a linkage disequilibrium

relationship with QTL for these traits. Fitting two GRMs constructed using exp_777K and text-

mined SNPs in the GBLUP model as different random effects resulted in higher accuracy than

fitting one GRM constructed using Im_777K for BF, EMA, WBSF, and IMF. These results were

consistent with previous studies indicating that differentially weighted subsets of markers based

on genomic features increased the predictive ability [8]. The increase in accuracy was greater in

the traits related to the longissimus dorsi muscle than in those related to the semimembranosus

Table 5. Carcass traits average correlation between the GEBV and corrected phenotypic values (yc) and standard

error for 10-validation set. Meat quality traits average correlation between the GEBV and corrected phenotypic values

(yc) and standard error for 10-validation set.

Trait Im_777K exp_777K exp_777K + tm_SNPs

CWT 0.453 ± 0.01 0.449 ± 0.01 0.451 ± 0.01

BF 0.419 ± 0.01 0.413 ± 0.01 0.421 ± 0.01

EMA 0.423 ± 0.01 0.429 ± 0.01 0.437 ± 0.004

S_SF 0.105 ± 0.04 0.102 ± 0.02 0.129 ± 0.03

D_SF 0.121 ± 0.03 0.115 ± 0.04 0.189 ± 0.03

S_IMF 0.16 ± 0.02 0.15 ± 0.03 0.168 ± 0.02

D_IMF 0.207 ± 0.04 0.163 ± 0.03 0.225 ± 0.02

https://doi.org/10.1371/journal.pone.0241848.t005

Table 6. Accuracy of evenly-mined GBLUP and text-mined GBLUP.

Traits exp_777k + tm_SNPs exp_777k + em_SNPs1

CWT 0.451 ± 0.01 0.471 ± 0.01

BF 0.421 ± 0.01 0.419 ± 0.01

EMA 0.437 ± 0.004 0.438 ± 0.01

S_SF 0.129 ± 0.03 0.099 ± 0.02

D_SF 0.189 ± 0.03 0.095 ± 0.02

S_IMF 0.168 ± 0.02 0.147 ± 0.02

D_IMF 0.225 ± 0.02 0.202 ± 0.03

exp_777k + em_SNPs1: multi-GRM GBLUP with evenly-mined SNPs and except SNPs.

https://doi.org/10.1371/journal.pone.0241848.t006
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muscle. One of the most important factors that can affect the accuracy of genomic prediction is

linkage disequilibrium between common SNPs and QTL [7]. As selection for a specific trait

proceeds, linkage disequilibrium between causal polymorphisms for that trait and other marker

loci appears to be stronger [6]. As traits related to the semimembranosus muscle were not con-

sidered in evaluating the degree of the Hanwoo breed, the selection of these traits would not

have been carried out actively. Therefore, linkage disequilibrium between QTL and other mark-

ers would be weakened, and this seemed to have been responsible for these results.

In this study, the SNPs that seemed to be related to the traits were selected by text mining,

and the prediction accuracy was slightly increased when these SNPs were weighted differen-

tially to other SNP panels. In the GBLUP method, the weights of GRMs are controlled by the

lambda value (σ2
e /σ2

u). As σ2
u estimated by text-mined SNPs showed lower variance than esti-

mated by exp_777K, higher lambda values were multiplied to GRM made by text-mined SNPs

and this seemed to increase the prediction accuracy by giving more weight to text-mined SNPs

in the model. Nevertheless, in comparisons between multi-GRM models, the accuracy of

CWT and EMA decreased when tm_SNPs was used. These results may indicate that text-

mined GBLUP doesn’t seem to be effective in the case of traits that are more genetically

affected by polygenic effect than causal variant effect. There may be limits to the conclusion

that text mining can improve prediction accuracy, since text mined SNPs didn’t result in a sig-

nificant improvement in prediction accuracy. However, there was a slight accuracy increase

for meat quality traits and GO term analysis may suggests that text mining can play a role in

finding functional genes for complex traits. Therefore, attempts to incorporate text mining

into genomic predictions seem valuable and further study (i.e., other SNP effects weighting

methods) using text mining can be expected to present the significant results [62, 63]. In addi-

tion, text mining may be used for various population or breeds, since marker selection by text

mining didn’t use the phenotypic or genetic information of a specific population.

