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Abstract: Bacterial resistance has become increasingly serious because of the widespread 
use and abuse of antibiotics. In particular, the emergence of multidrug-resistant bacteria has 
posed a serious threat to human public health and attracted the attention of the World Health 
Organization (WHO) and the governments of various countries. Therefore, the establishment 
of measures against bacterial resistance and the discovery of new antibacterial drugs are 
increasingly urgent to better contain the emergence of bacterial resistance and provide 
a reference for the development of new antibacterial drugs. In this review, we discuss 
some antibiotic drugs that have been approved for clinical use and a partial summary of 
the meaningful research results of anti-drug resistant bacterial drugs in different fields, 
including the antibiotic drugs approved by the FDA from 2015 to 2020, the potential 
drugs against drug-resistant bacteria, the new molecules synthesized by chemical modifica-
tion, combination therapy, drug repurposing, immunotherapy and other therapies. 
Keywords: multidrug-resistant bacteria, antimicrobial resistance, novel antibiotics, 
antibiotics, antibiotic discovery

Introduction
The golden age of antibiotics was ushered in by the accidental discovery of 
penicillin in 1929.1 About 70% of the antimicrobials used in human medicine 
today were obtained during the golden age of antibiotic discovery, and most of 
which were isolated from Actinomycetes.2 As one of the most important medical 
discoveries in the 20th century, antibiotics have revolutionized medical practice 
with their ability to treat infections caused by pathogenic microorganisms, which 
has saved countless lives and made important contributions to the prevention and 
treatment of human infectious diseases.3 However, since the 1970s, the research 
and development of antimicrobials has focused more on the modification or opti-
mization of known compounds in laboratory conditions; obtaining antibiotics with 
development value from microbial metabolites by pure culture method has been 
difficult; and fewer antibiotics can be used in clinical trials.4 Data display that 270 
antibiotics have been approved by the US Food and Drug Administration (FDA) for 
clinical use from 1928 to early 1970s.5 Although infectious diseases caused by 
bacteria, viruses, parasites, or fungi are the second leading cause of death in the 
world, only 27 antibiotics out of the 1090 FDA-approved drugs were commercia-
lized between 2000 and 2020.6 While the development of antibiotics is becoming 
increasingly difficult, the resistance of bacteria to antibiotics is increasing year 
by year.7
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Seven of the 17 Sustainable Development Goals of 
the United Nations 2030 Agenda are related to antimi-
crobial resistance (AMR). Drug-resistant diseases kill at 
least 700,000 people globally each year, and this figure 
could rise to 10 million a year by 2050.8 Without sus-
tained efforts to curb AMR, some 2.4 million people in 
high-income countries could die from drug-resistant dis-
eases between 2015 and 2050, and the cumulative global 
economic losses could amount to about $100 trillion 
a year.9 At least 2.8 million people in the US become 
infected with drug-resistant diseases each year, and more 
than 35,000 die from these diseases.10 Around 33,000 
people die in Europe each year from infections with 
various drug-resistant bacteria, and the burden of these 
infections is equivalent to that of influenza, tuberculosis, 
and acquired immunodeficiency syndrome combined.11 

The severity of AMR is particularly acute in low- and 
middle-income countries because of inadequate surveil-
lance, limited antimicrobial supplies, and inadequate 
laboratory capacity.12,13

At present, the serious lack of new antibiotics and 
increased antibiotic resistance coexist.14 Only eight of 
the 51 newly developed antibiotics could be classified as 
innovative drugs to treat antibiotic resistance, and most of 
which are modifications of existing drugs.15 Most antibio-
tics in use today are natural or derived from natural anti-
microbial drugs.16,17 The rapid development of drug 
resistance may render many promising antibacterial drugs 
useless.18–20 The lack of effective antimicrobial agents has 
greatly weakened our ability to effectively control infec-
tion. Thus, new treatment strategies for infectious diseases 
are urgently needed.21,22

Major Drug-Resistant Bacteria
Despite various strategies adopted in clinical practice, mor-
tality due to antibiotic-resistant bacteria has remarkably 
increased worldwide. “ESKAPE” pathogens, namely, 
Enterococcus faecium, Staphylococcus aureus, Klebsiella 
pneumoniae, Acinetobacter baumannii, Pseudomonas aer-
uginosa, and Enterobacter spp., are the most common 
opportunistic pathogens in nosocomial infection.23 The 
acronym “ESKAPE” is close to ESCAPE and vividly 
reflects the ability of these microorganisms to “escape” 
the bacterial killing of antibiotics, as well as their insensi-
tivity to conventional antimicrobial therapy.24 According to 
the bacteria and fungi listed in the Centers for Disease 
Control and Prevention’s 2019 Antibiotic Resistance 
Threat Report, drug-resistant microbial species are classi-
fied into urgent, serious, and concerning threats according 
to their severity.25 The urgent, serious and concerning 
threats of drug-resistant bacteria are shown in Figure 1.

Methicillin-resistant S. aureus (MRSA) has severe 
multidrug resistance to aminoglycosides,26 

fluoroquinolones,27 tetracycline,28 macrolides, and other 
antimicrobial drugs.29,30 Vancomycin-resistant 
Enterococcus (VRE) was first discovered in a clinical iso-
late in 1986. Vancomycin-resistant S. aureus (VRSA) iso-
lates, which pose serious threat to healthcare, were 
discovered in 2002 because of the transmission of vanA 
resistance genes. VRE-induced nosocomial complicated 
urinary tract infections (cUTIs) has been reported and 
can lead to bacteremia (blood infection) and even 
death.31 As Gram-negative bacteria (GNB), Escherichia 
coli, K. pneumoniae, P. aeruginosa and A. baumannii con-
stitute a special threat because of their double-membrane 

Figure 1 Centre for Disease prevention and Control (CDC) classification on antibiotic-resistant bacteria that cause public threat. 
Notes: Data from: U.S. Department of Health and Human Services; Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States; 2019. 
Available from: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf. Accessed March 2, 2021.205
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coating, which inhibits the access of antibiotics to their 
target; therefore, the infections caused by these bacteria 
cannot be cured even by a lethal dose of antibiotics.32 

Thus, MDR-GNB occupies an important position in noso-
comial infections.33,34 MDR A. baumannii and 
P. aeruginosa are the leading causes of nosocomial infec-
tions worldwide and are currently the key priority patho-
gens of the WHO in terms of drug resistance, AMR 
surveillance, and the discovery of new antibiotics.35 The 
current resistance rates of Enterobacterales to third- 
generation cephalosporins are above 10%, and the resis-
tance rates of Enterobactales, K. pneumoniae, 
P. aeruginosa, and intensity care unit-acquired 
A. baumannii to carbapenems are 2%–7%, >25%, 20%– 
40%, and 40%–70%, respectively.36 In addition, linezolid 
was sold in 2000, and reports of resistance to linezolid 
appeared in just 1 year.37 Therefore, the research and 
development of new antibiotic drugs that can effectively 
deal with the infection of these resistant bacteria are 
urgently needed.

