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Abstract: Breath analysis using eNose technology can be used to discriminate between asthma and
COPD patients, but it remains unclear whether results are influenced by smoking status. We aim
to study whether eNose can discriminate between ever- vs. never-smokers and smoking <24 vs.
>24 h before the exhaled breath, and if smoking can be considered a confounder that influences
eNose results. We performed a cross-sectional analysis in adults with asthma or chronic obstructive
pulmonary disease (COPD), and healthy controls. Ever-smokers were defined as patients with
current or past smoking habits. eNose measurements were performed by using the SpiroNose. The
principal component (PC) described the eNose signals, and linear discriminant analysis determined
if PCs classified ever-smokers vs. never-smokers and smoking <24 vs. >24 h. The area under the
receiver–operator characteristic curve (AUC) assessed the accuracy of the models. We selected
593 ever-smokers (167 smoked <24 h before measurement) and 303 never-smokers and measured
the exhaled breath profiles of discriminated ever- and never-smokers (AUC: 0.74; 95% CI: 0.66–0.81),
and no cigarette consumption <24h (AUC 0.54, 95% CI: 0.43–0.65). In healthy controls, the eNose did
not discriminate between ever or never-smokers (AUC 0.54; 95% CI: 0.49–0.60) and recent cigarette
consumption (AUC 0.60; 95% CI: 0.50–0.69). The eNose could distinguish between ever and never-
smokers in asthma and COPD patients, but not recent smokers. Recent smoking is not a confounding
factor of eNose breath profiles.

Keywords: exhaled breath; eNose; smoking; asthma; COPD

1. Introduction

Asthma and chronic obstructive pulmonary disease (COPD) are complex and heteroge-
neous chronic airway diseases that include several phenotypes, characterized by different
inflammatory pathways [1,2]. The complexity and the heterogeneity of these diseases is
due to variability of clinical characteristics, environmental influences, and pathophysiology
aspects that are different for each patient [3]. Therefore, there is still a clinical need for new
biomarkers to characterize the underlying processes [4].

The study of exhaled breath composition (“breathomics”), could facilitate a pheno-
typing approach of chronic airway diseases [5]. Exhaled breath is partially composed of
volatile organic compounds (VOCs), including exogenous VOCs (e.g., drinks, food, drugs,
environment) and endogenous VOCs (e.g., microbiome and body (patho) physiological
metabolic processes), which can directly originate from the metabolism of bacteria residing
in alveoli, immune cells, etc., and can also diffuse into the bloodstream where they diffuse
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passively across the capillary/alveolar interface and are subsequently emanated in the
exhaled breath with different configurations according to their origin [6–8]. The eNose, a
non-invasive and rapid technique that is able to detect exhaled VOC patterns, has shown
some promise in characterizing asthma and COPD based on inflammatory characteristics
and discriminating between patients with asthma, COPD, and lung cancer [9,10].

Exhaled breath measurements are considered a promising diagnostic technique, being
easy to perform and potentially giving additional information that may help phenotyp-
ing patients, there are still some limitations related to the fact that there are many factors
(e.g., diet, smoking, co-morbidities, physical activities, age, gender, pregnancy, and medica-
tion use) which could influence the level of individual compounds present in the exhaled
breath [11]. Since VOCs are the result of metabolic and inflammatory processes related
to (patho) physiological changes that take place in the respiratory tract [12], and smoking
contributes to altering these processes in asthma and COPD [13], it is critical to assess the
sensitivity of the eNose for the smoking status of patients with chronic respiratory dis-
eases. Therefore, we aimed to investigate whether the eNose is suitable as a non-invasive
technique to identify how patients with different smoking habits may respond to smoke
exposure and whether smoking has an influence on disease classification. To assess this, in
this exploratory analysis, we hypothesized that the eNose is able to distinguish between
ever- and never-smokers.

Among patients with asthma and COPD and healthy volunteers, we assessed whether
the eNose can accurately discriminate between (1) ever- vs. never-smokers, and (2) smoking
less than vs. greater than 24 h before the exhaled breath measurement.

