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ABSTRACT We present the draft genome sequences of three Legionella strains that
were isolated from a hotel water distribution system. Legionella species identification
was performed by macrophage infectivity potentiator (mip) and RNA polymerase b

subunit (rpoB) gene sequencing. Whole-genome sequencing and average nucleotide
identity results supported the hypothesis of new Legionella species isolation.

The Legionella genus contains pathogenic Gram-negative bacteria that are ubiqui-
tous in soil and water environments. It consists of more than 60 species, all of them

potentially able to cause Legionnaires’ disease, a severe form of pneumonia (1).
The Legionella sp. strains 27fs60 (S60), 30fs61 (S61), and 30cs62 (S62) were isolated

from three different samples from a hotel’s hot water distribution system in the Emilia-
Romagna region (Italy) during a routine Legionella surveillance program. Water sam-
pling and Legionella isolation were performed according to ISO 19458:2006 and ISO
11731:2017, respectively (2, 3). Samples were seeded onto selective medium with gly-
cine-vancomycin-polymyxin B-cycloheximide (GVPC) and were incubated for 15 days at
35°C6 2°C in 2.5% CO2. Suspected colonies were subcultured on buffered charcoal
yeast extract (BCYE) without L-cysteine (Thermo Fisher Scientific, Basingstoke, UK).

The DNA was extracted with InstaGene matrix (Bio-Rad, Hercules, CA, USA), and iden-
tification of isolates was performed by macrophage infectivity potentiator (mip) and RNA
polymerase b subunit (rpoB) gene sequencing (4, 5). Amplicons were sequenced using
BigDye chemistry and analyzed on an ABI Prism 3100 genetic analyzer (Applied
Biosystems, Foster City, CA, USA). The mip sequences were compared with the European
Working Group for Legionella Infections (EWGLI) database. A BLAST search of the NCBI
database was carried out for bothmip and rpoB gene sequences. The best match returned
was Legionella quateirensis reference strain ATCC 49507 (GenBank accession number
GCA_001467955.1), with similarities of 98.45% and 94.8% formip and rpoB, respectively.

One hundred nanograms of genomic DNA was used for next-generation sequencing
(NGS) library preparation using the Illumina Nextera XT DNA library preparation kit (New
England Biolabs, Ipswich, MA, USA). Sequencing was performed on the Illumina NextSeq
500 platform (2 � 150-bp paired-end reads). Raw reads were used as input data for
TORMES v.1.2.0 (6), an automated pipeline for analysis of whole bacterial genomes.
TORMES includes sequence quality filtering (PRINSEQ v.0.20.4) (7) and de novo genome
assembly (SPAdes v.13.4.1) (8), as well as other downstream analyses not used for our pur-
pose. Scaffolding was performed using TORMES contigs as input for CSAR v.1.1.1 (9) with
an evolutionarily related reference genome, i.e., Legionella fallonii (GenBank accession
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number NZ_LN614827.1) The final assemblies were further improved using Geneious
Prime v.2020.2.4 software (10) and were submitted to GenBank with annotation by the
NCBI Prokaryotic Genome Annotation Pipeline (PGAP) v.4.3 (11). Default parameters were
used for all software tools unless otherwise noted. Table 1 summarizes results from as-
sembly and annotation by the PGAP and the completeness of genome assembly deter-
mined by Benchmarking Universal Single-Copy Orthologs (BUSCO) v.5.0.0 (12).

The FastANI tool (13) was used to compare the average nucleotide identity (ANI)
of the three strains against 1,009 Legionella sequences that had been downloaded
from the NCBI database using the ncbi-genome-download tool (https://github.com/
kblin/ncbi-genome-download). FastANI identified the closest relative of strain S60
to be L. quateirensis NCTC 12376 (GenBank accession number GCA_900452695.1)
(91.31%) and the closest relative of strains S61 and S62 to be L. quateirensis ATCC
49507 (91.45% and 91.44%, respectively). Since the assumption is that two strains
showing pairwise ANI values below a given threshold (95% or 96%) belong to different
species (14), our results led us to consider these strains new species.

Studying the whole genome allows investigators to better identify already known
species and to discover new ones, improving the knowledge of the ecological, viru-
lence, and resistance characteristics of Legionella.

Data availability. The draft genome assemblies are available in the GenBank data-
base and can be accessed with SRA and assembly accession numbers SRP292355 and
JADOBG000000000 (S60), SRP295125 and JADWVM000000000 (S61), and SRP295130
and JADWVN000000000 (S62).
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