Conclusions

This study was performed to use text mining, to extract biological information from previous

papers and increase the performance of genomic prediction. The results showed that text min-

ing could be used to find genes related to specific traits because associations between each car-

cass and meat quality trait and TMG were identified in the results of text mining and GO term

analysis. However, a word that was accidentally the same as a gene symbol but used with

another meaning (i.e., SST) was also mined as a text-mined gene. Therefore, it will be neces-

sary to develop further methods of text mining that can resolve this problem. In the genomic

prediction results, text-mined SNPs seemed to be in tighter linkage disequilibrium with QTL

for BF, EMA, WBSF, and IMF. There may be limits to the conclusion that text mining can

improve prediction accuracy, since text mined SNPs didn’t result in a significant improvement

in prediction accuracy. However, attempts to incorporate text mining into genomic predic-

tions still seem valuable, and further study using text mining can be expected to present the

significant results, because a slight accuracy increase for meat quality traits may suggests that

text mining can play a role in finding functional genes for complex traits. In addition, text

mining may be used for various population or breeds, since marker selection by text mining

didn’t use the phenotypic or genetic information of a specific population.

Supporting information

S1 Fig. The workflow of the text mining.

(TIF)
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S1 File. SNP information used in this study.

(ZIP)

Acknowledgments

This study was preformed to develop new genomic selection model for carcass traits. We

acknowledgment to Korea Institute for Animal Products Quality Evaluation to provide tissue

sample for Genomic Reference Population.

Author Contributions

Conceptualization: Seung Hwan Lee.

Data curation: Hak Kyo Lee, Duhak Yoon, Dajeong Lim.

Methodology: Hak Kyo Lee, Duhak Yoon, Dajeong Lim.

Software: Hyo Jun Lee, Sungbong Jang.

Writing – original draft: Hyo Jun Lee, Yoon Ji Chung.

Writing – review & editing: Dong Won Seo, Seung Hwan Lee.

References
1. Meuwissen T., Hayes B., and Goddard M. 2001. Prediction of total genetic value using genome-wide

dense marker maps. Genetics. 157:1819–1829. PMID: 11290733

2. Kizilkaya K., Fernado R. L., and Garrick D. J., 2010, Genomic prediction of simulated multibreed and

purebred performance using observed fifty thousand single nucleotide polymorphism genotypes. J.

Anim. Sci. 88:544–551. https://doi.org/10.2527/jas.2009-2064 PMID: 19820059

3. Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, et al. 2010. Hundreds of

variants clustered in genomic loci and biological pathways affect human height. Nature.; 467:832–8.

https://doi.org/10.1038/nature09410 PMID: 20881960

4. Yang J, Manolio TA, Pasquale LR, Boerwinkle E, Caporaso N, Cunningham JM, et al. 2011. Genome

partitioning of genetic variation for complex traits using common SNPs. Nat Genet. 43:519–25. https://

doi.org/10.1038/ng.823 PMID: 21552263

5. Kemper K., Goddard M. Understanding and predicting complex traits: knowledge from cattle. 2012.

Hum Mol Genet. 21:R45–51. https://doi.org/10.1093/hmg/dds332 PMID: 22899652

6. Lewontin R. C. 1964. The interaction of selection and linkage. I. General considerations; heterotic mod-

els. Genetics. 49:49–67. PMID: 17248194.

7. Habier D., Fernando R., and Dekkers J. C. M. 2007. The impact of genetic relationship information on

genome-assisted breeding values. Genetics. 177: 2389–2397. https://doi.org/10.1534/genetics.107.