2. Results
2.1. Baseline Characteristics and Study Design

The study subjects selected for the analysis were enrolled from December 2015 through
May 2017 across six different sites. Of the included asthma and COPD patients (n = 896)
593 (60.4%) were ever-smokers (237 asthma and 356 COPD) and 303 (33.8%) were never-
smokers (295 asthma and 8 COPD). Among the ever-smokers, 167 (28.2%) smoked their
last cigarette <24 h before measurement. The healthy control group was composed of
199 ever-smokers (out of which 107 subjects smoked in the last 24 h) and 366 never smokers.
Tables 1–3 display the baseline clinical (age, body mass index (BMI), gender, medications)
and functional (FEV1, FVC, FEV1/FVC) characteristics of the overall population (Table 1),
ever-smokers (Table 2), and the healthy controls (Table 3). Ever-smokers had more ad-
vanced age and worse lung function (FEV1/ FEV1/FVC). In the asthma and COPD training
set, 469 patients were ever-smokers and 247 were never-smokers. In the validation set,
124 patients were ever-smokers and 56 were never-smokers. A flowchart of the study de-
sign is presented in Figure 1a. Among the healthy controls, 452 patients were in the training
set (160 ever-smokers and 292 never-smokers), and 113 subjects were in the validation set
(39 ever-smokers and 74 never-smokers) (Figure 1b).
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Figure 1. Flowchart of the study design of the asthma and COPD group (a), and healthy controls (b).

Table 1. Demographics of asthma and chronic obstructive pulmonary disease (COPD) patients
stratified by smoking status. Data are expressed in number of patients, mean ± standard deviation
or median and range for non-normal distributions.

Asthma and COPD Patients Ever Smokers (n = 593) Never Smokers (n = 303) p-Value

Age (mean (SD)) 60.99 (13.38) 48.46 (18.04) <0.001

BMI (mean (SD)) 27.78 (5.82) 26.95 (6.69) 0.055

Gender = M/F (%) 48.6/51.4 37.3/62.7 0.002

Allergy = Yes/No (%) 42.0/58.0 69.6/30.4 <0.001

FEV (mean (SD)) (l) 2.04 (0.89) 2.62 (0.93) <0.001

FVC (mean (SD)) (l) 3.41 (1.07) 3.66 (1.13) 0.002

FEV1/FVC (mean (SD)) (%) 56 (16) 70 (14) <0.001

FEV1 pred (mean (SD)) (%) 70.93 (23.81) 86.14 (21.74) <0.001

ACQ (median [IQR]) 1.60 [0.86, 2.50] 1.43 [0.71, 2.29] 0.208

CCQ (median [IQR]) 1.00 [0.00, 2.30] 0.00 [0.00, 0.00] <0.001

Current use of ICS = No/Yes (%) 27.8/72.2 15.5/84.5 <0.001

Oral corticosteroids (%) 0.780

Current use 2.4 1.7

Previous use 10.3 10.6

No 87.4 87.8
BMI: body mass index; ACQ: asthma control questionnaire; CCQ: clinical COPD questionnaire; ICS: inhaled
corticosteroids.
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Table 2. Clinical characteristics of patients with recent cigarette consumption. Data are expressed in
number of patients, mean ± standard deviation or median and range for non-normal distributions.