Progress in Research and 
Development of Drugs Against 
Drug-Resistant Bacteria
Antibiotic Drugs Approved for Marketing 
by FDA from 2015 to 2021
The following antibacterial drugs were approved for mar-
keting by FDA from 2015 to 2020. Ceftazidime/avibactam 
was approved in 2015. Obiltoxaximab and bezlotoxumab 
were approved in 2016. Delafloxacin, meropenem/vabor-
bactam, and ozenoxacin were approved in 2017. 
Plazomicin, eravacycline, sarecycline, omadacycline, and 
rifamycin were approved in 2018. Imipenem/cilastatin/ 
relebactam, pretomanid, lefamulin, and cefiderocol were 
approved in 2019. No FDA-approved drugs targeting 
resistant bacteria hit the market in 2020. Oritavancin was 
approved by the FDA in April 29, 2021.

Ceftazidime/avibactam is a combination of the third- 
generation cephalosporin, ceftazidime, and the beta- 
lactamase inhibitor, avibactam. Ceftazidime inhibits pepti-
doglycan synthesis by inhibiting penicillin-binding pro-
teins (PBPs), which results in cell wall instability and 
cell death. Avibactam is a synthetic, non-beta-lactamase 
inhibitor that inhibits the activity of class A and C beta- 
lactamases and some class D beta-lactamases.38 

Avibactam protects ceftazidime from breakdown by the 
beta-lactamases produced by these drug-resistant GNB 

but does not inhibit subclass B1 beta-lactamases, such as 
New Delhi metallo-beta-lactamase (MBL), Verona inte-
gron-encoded MBL, and Imipenmase.39 Ceftazidime/avi-
bactam is used to treat complicated intra-abdominal 
infections (cIAI) and cUTI caused by susceptible GNB. 
The adaptive bacteria, including MDR P. aeruginosa, car-
bapenem-resistant GNB, and extended-spectrum beta- 
lactamase-producing Enterobacterales (ESBL-E), are 
widespread. The most frequently encountered adverse 
reactions include hypersensitivity, diarrhea, and central 
nervous system reactions (such as seizures), which occur 
most often in patients with renal damage.40 According to 
clinical trials, the effect of Ceftazidime/avibactam is better 
than that of carbapenems.41 The combination therapy of 
ceftazidime/avibactam and metronidazole is recommended 
for cIAI.42 Although the combination has been available 
clinically for only a few years, cases of resistance to 
Ceftazidime/avibactam have already been reported.43

The new inhaled anthrax treatment, obiltoxaximab, is 
a monoclonal antibody against the protective antigen of 
Bacillus anthracis and is designed to neutralize the toxin 
produced by B. anthracis to prevent the bacterium from 
binding to the cellular receptor.44 Obiltoxaximab alone or 
in combination with antibiotics remarkably improved the 
survival rate of rabbits who inhaled a challenge dose of 
B. anthracis spores without interfering with immune 
development.45 The most frequently reported side effects of 
obiltoxaximab include headache, itching, upper respiratory 
tract infection, cough, stuffy nose, and hives, as well as 
bruising, swelling, and pain at the injection site. The label 
of obiltoxaximab carries a black box warning that the drug 
may cause allergic reactions, including anaphylactic shock.46

Bezlotoxumab is a human monoclonal IgG1 antibody 
against Clostridioides difficile toxin B30. Bezlotoxumab 
works by preventing the B toxin from binding to colon 
cells and thus prevent the development of C. difficile 
infection. Bezlotoxumab can reduce the proinflammatory 
reaction in vitro and reduce the damage to the colon 
explant tissue by neutralizing toxin B. It has no direct 
antibacterial activity against C. difficile and has low immu-
nogenicity and good tolerability.47 However, it causes an 
unexplained increased risk of heart failure in patients with 
underlying congestive heart failure. Therefore, the bezlo-
toxumab adaptation population need to be further 
improved.48

Delafloxacin, as a dual-targeted fluoroquinolone com-
pound, was first approved by FDA on June 19, 2017 for 
clinical use in the treatment of acute bacterial skin and 
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skin structure infections (ABSSSI). Delafloxacin can form 
a ternary complex with DNA and topoisomerase IV or 
DNA cyclotron to inhibit the formation of bacterial DNA 
superhelix and disrupt the DNA replication process.49 

Delafloxacin protects against Gram-positive bacteria 
(GPB, such as MRSA) and GNB (including quinolone- 
resistant E. coli, P. aeruginosa, and K. pneumoniae) and is 
more active against MRSA than other fluoroquinolones.50 

Its bactericidal ability under acidic environment is also 
more prominent than most approved zwitterionic fluoro-
quinolone drugs. Delafloxacin is well tolerated with 
a termination rate of only 0.9% because of side effects in 
a Phase 3 clinical trial. The common adverse reactions are 
gastrointestinal disorders, including nausea, diarrhea and 
vomiting. It did not cause QT prolongation and phototoxi-
city and has no adverse effects on liver function, renal 
function, or glucose utilization.51

Meropenem/vaborbactam is composed of the broad- 
spectrum carbapenem, meropenem, and the beta- 
lactamase inhibitor, vaborbactam. Meropenem acts on 
PBPs and causes bacterial lysis by inhibiting cell wall 
biosynthesis. Vaborbactam is a new type of beta- 
lactamase inhibitor. It does not have any antibacterial 
activity but can protect meropenem from degradation by 
certain serine beta-lactamases without reducing merope-
nem activity. Meropenem/vaborbactam has a broad- 
spectrum inhibitory activity against the members of the 
beta-lactamase family, and almost all (99%) 
K. pneumoniae carbapenemase (KPC)-producing 
Enterobacteriaceae has in vitro activity.52 Vaborbactam 
has a strong inhibitory activity against type A and C beta- 
lactamases but not against type B and D beta-lactamases.53 

In August 2017, the FDA approved Meropenem/vaborbac-
tam for the treatment of adult patients with cUTIs, includ-
ing pyelonephritis caused by certain bacteria. This drug 
has good efficacy against GNB, especially bacteria with 
beta-lactam antibiotic resistance, and has good safety and 
tolerability.54 The most common adverse effects of 
Meropenem/vaborbactam are headache, phlebitis or infu-
sion site reactions, and diarrhea. Rare and serious adverse 
reactions include anaphylaxis and epilepsy.55