081190 PMID: 18073436

8. Edwards S. M., Sorensen I. F., Sarup P., Mackay T. F., and Sorensen P. 2016. Genomic Prediction for

Quantitative Traits Is Improved by Mapping Variants to Gene Ontology Categories in Drosophila mela-

nogaster. Genetics. 203:1871–1883. https://doi.org/10.1534/genetics.116.187161 PMID: 27235308

9. Fang Lingzhao, Sahana Goutam, Ma Peipei, Su Guosheng, Yu Ying, Zhang Shengli, et al. 2017. Explor-

ing the genetic architecture and improving genomic prediction accuracy for mastitis and milk production

traits in dairy cattle by mapping variants to hepatic transcriptomic regions responsive to intra-mammary

infection. Genet Sel Evol. 49:44. https://doi.org/10.1186/s12711-017-0319-0 PMID: 28499345

10. MacLeod I. M., Bowman P. J., Vande Jagat C. J., Haile-Mariam M., Kemper K. E., Chamberlain A. J.,

et al. 2016. Exploiting biological priors and sequence variants enhances QTL discovery and genomic

prediction of complex traits. 2016. BMC genomics. 17:144. https://doi.org/10.1186/s12864-016-2443-6

PMID: 26920147

11. Hearst M. A. 1997. Text data mining: Issues, techniques, and the relationship to information access.

Proc. UW/MS workshop on data mining.

12. Pletscher-Frankild S., Pallejà A., Tsafou K., Binder J. X., and Jensen L. J. J. M. 2015. DISEASES: Text

mining and data integration of disease–gene associations. Methods 74:83–89. https://doi.org/10.1016/

j.ymeth.2014.11.020 PMID: 25484339

PLOS ONE Genomic prediction using high-density and text-mined gene-based SNP panels in Hanwoo (Korean cattle)

PLOS ONE | https://doi.org/10.1371/journal.pone.0241848 December 2, 2020 15 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0241848.s002
http://www.ncbi.nlm.nih.gov/pubmed/11290733
https://doi.org/10.2527/jas.2009-2064
http://www.ncbi.nlm.nih.gov/pubmed/19820059
https://doi.org/10.1038/nature09410
http://www.ncbi.nlm.nih.gov/pubmed/20881960
https://doi.org/10.1038/ng.823
https://doi.org/10.1038/ng.823
http://www.ncbi.nlm.nih.gov/pubmed/21552263
https://doi.org/10.1093/hmg/dds332
http://www.ncbi.nlm.nih.gov/pubmed/22899652
http://www.ncbi.nlm.nih.gov/pubmed/17248194
https://doi.org/10.1534/genetics.107.081190
https://doi.org/10.1534/genetics.107.081190
http://www.ncbi.nlm.nih.gov/pubmed/18073436
https://doi.org/10.1534/genetics.116.187161
http://www.ncbi.nlm.nih.gov/pubmed/27235308
https://doi.org/10.1186/s12711-017-0319-0
http://www.ncbi.nlm.nih.gov/pubmed/28499345
https://doi.org/10.1186/s12864-016-2443-6
http://www.ncbi.nlm.nih.gov/pubmed/26920147
https://doi.org/10.1016/j.ymeth.2014.11.020
https://doi.org/10.1016/j.ymeth.2014.11.020
http://www.ncbi.nlm.nih.gov/pubmed/25484339
https://doi.org/10.1371/journal.pone.0241848


13. Kankar P., Adak S., Sarkar A., Murari K., and Sharma G. 2002. MedMeSH summarizer: text mining for

gene clusters. Proc. SIAM International Conference on Data Mining.

14. Delespierre T., Denormandie P., Bar-Hen A., Josseran L. J. B. m. i. 2017. Empirical advances with text

mining of electronic health records. BMC medical informatics and Decision Making 17:127. https://doi.

org/10.1186/s12911-017-0519-0 PMID: 28830417

15. Gálvez R. H., and Gravano A. 2017. Assessing the usefulness of online message board mining in auto-

matic stock prediction systems. J. computational. Sci. 19:43–56. https://doi.org/10.1016/j.jocs.2017.01.