Ever Smokers (n = 593) <24 h (n = 167) >24 h (n = 426) p-Value

Age (mean (SD)) 56.98 (14.97) 60.83 (13.57) <0.001

BMI (mean (SD)) 26.63 (5.76) 27.75 (5.80) 0.114

Gender = M/F (%) 47.9/52.1 27.7/72.3 0.001

FEV1 (mean (SD)) (l) 2.03 (0.87) 2.05 (0.90) <0.001

FVC (mean (SD)) (l) 3.37 (1.05) 3.41 (1.08) <0.001

FEV1/FVC (mean (SD)) (%) 56 (16) 56 (16) <0.001

FEV1 pred (mean (SD)) (%) 68.82 (21.79) 70.99 (23.83) <0.001

Pack/year (median [IQR]) 30.00 [17.00, 48.00] 25.00 [10.95, 41.25] <0.001

ACQ (median [IQR]) 1.86 [1.14, 2.86] 1.60 [0.88, 2.50] 0.010

CCQ (median [IQR]) 1.40 [0.00, 2.55] 1.00 [0.00, 2.30] <0.001

BMI: body mass index; ACQ: asthma control questionnaire; CCQ: clinical COPD questionnaire.

Table 3. Demographics of healthy subjects stratified by smoking status. Data are expressed in number
of patients, mean ± standard deviation.

Ever Smokers (n = 199) Never Smokers (n = 366) p-Value

Age (mean (SD)) 46.95 (15.29) 35.67 (14.05) <0.001

BMI (mean (SD)) 26.02 (4.86) 23.72 (3.65) <0.001

Gender = M/F (%) 72/127 (36.2/63.8) 127/239 (34.7/ 65.3) 0.795

FEV1(%) (mean (SD)) 89.17(12.43) 92.08 (15.39) <0.001

FEV1/VC (%) (mean (SD)) 91.96 (12.26) 94.88(14.53) <0.001

Last cigarette (%) <0.001

<24 h 107 (53.7) 0

>24 h 92 (46.2) 0

Pack/years (mean (SD)) 15.77 (19.20) 0 <0.001

2.2. The Ability of the eNose to Discriminate a History of Smoking in Asthma and COPD Patients

Out of 13 sensors, three principal components (PCs) were selected that captured
64% of the variance within the dataset of asthma and COPD patients (PC1 37%, PC2
16%, PC3 9%). There was no significant correlation between relevant PCs and ever- or
never-smoker patients with asthma or COPD (see Supplementary Material, Figure S1).
The ability to classify a history of smoking in patients with asthma or COPD showed
reasonable accuracy in the training set (area under the receiver–operator characteristic
curve (ROC–AUC) = 0.74, 95% CI = 0.70–0.77), and this accuracy was further confirmed
in the validation set (ROC–AUC = 0.75, 95% CI = 0.68–0.82), with 67% of cross-validated
grouped cases correctly classified after Leave One Out Cross-Validation (LOO-CV) in
both groups (Figure 2a). This was confirmed with a higher accuracy using the number
of pack-years among ever-smoker patients in both the training and validation sets (see
Supplementary Material, Figure S2a).
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Figure 2. ROC analyses showing the accuracy of the linear discriminant model based on principal
component (PC) reduction in the training set and the independent validation set for the asthma and
COPD group. (a) Ever-smokers with asthma and COPD: training set (n = 469) 95% CI: 0.70–0.77
area under curve (AUC): 0.74; validation set (n = 124) 95% CI: 0.68–0.82 AUC: 0.75. (b) Time of
last cigarette assumption in asthma and COPD patients (control: more than 24 h; case: less than
24 h): training set case = 127; control = 583; 95% CI: 0.54–0.65; AUC: 0.60; validation set case = 40;
control = 84; 95% CI: 0.44–0.67; AUC: 0.55.

2.3. The Ability of the eNose to Discriminate Recent Cigarette Consumption in Asthma and
COPD Patients

The eNose could less accurately identify patients with recent last cigarette consump-
tion (<24 h) compared to smoking patients with a cigarette consumption >24 h in both the
training and validation sets (ROC–AUC = 0.60; 95% CI = 0.54–0.65; ROC–AUC= 0.55; 95%
CI = 0.44–0.67 respectively). eNose was not able to discriminate who smoked their last
cigarette before and after 24 h before the visit (Figure 2b) with an accuracy of 51% after
LOO-CV in both sets.