Ozenoxacin is a dual inhibitor of DNA helicase and 
topoisomerase IV and belongs to the non-fluoroquinolone 
class of drugs. Ozenoxacin was approved by the FDA in 
December 2017 for the treatment of impetigo caused by 
S. aureus or Streptococcus pyogenes in pediatric patients 
and adults older than 2 months of age.56 The drug kills 
bacteria by inhibiting bacterial DNA replicases, DNA 

cyclotron A, and topoisomerase IV. Ozenoxacin has excel-
lent activity against S. aureus (including methicillin- 
resistant isolates) and S. pyogenes. Adverse reactions 
include rosacea or seborrheic dermatitis.57

Plazomicin is a new generation of aminoglycoside 
antibiotics that can inhibit the 30S subunits of bacterial 
ribosomes and then kill bacteria. Plazomicin is made by 
chemical modification on the basis of sisomicin, which 
avoids being damaged by the aminoglycoside-modifying 
enzyme (AME) and thus inactive.58 Plazomicin was 
approved by the FDA in June 2018 for the treatment of 
adult patients with cUTIs (including pyelonephritis) 
caused by certain Enterobacterales infections with very 
limited or no treatment options. The application was 
submitted to the European Medicines Agency (EMA) 
for review in June 2018. Plazomicin has antimicrobial 
activity against MDR Enterobacterales, P. aeruginosa, 
S. aureus (including MRSA), ESBL-E, carbapenem- 
resistant Enterobacterales (CRE), polycolistin-resistant 
Enterobacterales, and AME-producing bacteria.59,60 

Adverse reactions include nephrotoxicity (the incidence 
of nephrotoxicity is lower than that of colistin), diarrhea, 
hypertension, headache, nausea, vomiting, and 
hypotension.61

Eravacycline is a fully synthetic fluorocycline antibio-
tic that is a part of a novel tetracycline broad-spectrum 
antibiotic with C-7 and C-9 modifications to the D-ring of 
the tetracycline core. Similar to other tetracyclines, erava-
cycline inhibits bacterial protein synthesis by binding to 
the 30S subunit of the ribosome.62 Eravacycline has broad- 
spectrum antimicrobial activity against GNB, GPB, and 
anaerobic microorganisms, as well as against MDR bac-
teria, including MRSA, VRE, CRE, and Acinetobacter 
spp. that produce ESBL.63,64 The most common adverse 
reactions are infusion site reactions (7.7%), nausea (6.5%), 
vomiting (3.7%), and diarrhea (2.3%).65

Sarecycline is a tetracycline-derived oral antibiotic 
designed specifically for acne. It was approved by the 
FDA in 2018 for the treatment of inflammatory conditions 
associated with moderate to severe non-nodular acne.66 

Sarecycline has strong anti-inflammatory activity against 
GPB, such as Cutibacterium acnes, and has minimal anti- 
inflammatory activity against aerobic GNB.67 It has a low 
resistance rate in tetracycline-resistant S. aureus, as well as 
erythromycin-resistant and clindamycin-resistant bacteria. 
In clinical trials, adverse events were found in vulvovagi-
nal mycosis (0.8%) and vulvovaginal candidiasis (0.6%) in 
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less than 1% of female subjects; thus, the adverse events 
were small.68

Omadacycline is a novel tetracycline antimicrobial 
agent for the empirical treatment of community-acquired 
bacterial infections. The C9 and C7 sites of the D ring of 
the tetracycline core are chemically modified to stabilize 
the exhaust pump and ribosomal protective protein 
mechanism of tetracycline resistance.69 Similar to other 
tetracyclines, omadacycline inhibits bacterial protein 
synthesis by binding to the 30S ribosomal subunit. 
Omadacycline provides a promising treatment plan for 
ABSSSI and community-acquired bacterial pneumonia 
(CABP). Moreover, omadacycline has a broad spectrum 
of activity against aerobic and anaerobic GPB and GNB; 
atypical bacteria; and antibiotic-resistant organisms, such 
as MRSA, methicillin-sensitive S. aureus (MSSA), and 
penicillin-resistant and MDR Streptococcus pneumoniae 
and VRE, but it has no activity against P. aeruginosa, 
Proteus spp., and Providencia spp.70 In clinical trials, the 
most common adverse reactions (incidence ≥ 2%) were 
nausea, vomiting, infusion site reaction, increased alanine 
transaminase, increased aspartate transaminase, increased 
γ-glutamyltransferase, hypertension, headache, diarrhea, 
insomnia, and constipation.71

Rifamycin inhibits bacterial DNA-dependent RNA 
polymerase by inhibiting RNA synthesis.72 It was approved 
by the FDA in November 2018 for the treatment of non-
invasive E. coli strains that cause traveler’s diarrhea. In 
clinical trials, adverse reactions were constipation (3.5%), 
headache (3.3%), abdominal pain (0.5%), and fever (0.3%), 
and 1% of patients discontinued treatment.73,74

Imipenem/cilastatin/relebactam is a combination of 
imipenem, cilastatin, and relebactam. Imipenem/cilastatin 
is a combination antibiotic product that has been in use for 
decades under the brand names Primaxin and Tienam. 
Relebactam is a novel beta-lactamase inhibitor that pro-
tects Imipenem from degradation by certain serine beta- 
lactamases. Gram-negative strains resistant to imipenem 
became more sensitive to imipenem when combined with 
relebactam. In July 2019, the FDA approved Imipenem/ 
cilastatin/relebactam to treat cUTIs and cIAI caused by 
designated sensitive GPB for patients aged 18 years of age 
and older who have limited or no other treatment 
options.75 In addition, it was approved in 2020 for the 
treatment of hospital-acquired bacterial pneumonia 
(HABP) and ventilator-associated bacterial pneumonia 
(VABP) in adult patients caused by a variety of specific 
microorganisms, such as Enterobacter cloacae, E. coli, 

K. pneumoniae, Clostridium perfringens, P. aeruginosa. 
The common adverse reactions of Imipenem/cilastatin/ 
relebactam include nausea, diarrhea, and headache.76,77

The novel compound, pretomanid, which is a part of 
a three-drug, six-month, all-oral regimen, bedaquiline–pre-
tomanid–linezolid (BPAL), kills actively replicating 
Mycobacterium tuberculosis by blocking cell wall produc-
tion under anaerobic conditions. Pretomanid is also active 
against non-replicating M. tuberculosis and acts as 
a respiratory poison to inhibit protein synthesis.78 It is 
used for the treatment of patients with extensively drug- 
resistant (XDR) tuberculosis (TB) or MDR-TB (collec-
tively referred to as “highly drug-resistant TB”) who are 
drug intolerant or unresponsive. Treatment options and 
prognosis for people with highly drug-resistant TB are 
poor. Data from the pivotal Phase III NIX-TB trial showed 
that 90% of patients achieved negative sputum culture 
status 6 months after the completion of treatment with 
short-course fully oral BPAL. In the clinical trials of the 
BPAL program, peripheral neuropathy and anemia were 
the recognized adverse reactions.79–81