001

16. Wheeler T., Shackelford S., and Koohmaraie M. 2000. Relationship of beef longissimus tenderness

classes to tenderness of gluteus medius, semimembranosus, and biceps femoris. J. Anim. Sci.

78:2856–2861. https://doi.org/10.2527/2000.78112856x PMID: 11063309

17. AOAC. 1996. Official methods of analysis. 15th ed. AOAC Int., Washington, DC.

18. Das Sayantan, Forer Lukas, Sebastian Schönherr, Carlo Sidore, Adam E Locke, Alan Kwong, et al.

2016. Next-generation genotype imputation service and methods. Nature Genetics. 48:1284. https://

doi.org/10.1038/ng.3656 PMID: 27571263

19. Purcell Shaun, Neale Benjamin, Todd-Brown Kathe, Lori Thomas, Manuel A.R. Ferreira, David Bender,

et al. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses.

Am J Hum Genet. 81:559–575. https://doi.org/10.1086/519795 PMID: 17701901

20. Cingolani P., Platts A., Wang L. L., Coon M., Nguyen T., Wang L., et al. 2012. A program for annotating

and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly. 6:80–92. https://doi.org/10.

4161/fly.19695 PMID: 22728672

21. Kovalchik Stephanie. 2017. RISmed: Download Content from NCBI Databases. R package version

2.1.7. https://CRAN.R-project.org/package = RISmed.

22. Durinck Steffen, Moreau Yves, Kasprzyk Arek, Davis Sean, Bart De Moor Alvis Brazma et al. 2005. Bio-

Mart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bio-

informatics 21:3439–3440. https://doi.org/10.1093/bioinformatics/bti525 PMID: 16082012

23. Yu Guangchuang, Wang Li-Gen, Han Yanyan and He Qing-Yu. clusterProfiler: an R package for com-

paring biological themes among gene clusters. 2012. OMICS: A Journal of Integrative Biology. 16:284–

287. https://doi.org/10.1089/omi.2011.0118 PMID: 22455463

24. Hu Z.-L., Park C. A., and Reecy J. M. 2019. Building a livestock genetic and genomic information knowl-

edgebase through integrative developments of Animal QTLdb and CorrDB. Nucleic Acids Research,

47:D701–D710. https://doi.org/10.1093/nar/gky1084 PMID: 30407520

25. Krzywinski M., Schein J., Birol I., Connors J., Gascoyne R., Horsman D., et al. 2009. Circos: an informa-

tion aesthetic for comparative genomics. Genome Res. 19:1639–1645. https://doi.org/10.1101/gr.

092759.109 PMID: 19541911

26. Yang J., Lee S.H., Goddard M.E., and Visscher P.M. 2011. GCTA: a tool for Genome-wide Complex

Trait Analysis. Am J Hum Genet. 88:76–82. https://doi.org/10.1016/j.ajhg.2010.11.011 PMID:

21167468

27. Misztal I., Tsuruta S., Strabel T., Auvray B., Druet T., & Lee D. 2002. BLUPF90 and related programs

(BGF90). Proc. the 7th world congress on genetics applied to livestock production, Montpellier,

Fraance. 19–23.

28. VanRaden P. M. 2008. Efficient methods to compute genomic predictions. Journal of Dairy Science.

91:4414–4423. https://doi.org/10.3168/jds.2007-0980 PMID: 18946147

29. BAXTER R.C., 1988. The insulin-like growth factors and their binding proteins. Comparative Biochemis-

try and Physiology B. 91(2), 229–235. https://doi.org/10.1016/0305-0491(88)90137-x PMID: 2461835

30. McPherron A. C., and Lee S. J. 1997. Double muscling in cattle due to mutations in the myostatin gene.

PNAS. 94:12457–12461. https://doi.org/10.1073/pnas.94.23.12457 PMID: 9356471

31. Benoit S., Schwartz M., Baskin D., Woods S. C., and Seeley R. J. 2000. CNS melanocortin system

involvement in the regulation of food intake. Hormones and Behavior. 37:299–305. https://doi.org/10.

