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With rapid development of high-throughput techniques and accumulation of big transcriptomic data, plenty of computational
methods and algorithms such as differential analysis and network analysis have been proposed to explore genome-wide gene
expression characteristics. These efforts are aiming to transform underlying genomic information into valuable knowledges
in biological and medical research fields. Recently, tremendous integrative research methods are dedicated to interpret the
development and progress of neoplastic diseases, whereas differential regulatory analysis (DRA) based on gene coexpression
network (GCN) increasingly plays a robust complement to regular differential expression analysis in revealing regulatory functions
of cancer related genes such as evading growth suppressors and resisting cell death. Differential regulatory analysis based on GCN
is prospective and shows its essential role in discovering the system properties of carcinogenesis features. Here we briefly review
the paradigm of differential regulatory analysis based on GCN.We also focus on the applications of differential regulatory analysis
based onGCN in cancer research and point out thatDRA is necessary and extraordinary to reveal underlyingmolecularmechanism
in large-scale carcinogenesis studies.

1. Introduction

In the past decade, plenty of computational methods and
algorithms such as differential analysis and network analysis
[1, 2] are proposed to explore genome-wide gene expression
characteristics with rapid development of high-throughput
technologies and accumulation of big transcriptomic data.
These efforts in computational genomic area are dedicated
to transform underlying genomic information into valuable
knowledges in biological and medical research fields [3, 4].
Recently, tremendous integrative research aims to interpret
the development and progress of cancers because elucidating
molecular regulatory mechanisms, especially the dysregula-
tion mechanisms, of neoplastic diseases makes great benefit
in medical and pharmaceutical aspects. Although partial
different regulatory functions of cancer hallmarks such as
evading growth suppressors and resisting cell death [5] have

been revealed, the whole dysregulation mechanisms are far
from clear.

Cancer is a complex disease and an effective way to study
regulatory role of genes involved in cancer is to summarize
them into network [6]. It is suggested that genes having
similar or correlated expression patterns might contribute to
the same regulatory function and gene coexpression patterns
revealed by coexpression network analysis may lead to more
insightful discovery on the underlying regulatory mecha-
nisms [2, 7]. By comparing the difference of the regulatory
networks between cancer and normal status, specific differ-
ential network of genes can be identified as dysfunctional in
cancer. A large number of reverse engineering approaches
have been developed to construct regulatory network from
gene expression data. For examples, Xiao suggested Boolean
model to analyze and stimulate the gene regulatory network
[8]. Somemethods based on Bayesianmodel lead to Bayesian
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networks and they are widely applied [9–11]. Nonlinear
differential equationmodel is also developed to construct the
regulatory network [12]. Prior biological knowledge such as
transcription factor- (TF-) target regulatory relationships or
miRNA-target regulatory relationships can also be integrated
into modelling framework [11, 13, 14]. These reverse and for-
ward integrated approaches are supposed to have smaller false
positive rate to extract informative insights of transcriptomic
behaviors.

Although network analysis provides the possibility to
comprehensively understand biological processes, it does
increase the computational complexity. Decreasing the
searching space before network analysis is necessary in high
dimension data analysis. An obvious strategy of reducing
the computational burden is to build a subnetwork around a
given set of genes such as previously reported disease-related
genes [15] or around differentially expressed genes [16–18].
Differential expression analysis (DEA) compares the mean
expression value of genes between case and control samples
and identifies significantly differentially expressed genes by
statistical tests. In current transcriptomic analysis procedure,
DEA has become the basic and the very first analysis step.

Recently, differential coexpression analysis (DCEA)
increasingly plays a robust complement to DEA [2] and is
widely used in discovering the system properties of carcino-
genesis features. By calculating the change of correlations
between gene pairs instead of mean expression level, DCEA
provides more information about phenotypic change-related
regulatory network [19–24].Therefore, differential regulatory
analysis based on coexpression network may detect more
insights into regulatory mechanisms.

In this review, we will introduce the paradigm of differ-
ential regulatory analysis (DRA) based on gene coexpression
network (GCN). We also focus on the applications of DRA
based on GCN in cancer research and point out that DRA is
necessary and extraordinary to reveal underlying regulatory
mechanism in large-scale carcinogenesis studies.