Cefiderocol is an injectable siderophore cephalosporin 
discovered and being developed by Shionogi & Co., Ltd., 
Japan, and it has a unique mechanism of penetrating the 
cell membrane of GNB by entering the bacterial periplas-
mic space as a result of its siderophore-like property.82 

Cefiderocol can inhibit the biosynthesis of bacterial cell 
walls and has strong bactericidal effect against all GNB, 
including carbapenem-resistant Gram-negative non- 
fermenting A. baumannii, P. aeruginosa, and refractory 
CRE. Cefiderocol has pioneered in the field of serious 
diseases, where mortality rates are high and medical 
needs are not met. FDA approved cefiderocol intravenous 
Injection and the Committee for Medicinal Products for 
Human Use of the EMA has also granted cefiderocol with 
accelerated assessment status.83–85 The common adverse 
reactions of cefiderocol include gastrointestinal disorders, 
hypertension, infusion site pain, and diarrhea.82

Lefamulin, an intravenous and oral formulation, was 
approved by the FDA in August 2019 for the treatment of 
adult CABP. It represents an important new, short-term, 
empirical monotherapy regimen.86 Lefamulin, a first-of-its 
-kind, system-administered semisynthetic pleuromutilin 
antibiotic that acts differently from other approved anti-
biotics. It can inhibit bacterial protein synthesis and thus 
inhibit bacterial growth by binding to the peptidyl trans-
ferase center of the 50S subunit of the bacterial 
ribosome.87 Lefamulin has a targeted in vitro activity 
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spectrum against the most common pathogenic Gram- 
positive, Gram-negative, and atypical pathogens asso-
ciated with CABP. Lefamulin also exerts activity against 
S. aureus, MRSA, and vancomycin-resistant E. faecium.88 

The adverse effects of lefamulin include prolonged QT 
interval (increases the risk of kidney failure or liver dys-
function in patients), infusion reactions, diarrhea, nausea, 
hypokalemia, insomnia, and headaches.89

Ceftolozane/tazobactam is a combination of ceftolozane, 
a novel cephalosporin antibiotic, and tazobactam, a beta- 
lactamase inhibitor. It was approved by the FDA in 2014 
for the treatment of adult patients with cIAI and cUTI and 
was approved by the FDA in 2019 for the treatment of adult 
patients with HABP and VABP caused by certain susceptible 
GNB. Ceftolozane had a strong inhibitory effect on PBPs. 
Compared with ceftazidime, imipenem, and ciprofloxacin, 
ceftolozane has demonstrated an 8–16-fold reduction in 
minimum inhibitory concentration against P. aeruginosa.90 

The efficacy of ceftolozane is limited by ESBLs and AMPC 
beta-lactamase.91 Therefore, tazobactam was added to cefto-
lozane to overcome this barrier and increase the in vitro 
activity against drug-resistant strains, such as beta- 
lactamase- and ESBL-producing strains (eg, E. coli, 
K. pneumoniae, and Proteus novelis); their combination 
also has certain inhibitory effects against AmpC inhibitory 
Enterobacterales and Citrobacter strains. Ceftolozane/tazo-
bactam also has higher in vitro activity against 
Enterobacterales than existing cephalosporins but is still 
readily hydrolyzed by MBL and KPC enzymes.92–94 

Ceftolozane/tazobactam has good in vitro activity against 
most Enterobacterales, including pathogens that produce 
ESBL, and has remarkable efficacy against P. aeruginosa.95

In addition, the FDA approved the anti-MRSA anti-
biotics dalbavancin and oritavancin in May and 
August 2014, respectively.96 Dalbavancin is a novel semi-
synthetic glycoseptide antibiotic and a derivative of the 
equivalent A40926. Dalbavancin has the same mechanism 
as vancomycin and teicoplanin, that is, it inhibits the 
biosynthesis of the cell wall of GPB. It is widely used 
for the treatment of skin and soft tissue infections.97 In 
vivo and in vitro studies have shown that dalbavancin has 
antimicrobial activity against GPB, including MRSA, 
MSSA, coagulase-negative staphylococci (CoNS), and 
Streptococcus.98 Dalbavancin is the first antibiotic 
approved by the FDA for the treatment of GPB (including 
MRSA) infection. It is used to treat ABSSSI caused by 
GPB (including MRSA). Oritavancin, an antibiotic for the 
treatment of GPB (including MRSA) infection, has been 

approved for the treatment of adult patients with ABSSSI 
caused by sensitive GPB (including MRSA).99,100

The US FDA approved oritavancin on March 12, 2021 
for the treatment of ABSSSI caused by susceptible isolates 
of GPM, including MRSA.101 Oritavancin is a single-dose 
long-acting lipopeptides antibiotic made in a 1200 mg vial 
in combination with 0.9% sodium chloride injection and 
5% glucose sterile water for rapid bactericidal activity. 
Oritavancin is to be infused within 1 hour (ie, a single, 
1-hour, 1200 mg infusion provides a full course of 
ABSSSI treatment).102 Oritavancin has three bactericidal 
mechanisms: transpeptidase inhibition, transglycosylation 
inhibition, and cell membrane destruction. The efficacy 
and safety of oritavancin were demonstrated in the 
SOLO clinical trial of another oritavancin product. The 
experimental results showed that oritavancin was compar-
able to oritavancin in efficacy and safety. The common 
adverse reactions of oritavancin products are nausea, 
vomiting, diarrhea and other gastrointestinal symptoms, 
and headaches. The adverse reactions of oritavancin are 
manifested as hypersensitivity, pruritus, and chills.103

Potential Drugs Against Drug-Resistant 
Bacteria
Odilorhabdins (ODLs) are a novel ribosome targeted anti-
biotic produced by the nematode symbiotic bacterium, 
Xenorhabdus nematophila. ODL’s overall mechanism of 
action is to interfere with protein synthesis, and the pattern 
it works depends on the concentration of the drug.104 

Notably, its binding site is different from other inhibitors 
that target the 30S ribosomal subunit, and the mutations 
that render the mitochondrial ribosome susceptible to ami-
noglycosides are not expected to affect the binding or 
action of ODLs.105 ODLs exhibit excellent broad- 
spectrum antimicrobial activity against a broad range of 
GNB and GPB (K. pneumoniae, E. coli, Enterobacter 
aerogenes, E. cloacae, Proteus mirabilis, S. aureus, and 
Enterococcus faecalis), including drug-resistant strains 
that are difficult to treat, such as carbapenemase- 
producing Enterobacterales. Moreover, ODLs were able 
to cure bacterial infections in animal models but did not 
exhibit bactericidal activity against cytotoxic in mamma-
lian HepG2 and HK-2 cells. Their ability to cure bacterial 
infections in animal models and the novelty of their bind-
ing site made ODLs a promising candidate for new drug 
development.106,107