1006/hbeh.2000.1588 PMID: 10860674

32. Samulin J., Berget I., Lien S., Sundvold H. 2008. Differential gene expression of fatty acid binding pro-

teins during porcine adipogenesis. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 151:147–152.

https://doi.org/10.1016/j.cbpb.2008.06.010 PMID: 18621139

33. Buchanan F., Thue T., Yu P., and Winkelman-Sim D. 2005. Single nucleotide polymorphisms in the cor-

ticotrophin-releasing hormone and pro-opiomelancortin genes are associated with growth and carcass

yield in beef cattle. Animal Genetics, 36:127–131. https://doi.org/10.1111/j.1365-2052.2005.01255.x

PMID: 15771721

34. Lindholm-Perry A. K., Sexten A. K., Kuehn L. A., Smith T. P., King D. A., Shackelford S. D., et al. 2011.

Association, effects and validation of polymorphisms within the NCAPG-LCORL locus located on BTA6

PLOS ONE Genomic prediction using high-density and text-mined gene-based SNP panels in Hanwoo (Korean cattle)

PLOS ONE | https://doi.org/10.1371/journal.pone.0241848 December 2, 2020 16 / 18

https://doi.org/10.1186/s12911-017-0519-0
https://doi.org/10.1186/s12911-017-0519-0
http://www.ncbi.nlm.nih.gov/pubmed/28830417
https://doi.org/10.1016/j.jocs.2017.01.001
https://doi.org/10.1016/j.jocs.2017.01.001
https://doi.org/10.2527/2000.78112856x
http://www.ncbi.nlm.nih.gov/pubmed/11063309
https://doi.org/10.1038/ng.3656
https://doi.org/10.1038/ng.3656
http://www.ncbi.nlm.nih.gov/pubmed/27571263
https://doi.org/10.1086/519795
http://www.ncbi.nlm.nih.gov/pubmed/17701901
https://doi.org/10.4161/fly.19695
https://doi.org/10.4161/fly.19695
http://www.ncbi.nlm.nih.gov/pubmed/22728672
https://CRAN.R-project.org/package
https://doi.org/10.1093/bioinformatics/bti525
http://www.ncbi.nlm.nih.gov/pubmed/16082012
https://doi.org/10.1089/omi.2011.0118
http://www.ncbi.nlm.nih.gov/pubmed/22455463
https://doi.org/10.1093/nar/gky1084
http://www.ncbi.nlm.nih.gov/pubmed/30407520
https://doi.org/10.1101/gr.092759.109
https://doi.org/10.1101/gr.092759.109
http://www.ncbi.nlm.nih.gov/pubmed/19541911
https://doi.org/10.1016/j.ajhg.2010.11.011
http://www.ncbi.nlm.nih.gov/pubmed/21167468
https://doi.org/10.3168/jds.2007-0980
http://www.ncbi.nlm.nih.gov/pubmed/18946147
https://doi.org/10.1016/0305-0491%2888%2990137-x
http://www.ncbi.nlm.nih.gov/pubmed/2461835
https://doi.org/10.1073/pnas.94.23.12457
http://www.ncbi.nlm.nih.gov/pubmed/9356471
https://doi.org/10.1006/hbeh.2000.1588
https://doi.org/10.1006/hbeh.2000.1588
http://www.ncbi.nlm.nih.gov/pubmed/10860674
https://doi.org/10.1016/j.cbpb.2008.06.010
http://www.ncbi.nlm.nih.gov/pubmed/18621139
https://doi.org/10.1111/j.1365-2052.2005.01255.x
http://www.ncbi.nlm.nih.gov/pubmed/15771721
https://doi.org/10.1371/journal.pone.0241848


with feed intake, gain, meat and carcass traits in beef cattle. BMC Genetics. 12:103. https://doi.org/10.