2. Paradigm of Differential
Regulatory Analysis Based on Gene
Coexpression Network

Differential regulatory analysis based on gene coexpression
network has been widely used in carcinogenesis regulation
research and basically includes three procedures as shown
in Figure 1: constructing gene coexpression network based
on transcriptomic data, regulatory analysis according to gene
coexpression network, and differential regulatory compari-
son between different conditions.

2.1. Construction of Gene Coexpression Network. In a gene
coexpression network, genes are nodes and their correlations
are represented by the edges of network. Pearson correla-
tion coefficient (PCC) is the mostly used score to measure
the tendency of gene expression correlation [25–28]. The
value of PCC ranges from −1 to 1 and higher absolute
value of PCC means higher correlation between gene pairs.
When constructing gene coexpression network, a correlation

threshold is selected. After removing the nonsignificant edges
or negligible coordinated gene pairs by the threshold, gene
coexpression network is constructed by the significantly
correlated gene pairs remained as shown in Figure 1(a) [29].

Weighted correlation network analysis (WGCNA) [27,
28] is widely used for constructing coexpression network
based on gene expression data and implementing network
analysis [19, 21, 30]. It summarizes clusters of highly cor-
related genes by defining a continuous network adjacency
which is a power of initial one to reduce the low-adjacency
gene pairs. WGCNA analyzes the cluster structure and
explores the relationships between modules or that between
modules and genes. GCN topological characters can be well
studied byWGCNAand this great advantagemakesWGCNA
one of most used GCN construction methods in research.
There are many coexpression module detection methods
provided byWGCNA for users to choose their own preferred
one. Meanwhile, choosing a suitable threshold is required for
GCN construction in WGCNA. One limitation of WGCNA
is that its GCN construction is undirected. Other prior
knowledge is needed if further regulatory analysis based on
GCN is designed.

Link-based quantitative methods in DCGL [26, 31]
employ a half-thresholding strategy to construct specific
GCNs. That is, if at least one of the two coexpression values
of a specific link exceeds the threshold, the link in both
coexpression networks from two different conditions is kept
[26, 31]. In this way, minute variations are ignored by filtering
out those noninformative links whose correlation values in
both networks are insignificant. GCNs constructed by DCGL
are also without directions.

Gaussian graphical model (GGM) is another approach to
construct gene coexpression network [32–34]. Based on the
assumption that the covariance of gene pairs follows a mul-
tivariate Gaussian distribution, partial correlation between
gene pairs is calculated as the degree of correlation after
the effects of other genes are removed. Unlike the fact that
correlations in PCC-based method are calculated by gene
pairs themselves, correlations of gene pair in GGM-based
methods take into account information of other genes, which
makes GGM-based GCN more similar to real biological
network.

Some algorithms are proposed with focus on how to
infer the structure of gene correlation relationships. Algo-
rithm for the Reconstruction of Accurate Cellular Networks
(ARACNE) [35, 36] is a method of GCN construction, which
also pays attention to partial network properties of GCN by
counting gene triplets. The Context Likelihood of Related-
ness (CLR) [37] algorithm calculates the relative correlation
based on the empirical correlations over surrounding genes.
MRNET is an iterative feature selection algorithm and uses
a maximum relevance and minimum redundancy criterion
[38].

DECODE (differential coexpression and differential
expression) combines the information from both differential
coexpression and differential expression to set up the thresh-
olds systematically based on a chi-square maximization [39].

A recent GCN construction algorithm is proposed by
Planar Filtered Network Analysis (PFNA) and Multiscale
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Figure 1: Paradigm of differential regulatory analysis based on gene coexpression network. The paradigm of differential regulatory analysis
based on gene coexpression network includes but is not limited to three procedures. (a) Constructing gene coexpression network based on
genomic transcriptomic data. (b) Regulatory analysis according to gene coexpression network. (c)Differential regulatory comparison between
different conditions.



4 BioMed Research International

EmbeddedGeneCoexpressionNetworkAnalysis (MEGENA)
[40, 41]. According to this algorithm, GCN is constructed on
a spherical surface so that links between gene pairs do not
cross the others. They have advantages in extracting most
relevant information from similarity matrix from complex
network system based on topological sphere.