https://doi.org/10.2147/IDR.S338987                                                                                                                                                                                                                                   

DovePress                                                                                                                                                      

Infection and Drug Resistance 2021:14 5580

Cui et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Teixobactin, a depsipeptide antibiotic derived from 
poorly cultivated soil microorganisms, is composed of 
11 amino acids; this unique molecular structure confers 
its remarkable bacteriostatic activity.108,109 Its unique and 
novel antimicrobial mechanism is to bind to the con-
served sequences of peptidoglycan precursor lipid II and 
teixobactin precursor lipid III on the bacterial cell wall 
such that the bacterial cell wall cannot synthesize toxins. 
It is capable of killing a variety of drug-resistant patho-
genic bacteria.110 Teixobactin has a remarkable inhibitory 
activity against most GPB in vitro.111 It also has strong 
inhibitory activity against M. tuberculosis with long treat-
ment cycles and high clinical costs. Teixobactin has pro-
found inhibitory activity for a variety of MDR bacteria, 
such as MRSA and VRE. Teixobactin is not effective 
against most GNB but exhibits good activity against 
E. coli asmb1, which has a defective outer membrane 
permeability barrier. In vitro toxicology experimental stu-
dies showed that teixobactin has no substantial toxic side 
effects.112 Thus, teixobactin is considered the “star 
antibiotic”.113,114 At present, the total chemical synthesis 
of teixobactin has been completed, and remarkable pro-
gress has also been made in the chemical synthesis of 
teixobactin analogs, which further drives the development 
of novel antibacterial drugs against drug-resistant 
strains.115

GNB have a double outer membrane that can block 
pathogens well, which makes them more difficult to kill 
than other types of bacteria. In the past 50 years, no new 
antibiotics against GNB have been approved for market-
ing. Arylomycin found in ordinary soil is a macrocyclic 
lipopeptide substance that can inhibit bacterial type 
I signal peptidase (SPase), which is a key membrane- 
bound enzyme that can decompose proteins and peptides. 
The active site of SPase, which is located between the cell 
membrane and outer membrane of GNB, greatly reduces 
the activity of arylomycin against GNB.116 G0775, the 
new molecule obtained after the structural optimization 
of arylomycin, is 500 times more active than arylomycin 
against drug-resistant strains. G0775 has a therapeutic 
effect on a variety of GNB infections, including MDR 
bacteria, and has strong in vitro antibacterial activity 
against ESKAPE pathogenic bacteria. The brand-new 
mode of action of G0775 is that it forms a covalent bond 
with lysine (K146) in the target, which enhances its bind-
ing force to the target. Moreover, G0775 reaches the target 
not through the conventional channel protein (porin) to 
penetrate the outer membrane.117

Malacidins are calcium-dependent antibiotics usually 
encoded in soil microorganisms. Unlike other calcium- 
dependent antibiotics, malacidins interact with lipid II in 
a calcium-dependent manner.118 Although vancomycin 
also binds to lipid II, malacidin is active against vancomy-
cin intermediates and vancomycin-resistant pathogens.119 

Experiments show that malacidins have strong antibacter-
ial activity against GPB resistant to commonly used clin-
ical antibiotics, including vancomycin-resistant pathogens. 
In addition, malacidins have no obvious toxicity or hemo-
lytic activity to mammalian cells. Therefore, it is 
a potential antibiotic for the treatment of drug-resistant 
bacteria that still needs further research.120

Researchers obtained the novel antibiotic, darobactin, 
a metabolite of luminescent Bacillus, from the screening 
of Photorhabdus isolates using the classic screening 
method in natural product research.121 Darobactin is 
a novel peptide formed by the rare closed-loop structure 
of seven amino acids and is encoded by the silencing 
operon, synthesized by the ribosome, and produced in 
very small quantities under laboratory conditions. In addi-
tion, a novel antimicrobial mechanism has been proposed, 
that is, darobactin binds to BamA protein located in the 
outer membrane of GNB, damages the outer membrane, 
and induces cell lysis.122 The compound exhibited good 
activity against wild-type and resistant Gram-negative 
pathogens, such as E. coli, K. pneumoniae, 
P. aeruginosa, Shigella, and Salmonella in vitro and in 
infected animal models and showed no cytotoxic effects. 
Therefore, this compound provides a very promising lead 
material for the development of new antibiotics.

Halicin is a broad-spectrum bactericidal antibiotic and 
the first antibiotic to be discovered by artificial intelligence 
without using any human assumptions. Halicin has inhibi-
tory effect on the growth of E. coli, S. aureus, 
K. pneumoniae, and A. baumannii and has rapid bactericidal 
effect on M. tuberculosis and CRE. In a mouse model, 
halicin was also effective in treating C. difficile and pandrug 
resistant A. baumannii infections but had no antibacterial 
effect against P. aeruginosa. Halicin is antibacterial through 
a special mechanism; it can interfere with bacteria and 
prevent them from forming an electrochemical gradient 
across the membrane. It will cause bacterial death without 
such gradient.123 However, the process of reshaping the 
electrochemical gradient is very complicated, which also 
prevents the generation of drug resistance to the greatest 
extent. Halicin was discovered by building a deep neural 
network model with empirical data from 2335 FDA- 
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approved drugs and natural molecules with a wide range of 
biological activity. The resulting model was then applied to 
predict antimicrobial compounds in drug recovery centers, 
and halicin was finally identified as a broad-spectrum bac-
tericidal antibiotic. The antimicrobial compounds identified 
by this method are structurally far different from known 
antibiotics; this finding emphasizes the utility of deep learn-
ing methods. The antibiotic library can be expanded and new 
ideas can be provided for the development of subsequent 
antibiotics by discovering antimicrobial molecules with dif-
ferent structures.124,125

Pseudouridimycin (PUM), produced by microorganisms 
in soil samples, is a novel inhibitor antibiotic and the first 
nucleoside analog inhibitor.126,127 PUM competes with uridine 
triphosphate to obtain the RNA polymerase (RNAP) active 
site and inhibit bacterial RNAP by blocking transcription. 
Although its antimicrobial mechanism is not new, it is unique 
in the sense that PUM selectively inhibits bacterial RNAP 
rather than human RNAP. Moreover, PUM has a different 
binding site compared with other RNAP inhibitors, such as 
rifampicin and fidaxomicin, which greatly avoids the occur-
rence of cross-drug resistance.128 Studies have shown that 
PUM has antibacterial activity against GPB, GNB, and even 
more lethal pathogens (such as E. coli, Acinetobacter spp., and 

Pseudomonas spp., especially MDR strains). Its mechanism of 
action made the development of bacterial resistant very diffi-
cult. Therefore, PUM is expected to a become true broad- 
spectrum antibiotics for clinical application.129

Table 1 summarizes the source, activity, against, 
mechanism of action and highlights of these potential 
drugs, and the chemical structures summarized in 
Figure 2.