1186/1471-2156-12-103 PMID: 22168586

35. Nishimura Shota, Watanabe Toshio, Mizoshita Kazunori, Tatsuda Ken, Fujita Tatsuo, Watanabe

Naoto, et al. 2012. Genome-wide association study identified three major QTL for carcass weight

including the PLAG1-CHCHD7 QTN for stature in Japanese Black cattle. BMC Genetics. 13:40. https://

doi.org/10.1186/1471-2156-13-40 PMID: 22607022

36. Dina C., Meyre D., Gallina S., Durand E., Körner A., Jacobson P., et al. 2007. Variation in FTO contrib-

utes to childhood obesity and severe adult obesity. Nature Genetics. 39:724–726. https://doi.org/10.

1038/ng2048 PMID: 17496892

37. Cho S. A., Park T. S., Yoon D. H., Cheong H. S., Namgoong S., Park B. L., et al. 2008. Identification of

genetic polymorphisms in FABP3 and FABP4 and putative association with back fat thickness in Korean

native cattle. BMB reports. 41:29–34. https://doi.org/10.5483/bmbrep.2008.41.1.029 PMID: 18304447

38. Vykoukalova Z., Knoll A., Dvořák J., andČepica S. 2006. New SNPs in the IGF2 gene and association

between this gene and backfat thickness and lean meat content in Large White pigs. Journal of Animal

Breeding and Genetics. 123:204–207. https://doi.org/10.1111/j.1439-0388.2006.00580.x PMID:

16706926

39. Hirose Kensuke, Ito Tetsuya, Fukawa Kazuo, Arakawa Aisaku, Mikawa Satoshi, Hayashi Yoichi, et al.

2013. Evaluation of effects of multiple candidate genes (LEP, LEPR, MC4R, PIK3C3, and VRTN) on

production traits in Duroc pigs. Animal Science Journal. 85:3. https://doi.org/10.1111/asj.12134 PMID:

24128088

40. Shin S., and Chung E. 2013. Novel SNPs in the bovine ADIPOQ and PPARGC1A genes are associated

with carcass traits in Hanwoo (Korean cattle). Mol. Biol. Rep. 40:4651–4660. https://doi.org/10.1007/

s11033-013-2560-0 PMID: 23649766

41. Alexander L. S., Qu A., Cutler S. A., Mahajan A., Rothschild M. F., Cai W., et al. 2010. A calcitonin

receptor (CALCR) single nucleotide polymorphism is associated with growth performance and bone

integrity in response to dietary phosphorus deficiency. J. Anim. Sci. 88:1009–1016. https://doi.org/10.

2527/jas.2008-1730 PMID: 19933433

42. Grzes Maria, Sadkowski Slawomir, Rzewuska Katarzyna, Szydlowski Maciej & Switonski Marek. 2016.

Pig fatness in relation to FASN and INSIG2 genes polymorphism and their transcript level. Molecular

Biology Reports. 43:381–389, https://doi.org/10.1007/s11033-016-3969-z PMID: 26965892

43. Sevane N., Armstrong E., Cortés O., Wiener P., PongWong R., Dunner S., et al. 2013. Association of

bovine meat quality traits with genes included in the PPARG and PPARGC1A networks. Meat Science.