2.2. Regulatory Analysis according to Gene Coexpression Net-
work. After the gene coexpression network is constructed
based on the transcriptomic data, regulatory information can
be extracted by various regulatory analysis methods from the
GCN according to research desires as shown in Figure 1(b).
The most common way is to use the prior knowledge of TF-
target regulatory relationships or miRNA-target regulatory
relationships to highlight the specific regulatory subnetwork
[25].

Another important method looking for regulatory ele-
ments is clustering method. A major goal of coexpression
analysis is discovering biologically related modules or gene
groups. In WGCNA, hierarchical clustering method is used
to identify highly correlated gene subnetworks [27]. Sig-
nificantly compact subclusters are verified by the average
shortest path distancewithin each cluster over the cluster size.
Nonnegative matrix factorization clustering method [42–44]
is also employed to clustering coexpressed geneswith features
of interests.

According to topological structure of gene coexpression
network, some interesting characters such as hub genes can
help to explain regulatory function contained in the GCN.
Connectivity in GCN presents how a gene connects to other
genes and hub genes are the ones with very high level of
connectivity. Hub genes are normally connections between
different genemodules and should be a specific research focus
for investigations into cancer-correlated gene modules. For
instance, Yang et al. build gene coexpression networks based
on transcriptomic and clinical data of four cancer types and
discovered that prognostic mRNA genes tended not to be
hub genes [24]. They suggested that hubs genes coordinate
genes over different pathways to participate in the regulatory
processes. Chou et al. investigated endometrial cancers (ECs)
hub genes by constructing WGCNA coexpression network
and these hub genes are involved in antigen processing, cell
adhesion, and cell-cycle regulation [21]. On the other hand,
loss of connectivity in coexpression network is a common
topological trait among the different kinds of cancer [45].

2.3. Differential Regulatory Comparison between Differ-
ent Conditions. Distinguishing different regulatory elements
between different conditions such as tumor and normal
tissue, or different cancer types, or even cross-species (human
and mouse) [46] help to understand the dysfunctional regu-
lation.

There are two ways to perform differential regulatory
comparison between different conditions. The first way is
to construct gene coexpression network based on each
condition and compare the difference between constructed
GCNs to extract different regulation elements as shown
in Figure 1(c) [24, 30]. The other way is to calculate the
significantly different correlation between various conditions

and build a network based on these selected gene pairs
[47, 48]. Differential regulatory comparison between dif-
ferent conditions is able to find the differential genes or
gene modules across different conditions, providing useful
information as well. In DCGL v2, differentially coexpressed
TFs are defined as differential regulated genes (DRGs), and
DRGs are ranked for prioritizing regulators that are putatively
causative to the phenotype of interests in DRrank function in
the R package of DCGL2 [25]. For example, RIF algorithm
in DRrank function combines three types of transcriptomic
information and assigns a high score to those TFs that are
“cumulatively most differentially wired to the abundant most
differentially expressed genes” [25, 49].

3. Applications of Differential Regulatory
Analysis Based on GCN in Cancer Research

Recently, differential regulatory analysis based on GCN is
applied in more and more cancer studies. In the following,
we give some examples of its applications and summarize
advantages of this integrative method.

3.1. Revealing Dysfunctional Regulatory Genes and Subnet-
works inCancer Research. Thedirect advantage of differential
regulatory analysis (DRA) is that DRA is able to distinguish
dysfunctional regulatory subnetworks or pathways in cancer
status. For example, Jiang et al. constructed highly preserved
gene ontology biological process (GO BP) gene coexpression
network and prostate cancer coexpression network by using
WGCNA approach.With regulatory analysis they discovered
548 GO BP coexpression modules and 294 prostate cancer
coexpression modules. By comparing the difference of these
modules, they identified 55 conserved prostate cancer coex-
pression modules [30]. And there are five modules which
are significantly enriched with prostate cancer candidate
genes. These five modules are featured with regulation of
apoptosis, response to stress, cellular localization, and protein
localization [30]. Udyavar et al. performed coexpression net-
work construction based on a dataset of combined normal,
adenocarcinoma, squamous cell carcinoma, and small-cell
lung cancer (SCLC) tissue specimens by WGCNA. They
compared the distribution of significant modules across four
types of samples and derived an SCLC-specific hub network
classifier and identified spleen tyrosine kinase as candidate
biomarker and therapeutic target for SCLC [19].