New Molecules Synthesized by Chemical 
Modification
OTB-021(5-methyl-7-(3-nitro-1,2,4-triazol-1-yl)-1,2,4-tria-
zolo[1,5-a]pyrimidine) is a compound that has specific activ-
ity against the H37RV strain, which is sensitive to 
M. tuberculosis drugs, but this compound has no activity 
against other GNB or GPB.130 OTB-021 isomer showed 
reverse biological activity, which can inhibit the growth of 
all ESKAPE pathogens but is inactive against M. tuberculosis. 
The results will help to develop new effective drugs against 
diseases caused by drug-resistant bacteria.131

NAC-3, a new cephalosporin compound, was synthe-
sized using cephalomycin C as the precursor; NAC-3 
retained the antibacterial activity of its precursor and pos-
sessed improved stability against beta-lactamase with a 7α 

Table 1 Potential Drugs Against Drug-Resistant Bacteria with Their Reported Mechanism

Name Source Activity Against Mechanism of Action Highlights

Odilorhabdins 

(ODLs)

From the nematode 

symbiotic bacterium 

X. elegans

GNB and GPB, including 

carbapenemase producing 

Enterobacteriaceae

Inhibition of protein 

synthesis

• A novel binding site; 

• Drug concentration affects 

inhibition patterns

Teixobactin From poorly cultivated 

soil microorganisms

GPB, including MDR strains Inhibition of cell wall 

synthesis

• Novel antimicrobial mechanism; 

• No significant toxic side effects

G0775 Optimized the 

structure of 
arylomycin

GNB, including ESKAPE 

pathogenic bacteria

Inhibition of SPase • The way to reach the target is 

novel

Malacidins From the soil 

microorganisms

GPB, including MDR strains Interaction with lipid II in 

a calcium-dependent 

manner

• No cytotoxic effects

Darobactin From the screening of 

Photorhabdus isolates

GNB, including MDR strains Damage in the outer 

membrane

• Novel antimicrobial mechanism; 

• No cytotoxic effects

Halicin From artificial 

intelligence

GPB and GNB, including MDR 

strains

Interruption of the 

transmembrane 
electrochemical gradient

• Novel antimicrobial mechanism

Pseudouridimycin 
(PUM)

From the 
microorganisms in soil 

samples

GPB and GNB, including MDR 
strains

Inhibition of bacterial 
RNAP by blocking 

transcription

• Selectively inhibit bacterial 
RNAP; 

• Different binding site
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trans methoxy in the beta-lactam ring. In addition, NAC-3 
has strong hydrophilicity, which also renders strong anti-
bacterial activity, especially against anaerobic bacteria, 

because of its cephalomycin C parent nucleus.132–135 The 
antibacterial activity of NAC-3 against GPB, including 
MRSA, MSSA, methicillin-resistant Staphylococcus 

Figure 2 Potential drugs against drug-resistant bacteria with their chemical structure.

Infection and Drug Resistance 2021:14                                                                                             https://doi.org/10.2147/IDR.S338987                                                                                                                                                                                                                       

DovePress                                                                                                                       
5583

Dovepress                                                                                                                                                              Cui et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


epidermidis, and methicillin-sensitive S. epidermidis, is 
remarkably better than that of latamoxef and cefepime, 
but not strong enough against E. faecalis and E. faecium. 
Its antimicrobial activity against GNB, including E. coli 
(ESBLs, non-ESBLs), K. pneumoniae (ESBLs, non- 
ESBLs), A. baumannii, and P. aeruginosa, is low, but it 
has outstanding anti-MRSA activity, which has important 
clinical application value. Moreover, NAC-3 has good 
protective effect on the systemic infections caused by 
S. aureus in vivo, and its therapeutic effect is better than 
that of the commonly used clinical antibiotics, cefepime 
and cephalosporin. Hence, it became a new antibiotic 
candidate for anti-MRSA infection and provided a basis 
for the further research and development of new cephalos-
porin compounds.136

Serafim et al synthesized a new synthetic 1,3-bis-
(aryloxy)propan-2-amine, which has antibacterial activity 
against GPB, including MRSA. In the future, the contin-
uous optimization of the structure of the compound may 
also expand the antibacterial spectrum.137

Amino acid-conjugated polymers (ACPs) are a new 
type of molecule developed by chemically linking glycine 
with polymers. ACPs have high antibacterial activity 
against MDR A. baumannii, have no toxicity to human 
cells, and does not easily develop drug resistance. Further 
research on the efficacy of this molecule is needed in 
animal models.138 Based on in vitro studies, ACPs have 
great potential to be developed as future therapeutics.139 

As the hydrophobicity of the amino acid side chain 
increases, its antibacterial activity and toxicity increase, 
which could provide new ideas for the subsequent discov-
ery of new antibiotics against drug-resistant bacteria.140

Combination Therapy
Taniborbactam is the first beta-lactamase inhibitor that has 
direct inhibitory activity on type A, B, C, and 
D enzymes.141 The combined application of taniborbactam 
and the fourth-generation cephalosporin, cefepime, may be 
used to treat the infections caused by carbapenem-resistant 
pathogens, such as CRE and P. aeruginosa; Gram-negative 
and Gram-positive susceptible pathogens; and bioterrorist 
pathogens, such as Burkholderia spp.142

Synergistic effects between plazomicin and piperacil-
lin/tazobactam or ceftazidime were observed in chessboard 
studies. These studies suggest that plazomicin has the 
potential to be used as a monotherapy and combination 
therapy for the treatment of severe infections caused by 
MDR Gram-negative Enterobacterales.143

In the combination therapy described by Procopio et al, 
the lectin, casuL, is an antimicrobial membrane agent 
against some Staphylococcus isolates obtained from ani-
mals with mastitis. In addition, the synergistic activity of 
casuL, when used in combination with antibiotics, sup-
ports the need for new studies to determine the feasibility 
of this approach in the treatment of goat and bovine 
mastitis.144

The drug efflux mechanism and outer membrane per-
meability barrier of GNB act synergistically to form intrin-
sic drug resistance.145 Small molecule adjuvants may be 
used as a strategy to restore the activity of antibiotics 
against drug-resistant pathogens.146 Efflux pump inhibitors 
(EPIs) block the efflux of antibiotics, but their efficiency in 
penetrating the outer membrane and resisting efflux is low. 
Combination with tobramycin carrier can enhance the 
synergistic effect and effectiveness of EPIs on MDR 
GNB and inhibit the development of drug resistance. 
This mechanism provides a strategy for developing more 
effective adjuvants to address antibiotic resistance in MDR 
GNB.147–149 Tobramycin has been approved as an adju-
vant beta-lactamase inhibitor for clinical use to prevent the 
inactivation of beta-lactam antibiotics.150