2.4. Does Smoking Influence eNose Results?

The same analysis was repeated with the healthy control group. Three PCs (out of
13 sensors) were selected that captured 61% of the variance within the dataset (PC1 34%,
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PC2 14%, PC3 13%). The eNose was not able to distinguish among ever- and never-smokers
in either the training (ROC–AUC: 0.54; 95% CI: 0.49–0.60) or the validation sets (ROC–AUC:
0.56; 95% CI: 0.50–0.69) with an accuracy of 53% after LOO-CV in both groups (Figure 3a).
This was confirmed according to the number of pack/years among ever-smokers (see
Supplementary Material, Figure S2b). Moreover, the eNose was not able to discriminate
between subjects who smoked their last cigarette shorter or longer than 24 h prior to the
exhaled breath measurement in both the training and the validation sets (training: area
under curve (AUC): 0.60; 95% CI: 0.50–0.69; validation: AUC: 0.60; 95% CI: 0.47–0.70)
(Figure 3b).

Figure 3. ROC analyses showing the accuracy of the linear discriminant model based on principal component reduction
in the training set and the independent validation set for the healthy control group. (a) Ever-smokers in healthy subjects:
training set (n = 452) AUC: 0.54 (95% CI: 0.49–0.60); validation set (n = 113) AUC: 0.60 (95% CI: 0.50–0.69). (b) Time of last
cigarette consumption in healthy subjects (control: more than 24h; case: less than 24h) training set (n = 160) AUC: 0.60
(95% CI: 0.50–0.69); validation set (n = 39) AUC: 0.60 (95% CI: 0.42–0.70). (c) Ex- (n = 139) and never-smokers (n = 366):
training set (ex-smokers = 116; never-smokers = 292), AUC: 0.52 (95% CI: 0.46–0.58); validation set (ex-smokers = 23;
never-smokers = 74) AUC: 0.56 (95% CI: 0.46–0.60). (d) Active (n = 60) and never smokers (n = 366): training set (active
smokers = 44; never-smokers = 292) AUC: 0.62 (95% CI: 0.51–0.67); validation set (active smokers = 16; never smokers = 74)
AUC: 0.65 (95% CI: 0.53–0.71).
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These results were further confirmed when repeating the analysis sub setting among
ever-smoker healthy subjects, current smokers, and ex-smokers. The eNose was not
accurate enough to distinguish between ex- (n = 139) and never-smokers (n = 366) in the
training or the validation sets (training set AUC: 0.52; 95% CI: 0.46–0.58; validation set
AUC: 0.56; 95% CI: 0.46–0.60) (Figure 3c). The eNose did not distinguish between ever-,
current- (n = 60), and never-smokers (n = 366) in the training set (AUC: 0.62; 95% CI:
0.51–0.67) or the validation set (AUC: 0.65; 95% CI: 0.53–0.71) (Figure 3d).

Interestingly, the eNose was not able to distinguish between ever- and never-smokers
in the asthma group (see Supplementary Material, Figure S3), but it could discriminate
the diagnosis of asthma and COPD patients among the ever-smoker population (see
Supplementary Material, Figure S4).

3. Discussion

In this study, we demonstrated that the use of the eNose to analyze exhaled breath
can discriminate patients with a chronic respiratory disease (asthma or COPD) with and
without a smoking history, but we could not make a distinction between smokers that did
or did not smoke a cigarette in the last 24 h. We also demonstrated that the eNose is not
influenced by smoking history in healthy volunteers; therefore, we can assume smoking
may not be considered as a confounder that interferes with eNose measurements. These
results were internally validated and were confirmed in an independent validation set.

Exhaled breath measurement by an eNose device has been used as a non-invasive tool
for detecting several diseases with screening and diagnostic implications [10,14–16]. To our
knowledge, this is the first study that evaluates the ability of the eNose to discriminate pa-
tients with chronic airway diseases according to their smoking status and the possible
detection of the influence of smoking in both pathologies.