94:328–335, https://doi.org/10.1016/j.meatsci.2013.02.014 PMID: 23567132

44. Shao G.C., Luo L.F., Jiang S.W., Deng C.Y., Xiong Y.Z., Li F.E. 2011. A C/T mutation in microRNA tar-

get sites in BMP5 gene is potentially associated with fatness in pigs. Meat science. 87:299–303.

https://doi.org/10.1016/j.meatsci.2010.09.013 PMID: 21093991

45. Kogelman Lisette J. A., Zhernakova Daria V., Westra Harm-Jan, Cirera Susanna, Fredholm Merete,

Franke Lude, et al. 2015. An integrative systems genetics approach reveals potential causal genes and

pathways related to obesity. Genome Medicine. 7:105. https://doi.org/10.1186/s13073-015-0229-0

PMID: 26482556

46. Wheeler T., and Koohmaraie M. 1994. Prerigor and postrigor changes in tenderness of ovine longissi-

mus muscle. J. Anim. Sci. 72:1232–1238. https://doi.org/10.2527/1994.7251232x PMID: 8056668

47. Corva P., Soria L., Schor A., Villarreal E., Cenci M. P., Motter M., et al. 2007. Association of CAPN1 and

CAST gene polymorphisms with meat tenderness in Bos taurus beef cattle from Argentina. Genetics

and Molecular Biology. 30:1064–1069. https://doi.org/10.1590/S1415-47572007000600006

48. Li Y., Jin H., Yan C., Seo K., Zhang L., Ren C., et al. 2013. Association of CAST gene polymorphisms

with carcass and meat quality traits in Yanbian cattle of China. Mol. Biol. Rep. 40:1875–1881. https://

doi.org/10.1007/s11033-012-2243-2 PMID: 23086304

49. Schenkel F., Miller S., Jiang Z., Mandell I., Ye X., Li H., et al. 2006. Association of a single nucleotide

polymorphism in the calpastatin gene with carcass and meat quality traits of beef cattle. J. Anim. Sci.

84: 291–299. https://doi.org/10.2527/2006.842291x PMID: 16424255

50. White S. N., Casas E., Wheeler T. L., Shackelford S. D., Koohmaraie M., Riley D. G., et al. 2005. A new

single nucleotide polymorphism in CAPN1 extends the current tenderness marker test to include cattle

of Bos indicus, Bos taurus, and crossbred descent. J. Anim. Sci. 83:2001–2008. https://doi.org/10.

2527/2005.8392001x PMID: 16100054

51. Paton C. M., Ntambi J. M. 2009. Biochemical and physiological function of stearoyl-CoA desaturase.

American Journal of Physiology-Endocrinology and Metabolism. 297:E28–E37. https://doi.org/10.

1152/ajpendo.90897.2008 PMID: 19066317

PLOS ONE Genomic prediction using high-density and text-mined gene-based SNP panels in Hanwoo (Korean cattle)