Cancer is considered as a complex disease withmultilevel
progressing process. DRA based onGCN is able to bring light
to dynamic regulatory relationships of cancer in its different
progress levels. For instance, Cao et al. first constructed gene
coexpression networks of normal, adenoma, and carcinoma-
specific gastric carcinogenesis to decrease the searching space
for potential regulatory genes [48]. After these potential
regulatory genes are acquired, three differential networks are
constructed. By comparing constructed differential network-
ing information and signaling pathway information of three
developing stages, the regulation roles of GATA6 and ESRRG
and their signaling pathways in gastric carcinogenesis were
suggested [48].Thiswork frame is prospective and extendable
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to other cancer researches.Wu et al. also performed a system-
level study of gastric cancer by constructing five phenotype-
specific coexpression networks [50]. Their comparison anal-
ysis of connectivity reveals that hub genes which only exit
in the normal networks play important roles in gastric
tumorigenesis and hub genes only related to tumor networks
are enriched in specific biological terms. Ruan et al. identi-
fied specific pathways associated with renal cell carcinoma
(RCC) based on differentially coexpressed links which were
detected by three methods: Pearson’s correlation, Bayesian
network, and WGCNA. These RCC-related pathways help
to explain underlying regulatory mechanisms of RCC [29].
Khosravi et al. built independent gene regulatory networks
from each prostate cancer and found critical transcription
factors involved in prostate cancer based on hub type vari-
ation [51]. These dynamic network studies across cancer
stages well reveal the change of regulatory patterns during the
progression of cancers.

3.2. Practical and Beneficial in Multilevel Network Analysis
When Integrated with miRNAs and lncRNAs Data. With the
emerging roles of microRNAs (miRNAs) and long noncod-
ing RNAs (lncRNAs) in gene regulatory networks, more
and more genomic studies on miRNAs and lncRNAs are
performed in cancer research aspects [52–58]. By integrat-
ing genomic miRNAs and lncRNAs with mRNAs data to
construct multi-level co-expression network and analyze
differential regulatory mechanism, the understanding of
carcinogenesis functions of miRNAs and lncRNAs can be
greatly improved from the views of system level.

For example, Lin et al. constructed a cross-cancermiRNA
differential coexpression network and identified two poten-
tial miRNA-regulated oncomodules associated with poor
survival outcomes in patients [59]. This study suggested
that disruption of miRNA positive coexpression in cancer
might contribute to cancer development. There are many
efforts made to discover the regulatory action of lncRNAs
in cancer [56, 57]. DRA based on coexpression network is
also extendable to lncRNAs-cancer gene network analysis.
InCaNet is a data resource which contains precalculated
significant coexpression pairs of 9641 lncRNAs and 2544
well-classified cancer genes in 2922 matched TCGA samples
[60]. And InCaNet helps to explore regulatory functions of
particular lncRNA-cancer gene interaction in cancer studies.
Most lncRNAs’ regulatory functions are unknown and DRA
based on lncRNAs-cancer gene network has the exact ability
to perform the predictions. According to the assumption
that genes or nodes in a subgroup may execute similar
functions, Cogill and Wang identified a list of previously
uncharacterized lncRNAs coexpressed with key cancer genes
in their study [20] and Hao et al. inferred lncRNAs related to
esophageal squamous cell carcinoma ESCC from constructed
coexpression network and differential regulatory analysis
[61]. Moreover, an integrated miRNA-mRNA-lncRNA coex-
pression network analysis was performed by Wu et al.
to study the oestrogen receptor-regulated transcriptome
in breast cancer [62]. All these multilevel studies expand
our understanding of regulatory mechanism in cancer
biology.