Recent studies have shown that the combination of 
bacteriophage and antibiotic therapy can provide a new 
way to treat the infection caused by the MDR strains of 
A. baumannii. A. baumannii, which can avoid bacterial 
killing, produce a sample capsule, and have thick outer 
layers for self-protection.151 However, the phage used by 
the researchers can use the same capsule as an entrance to 
enter the bacteria and exert bacterial killing. Thus, 
A. baumannii will stop the production of capsule and 
become resensitized to antibiotics to escape the phage 
role. Animal experiments have shown that this method 
has a good therapeutic effect.152

Drug Repurposing
Fosfomycin was discovered early but used less frequently. 
It currently has a wide range of activities against GNB and 
GPB, including MDR organisms, such as MRSA, VRE, 
ESBL-E, and CRE.153 The broad-spectrum and safety of 
fosfomycin provide a great prospect for children with 
MDR organism infection. If fosfomycin is used alone, it 
may develop rapid drug resistance. However, fosfomycin 
can have a synergistic effect with other antibiotics in 
combination therapy, in which cross-resistance is not com-
mon; therefore, it needs to be used with caution to main-
tain the susceptibility of bacteria to fosfomycin.
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In recent years, polymyxin B has been re-emphasized 
as the last resort for the treatment of MDR and XDR GNB 
infections.154 Polymyxin plays an important role in the 
recurrence of GNB infection, especially MDR 
P. aeruginosa, A. baumannii, and K. pneumoniae.155 The 
adverse reactions of polymyxin include nephrotoxicity, 
neurotoxicity, and congenital abnormalities.156

Research has revealed a new type of target for the 
treatment of drug-resistant TB using anti-platelet drugs, 
which may help the body’s immune system fight off drug- 
resistant TB. Researchers have discovered for the first time 
in an animal model that platelets may worsen the symp-
toms of TB.157 Moreover, the use of antiplatelet drugs may 
help the body’s immune system to resist drug-resistant TB. 
Therefore, the antiplatelet drug, aspirin, can be used as an 
affordable drug candidate for TB treatment.158 In addition, 
the use of FDA-approved reactive oxygen species (ROS)- 
reducing drugs prevents antibiotic-induced resistance 
mutations, but further preclinical trials are still needed to 
evaluate the effectiveness of such drugs.159

Immunotherapy
The positive effects of antibodies against MDR bacterial 
infections were discovered in early animal experiments; 
therefore, antibodies have attracted increasing attention.160 

Researchers have developed antibodies from the blood of 
healthy individuals that can protect the body against 
a variety of K. pneumoniae subgroups and other bacteria. 
The chimeric antibody, pagibaximab, has a certain inhibi-
tory effect on MRSA.161 The monoclonal antibody, bezlo-
toxumab, against C. difficile toxin was approved by the 
FDA and the EMA in 2017 for the treatment of adult 
C. difficile infections.162 Immune adjuvants can enhance 
immunogenicity and antibody titer, change the type of 
antibody produced, and cause or enhance delayed hyper-
sensitivity. Existing research reports that antibodies play 
an auxiliary role in the treatment of drug-resistant bacterial 
infections.163

Antimicrobial peptides are a potentially effective ther-
apy. Regardless of whether the bacteria are resistant or not, 
they kill the bacteria by destroying the bacterial cell 
membrane.164 Researchers found that engineered cationic 
AMPs have a wide range of activities against MDR 
bacteria.165 However, their stability is still an important 
concern.166 The antibacterial peptide, OH-Cath30, identi-
fied in king cobra venom has strong antibacterial activity. 
In vivo and in vitro studies found that OH-Cath30 and its 
D-analogs have strong antibacterial activity against almost 

all GPB and GNB. It has the highest bactericidal activity 
against MDR A. baumannii and MRSA. OH-Cath30, 
ciprofloxacin, and levofloxacin have a synergistic effect 
on drug-resistant P. aeruginosa.167 The overall efficacy of 
OH-Cath30 and its analogs is higher than that of the nine 
commonly used antibiotics. Therefore, OH-Cath30 is 
a promising drug candidate for the treatment of various 
bacterial infections that are resistant to many conventional 
antibacterial drugs.168 A recently reported adjuvant uses 
Cremophor EL-35 as a surfactant and propylene glycol as 
a co-surfactant. The adjuvant can increase the specific 
immune response of serum IgG and related subclasses 
and increase the survival rate of MRSA-infected mice.169 

Tocotrienols (T3s) is a little-known vitamin E isomer and 
has been recognized as an immunomodulator. In a mouse 
model of MRSA-induced wound infection, the use of T3S 
combined with daptomycin remarkably improved the effi-
cacy of daptomycin.170 Among natural products, essential 
oils (EOs) have strong antibacterial ability against GNB 
and GPB.171,172 They can directly kill and sensitize bac-
teria and are often used in the prevention and control of 
microbial infections.173–177 In addition, EOs are consid-
ered a powerful antibacterial or drug resistance reversal 
agent against resistant strains led by ESKAPE.178–180 

Moreover, EOs and antibacterial drugs (especially oxacil-
lin against MRSA) show a high synergistic effect at sub- 
inhibitory concentrations, which lays the foundation for 
the subsequent development of drugs against drug- 
resistant bacteria.181 A cytokine protein called IL-17 is 
essential to turn on the host’s defence against staphylococ-
cal infections. In a mouse model of S. aureus skin infec-
tion, IL-17 response was mediated by γδT cells, which 
suggests that the cloned Vγ6+Vδ4+ T cells have a broad 
and important role in immunity against S. aureus or 
MRSA skin infections.182 Studies have found that the 
binding domain of autolyzed protein and lysosome as 
a peptidoglycan hydrolase can be fused to the fragment 
crystallizable region of human IgG to form a fully func-
tional homodimer (or “lysibody”) and can be specifically 
targeted in MRSA.183,184

Other Therapies
The quorum sensing (QS) mechanism enhances the mutual 
communication and virulence effects of microbial commu-
nities and ultimately leads to the emergence of antibiotic 
resistance.185 With the increase in resistance to existing 
antibiotics and antifungal drugs, new strategies rely on 
inhibiting communication and virulence factors rather 
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than killing or inhibiting the growth of microorganisms.186 

These compounds are also known as QSI.187 QSI can be 
an important antibacterial target for infectious diseases 
caused by the QS mechanism of GNB and GPB to prevent, 
inhibition, or treat the infectious diseases caused by resis-
tant bacteria.188 Indole is a widely existing QS signaling 
molecule.189 Bacterial drug resistance mediated by signal 
molecules is an emerging mechanism that has received 
much attention in recent years. Researchers reported for 
the first time that the indole-mediated reversal of the 
inherent antibiotic resistance of Lysobacter spp. is closely 
related to a new type of BTUD bifunctional transporter.190 

This study also provides a new way to eliminate drug- 
resistant bacteria.