PLOS ONE | https://doi.org/10.1371/journal.pone.0241848 December 2, 2020 17 / 18

https://doi.org/10.1186/1471-2156-12-103
https://doi.org/10.1186/1471-2156-12-103
http://www.ncbi.nlm.nih.gov/pubmed/22168586
https://doi.org/10.1186/1471-2156-13-40
https://doi.org/10.1186/1471-2156-13-40
http://www.ncbi.nlm.nih.gov/pubmed/22607022
https://doi.org/10.1038/ng2048
https://doi.org/10.1038/ng2048
http://www.ncbi.nlm.nih.gov/pubmed/17496892
https://doi.org/10.5483/bmbrep.2008.41.1.029
http://www.ncbi.nlm.nih.gov/pubmed/18304447
https://doi.org/10.1111/j.1439-0388.2006.00580.x
http://www.ncbi.nlm.nih.gov/pubmed/16706926
https://doi.org/10.1111/asj.12134
http://www.ncbi.nlm.nih.gov/pubmed/24128088
https://doi.org/10.1007/s11033-013-2560-0
https://doi.org/10.1007/s11033-013-2560-0
http://www.ncbi.nlm.nih.gov/pubmed/23649766
https://doi.org/10.2527/jas.2008-1730
https://doi.org/10.2527/jas.2008-1730
http://www.ncbi.nlm.nih.gov/pubmed/19933433
https://doi.org/10.1007/s11033-016-3969-z
http://www.ncbi.nlm.nih.gov/pubmed/26965892
https://doi.org/10.1016/j.meatsci.2013.02.014
http://www.ncbi.nlm.nih.gov/pubmed/23567132
https://doi.org/10.1016/j.meatsci.2010.09.013
http://www.ncbi.nlm.nih.gov/pubmed/21093991
https://doi.org/10.1186/s13073-015-0229-0
http://www.ncbi.nlm.nih.gov/pubmed/26482556
https://doi.org/10.2527/1994.7251232x
http://www.ncbi.nlm.nih.gov/pubmed/8056668
https://doi.org/10.1590/S1415-47572007000600006
https://doi.org/10.1007/s11033-012-2243-2
https://doi.org/10.1007/s11033-012-2243-2
http://www.ncbi.nlm.nih.gov/pubmed/23086304
https://doi.org/10.2527/2006.842291x
http://www.ncbi.nlm.nih.gov/pubmed/16424255
https://doi.org/10.2527/2005.8392001x
https://doi.org/10.2527/2005.8392001x
http://www.ncbi.nlm.nih.gov/pubmed/16100054
https://doi.org/10.1152/ajpendo.90897.2008
https://doi.org/10.1152/ajpendo.90897.2008
http://www.ncbi.nlm.nih.gov/pubmed/19066317
https://doi.org/10.1371/journal.pone.0241848


52. Bonnet M., Leroux C., Faulconnier Y., Hocquette J. F., Bocquier F., Martin P., et al. 2000. Lipoprotein

lipase activity and mRNA are up-regulated by refeeding in adipose tissue and cardiac muscle of sheep.

The Journal of Nutrition. 130:749–756. https://doi.org/10.1093/jn/130.4.749 PMID: 10736325

53. Kaikaus R., Bass N., and Ockner R. J. E. 1990. Functions of fatty acid binding proteins. Experientia.

46:617–630. https://doi.org/10.1007/BF01939701 PMID: 2193826

54. Gandolfi G., Pomponio L., Ertbjerg P., Karlsson A. H., Costa L., Lametsch R., et al. 2011. Investigation

on CAST, CAPN1 and CAPN3 porcine gene polymorphisms and expression in relation to post-mortem

calpain activity in muscle and meat quality. Meat science. 88: 694–700. https://doi.org/10.1016/j.

meatsci.2011.02.031 PMID: 21450414

55. Malheiros J. M., Enrı́quez-Valencia C. E., da Silva Duran B. O., de Paula T. G., Curi R. A., de Vasconce-

los Silva, et al. 2018. Association of CAST2, HSP90AA1, DNAJA1 and HSPB1 genes with meat tender-

ness in Nellore cattle. Meat science. 138, 49–52. https://doi.org/10.1016/j.meatsci.2018.01.003 PMID:

29331838

56. Tizioto Polyana C., Gasparin Gustavo, Souza Marcela M., Mudadu Mauricio A., Coutinho Luiz L., Ger-

son B. Mourão, et al.2013. Identification of KCNJ11 as a functional candidate gene for bovine meat ten-

derness. Physiological Genomics. 45:1215–1221. https://doi.org/10.1152/physiolgenomics.00137.

2012 PMID: 24151244

57. Li X., Kim S. W., Choi J.S., Lee Y.M., Lee C.K., Choi B.H., et al. 2010. Investigation of porcine FABP3

and LEPR gene polymorphisms and mRNA expression for variation in intramuscular fat content. Mol.

Biol. Rep. 37:3931–3939. https://doi.org/10.1007/s11033-010-0050-1 PMID: 20300864

58. Abe T., Saburi J., Hasebe H., Nakagawa T., Misumi S., Nade T., et al. 2009. Novel mutations of the

FASN gene and their effect on fatty acid composition in Japanese Black beef. Biochem Genet. 47:397–

411. https://doi.org/10.1007/s10528-009-9235-5 PMID: 19291389
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