3.3. Applicable in Medical and Pharmaceutical Aspects. Since
DRA based on GCN is a system-level analysis method
and explores the regulatory mechanisms of diseases, it has
been widely applied in medical and pharmaceutical aspects.
By integrating other pieces of information such as clinical
information or drug-target genes information, DRAbased on
GCN has more potential to contribute to theoretical base of
medical and pharmaceutical researches.

For example, prognostic genes are very important for
cancer prognosis and treatment. By integrating survival
information, Yang et al. studied the system-level prognostic
genes across four cancer types by DRA based on GCN
[24]. Discovering new biomarkers or molecular subtypes of
cancer is also valuable for stratification in clinical studies.
DRA-based signature has the ability to classify patients into
different subtypes with different clinical results. Meanwhile,
DRA-based signature is featured with different regulatory
patterns of each subtype. Wu et al. revealed a novel three-
transcription-factor signature including AHR, NFIL3, and
ZNF423 for glioma molecular subtypes by DRA based on
GCN. This three-gene DRA-based signature clusters glioma
patients into three major subtypes which are significantly
different in patient survival as well as transcriptomic patterns
[47]. Jin et al. captured a 12-gene network module of ovarian
cancer by constructing weighted survival and differential
coexpression network and this module shows a close corre-
lation with cell death [63]. All these prognostic DRA studies
based on GCN help to provide a more accurate survival
prediction. Moreover, DRA-based prognostic signature has
more potential to explore carcinogenesis mechanisms which
lead to a better precision medicine in cancer diagnosis and
treatment.

4. Discussion

Regulatory analysis is always a focal point in biological
research. Understanding the function of each regulatory
element in biological process is fundamental and challenging.
Large-scale and multilevel sequencing data provide more
opportunities to reveal molecular regulatory mechanism
from the systematic viewpoint. Differential regulatory anal-
ysis is designed for distinguishing the differential regulatory
elements in different conditions or dysfunctional regulation
specific for an abnormal condition. For example, cancer
is considered as a complex genetic disease and different
phonotypes in cancer embody regulatory level mechanisms.
Dysfunctional regulatory elements take priority in carcino-
genesis studies because of their important roles in regulation
as well as their potential in cancer treatments.

In the early past decade, gene expression data for spe-
cific phenotype is very limited and researchers had to use
various cell lines data to construct conceptual gene regula-
tory networks [14]. Then it is very difficult to explain the
differential regulatory relationships between tumor types.
Recently, with the accumulation of large-scale and multiscale
data, researchers are able to apply differential regulatory
analysis to identify specific regulatory patterns in a given
cancer type. Since differential regulatory analysis based on
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coexpression network has a system-level property, it has great
strength to discover underlying molecular mechanism and
dysfunctional regulatory elements from large-scale data of
complex system. With the development of differential regu-
latory analysis based on coexpression network itself and its
applications inmore andmore genomic andbig data research,
it presents its essential and prospective role in cancer
research.

Technically, construction of coexpression networks as
the basic starting point of differential regulatory analysis
plays important and critical role in the whole investigation
process. Therefore, both the data sets and the way to con-
struct networks must be carefully examined. For example,
Ballouz et al. suggest minimal experimental criteria to obtain
useful functional connectivity and topology information of
coexpression with microarrays greater than 20 samples and
read depth greater than 10M per sample [64]. Selection
of differential regulatory genes relies on the method or
algorithm chosen in DRA based on GCN [22, 65, 66]. For
instance, differential analysis between two conditions, which
is followed by regulatory analysis, can be performed after
two gene coexpression networks are constructed. Sometimes,
regulatory analysis based on coexpression networks between
two conditions is conducted first and comparison of differen-
tial regulatory elements is performed later. All these steps in
current differential regulatory analysis methods are relatively
flexible depending on the aim of specific research and infor-
mation available. The DRA based on GCN method might
need further standardization and refinement to better serve
more carcinogenesis research in medical and pharmaceutical
fields.

5. Conclusion

In this review, we summarize the paradigm of differential
regulatory analysis based on coexpression network of tran-
scriptomic data and the applications of differential regulatory
analysis based on GCN in cancer research. Differential
regulatory analysis based on GCN is demonstrated as a
necessary and potential tool to reveal underlying molecular
mechanism in basic functional genomic research as well as
practical carcinogenesis studies.
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