In addition to their excellent activity on biofilms, 
phages also have the advantages of rapid bacteria killing, 
have low chance of developing drug resistance, and have 
synergistic activity with other antibiotics and lysine.191 

Phage lysin is also being developed for specific GPB, 
such as S. pneumoniae, S. aureus, and S. pyogenes, as 
well as Gram-negative bacilli, such as P. aeruginosa, 
A. baumannii, and Enterobacterales.192 The use of some 
bacteriophages in combination with antibiotics offers hope 
that the antibiotics that previously lost their antibacterial 
effect against drug-resistant bacteria will regain their role 
in killing these bacteria.193 Nanoparticles are used as 
a drug surface coating agent to help the drug to penetrate 
the outer membrane of GNB and be released; these nano-
particles are called the “Trojan Horse” and greatly reduce 
the blocking of drugs by biofilms and drug 
transporters.194,195 Coagulation factors have the ability to 
hydrolyze the necessary lipopolysaccharides in bacterial 
cell membranes, which may be expected to help defend 
against GNB.196 Studies have shown that coagulation fac-
tors VII, IX, and X may be effective against MDR 
pathogens.197,198

Studies have shown that the water and methanol 
extracts of Piper spp. and Smilax spp. can effectively 
reverse the MDR of bacteria by removing the R-plasmid 
carried by MDR strains and make the bacteria sensitive to 
antimicrobial agents. These resources can potentially curb 
plasmid-mediated MDR.199

For the patients who cannot benefit from targeted anti-
biotic therapy with C. difficile, fecal transplantation or 
microbial replacement therapy will refill the intestines 
with a variety of microorganisms.200 These microorgan-
isms may prevent C. difficile spores from germinating and 
spreading diseases through its toxin. Transplantation may 

be performed through enema, capsule, and direct infusion. 
Researchers found that stopping Salmonella from produ-
cing mucus weakens bacterial communities, which can 
then be mechanically washed away and are more likely 
to be killed by antibiotics, disinfectants, or the immune 
system.201 The collapsed nature of the dry capsule of GBP 
was found through the exploration of their cell wall 
structure.202,203 This finding overturns the previous related 
theories about the structure of the outer membrane of 
bacteria and provides new ideas for the later development 
of new methods to resist antibiotic resistance.204

Discussion
The development of antibiotics has given humans 
a weapon against bacteria. However, drug-resistant bac-
teria have emerged in an endless stream, people gradually 
lost control of the bacteria that invade the human body, 
and global incurable crisis reappeared because of the 
development of drug resistance of pathogens and the 
abuse of antibiotics by humans. At present, the abuse of 
antibiotics has not been completely controlled and is still 
happening in varying degrees in different regions around 
the world. Therefore, in the face of increasingly tense 
global health issues that are closely related to the safety 
of human life, the issue of combating drug-resistant bac-
teria needs to be formally raised and emphasized again.

From 2015 to 2020, 16 antibiotic drugs, including 5 
compound drugs, namely, Ceftazidime/avibactam, mero-
penem/vaborbactam, imipenem/cilastatin/relebactam, pre-
tomanid, and ceftolozane/tazobactam, were approved by 
the FDA. Among them, ceftazidime/avibactam, merope-
nem/vaborbactam, imipenem/cilastatin/relebactam, and 
ceftolozane/tazobactam are combinations of antibacterial 
drugs and beta-lactamase inhibitors and have good activity 
against drug-resistant bacteria, whereas pretomanid has 
good anti-TB activity.

Moreover, potential drugs against drug-resistant bac-
teria are also of great importance to the development of 
antimicrobial drugs for resistant bacteria in the future. 
ODL, halicin, and PUM are promising as broad-spectrum 
antibiotics. Among them, the ODL target is novel and has 
good activity against drug-resistant strains; halicin inter-
feres with the formation of bacterial energy, has inhibitory 
effect on certain resistant bacteria, but has no bactericidal 
effect on P. aeruginosa; and PUM has a novel target, 
blocks transcription, and is active against MDR strains. 
Teixobactin, G0775, and darobactin have novel antibacter-
ial mechanisms. Teixobactin inhibits cell wall synthesis, 
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has remarkable inhibitory activity against most GPB and 
a variety of drug-resistant bacteria, but cannot effectively 
resist GNB. G0775 penetrates the outer membrane in 
a special way to inhibit bacterial SPase with a new 
mechanism to kill a variety of GNB, including MDR 
bacteria. Darobactin destroys the outer membrane of bac-
teria and shows good activity against wild-type and drug- 
resistant GNB in vitro and in animal models of infection.

In addition to drugs against drug-resistant bacteria 
derived from natural products, chemically modified syn-
thetic new molecules have also become an important way 
for the development of drugs against drug-resistant bac-
teria. OTB-021 is only sensitive to M. tuberculosis and has 
no effect on Gram-positive or Gram-negative pathogens, 
but its two isomers are just the opposite. Further NAC-3 
has outstanding anti-MRSA activity. The new synthetic 
1,3-bis(aryloxy)propan-2-amines have biological activity 
against GPB. The ACPs developed by chemical linkage 
have high antibacterial activity against MDR 
A. baumannii.

Combination therapy and the repurposing of old drugs 
have opened another door to the exploration of drugs and 
strategies against drug-resistant bacteria and are 
a promising way to extend the service life of existing 
antibacterial drugs. Techniques, such as phage therapy, 
nanotechnology, and fecal transplantation, are gradually 
being used to overcome the infections caused by resistant 
bacteria. In addition, phage therapy has rapid killing 
kinetics, specificity for pathogens, low chance of drug 
resistance, and synergistic activity with other antibiotics 
and lysine. At present, nanotechnology is gradually emer-
ging in the treatment of drug-resistant bacterial infections. 
Fecal transplantation or microbial replacement therapy 
will help patients who cannot benefit from C. difficile 
targeted antibiotic therapy and prevent C. difficile spores 
from germinating and spreading diseases through its toxin.

Conclusion
This review comprehensively summarizes the drugs that 
have been developed against drug-resistant bacteria, the 
possible potential drugs, and other approaches that can be 
applied to fight drug-resistant bacteria in addition to anti-
biotics. Many potential drugs need more experiments to 
verify their efficacy, and the antibacterial mechanism of 
most potential drugs is still unclear. FDA-approved drugs 
against drug-resistant bacteria account for a small propor-
tion of all approved drugs. Researchers search for new 
drugs or new molecules that can delay or reduce the 

emergence of drug-resistant bacteria through the combina-
tion of drugs, repurposing old drugs, and library searches 
and provide different solutions to the serious problem of 
bacterial resistance. In summary, it is likely that the current 
crisis of drug-resistant bacteria will not be resolved by 
a single new product or therapy. And it is believed that, 
a multidisciplinary research involving experts from var-
ious fields will more conductive to resolve the crisis and 
lay a solid road for the clinical treatment of patients 
infected with drug-resistant bacteria.
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