We can assume that the association of exhaled breath and eNose signals most likely
reflects pathophysiological modifications related to the underlying chronic airway disease
and combined airway alterations due to chronic smoking exposure. These results are
in line with other studies. In a dual-center study [17] that recruited 222 smokers and
non-smokers, with or without COPD, the eNose was able to classify COPD never- and ex-
smokers and COPD active-smokers. Interestingly, a proportion of current smokers (9.3%)
was misclassified non-smokers according to the analysis of their CO levels, which seems to
confirm that, in line with our results, the eNose can distinguish among patients with chronic
smoking habits, whereas it is not able to detect smoking in patients depending on the time
of last cigarette consumption. Also, Papaefstathiou et al. [18] recently demonstrated that
exhaled breath can be used to discriminate between smokers, non-smokers, and e-cigarette
users in a population of healthy subjects and, in particular, that relevant VOCs can be
identified among these three groups. Moreover, the diagnostic accuracy of exhaled breath
analysis, linked to routine spirometry for chronic airway diseases, was previously assessed
by De Vries et al. [10]. eNose patterns were found to be predictive for the differential
diagnosis of asthma and COPD (AUC 0.88) and, in line with our results, eNose breath
profiles did not show any ability to discriminate between current and ex-smokers (AUC
0.52) among patients with COPD, even though ROC analyses showed high accuracy in
detecting exacerbations with the population stratified for pack-years [19]. Compared to
our results, we are able to moderately distinguish between ever- and never-smokers (AUC
0.74), and we conclude that smoking could play a role in the VOCs contributing to the
ability of the eNose to distinguish between asthma and COPD patients, but the eNose
likely also detects other pathological factors that may be characteristic for these chronic
respiratory diseases.

Furthermore, VOCs have been previously used to discriminate different inflammatory
patterns in several chronic respiratory diseases, enabling researchers to obtain subgroups
based on molecular characteristics [20–22]. Recently, Caruso et al. [23] used metabolomic
analysis of VOCs in exhaled breath to identify a “severe asthma smoking phenotype,”
showing that, in line with our results, the analysis of VOCs identified differences among
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severe asthmatic smokers and ex-smokers, compared to never smokers. However, the
severe asthmatics with smoking history were almost all ex-smokers, meaning that the
differences may not have been related to active smoking, but potentially to the eNose
results reflecting damage in the airways caused by smoking in the past [24].

We also considered whether smoking is a confounder of eNose results with respect to
chronic respiratory disease phenotypes. We therefore also included data on the healthy
controls. Smoking could influence the levels of individual compounds present in the
exhaled breath and could therefore hamper the implementation of exhaled breath analysis
as a diagnostic tool [25]. To our knowledge, this is the first study that demonstrates that
recent or past smoking does not influence breath patterns in healthy subjects, in line
with the hypothesis that breath patterns most likely reflect airway alterations caused by
past smoking.

The strengths of our study are the relatively large sample size, the BreathCloud cohort,
which recruited patients from different centers, obtaining a mixed population resembling
the general COPD and asthma population, and the use of standardized methods for the
analysis, including the internal and external validations that were performed to support the
obtained results. The limitations of our study were that there was no information collected
related to passive smoking that may have indirectly influenced never smokers and we had
no information related to urinary nicotine concentration, which could be a more accurate
measure, but more burdensome for patients [26]. A further limitation of our study is that
the eNose can identify patterns of VOC mixture rather than the individual compounds
that are driving the signal, even though this characteristic makes eNose breath profiles as
suitable as composite multidimensional biomarkers in providing numerical probabilities
for the presence or absence of a particular clinical condition [27,28]. On the other hand, the
advantages are that this technology is noninvasive, easy to use, and results can be promptly
available and interpretable for clinicians.

4. Materials and Methods
4.1. Study Design

We conducted a cross-sectional analysis using exhaled breath and clinical information
obtained from the multicenter BreathCloud [9] database. BreathCloud enrolled patients
with asthma, COPD, lung cancer, cystic fibrosis, and healthy volunteers from ten different
centers in the Netherlands during routine outpatient visits. The following data from medi-
cal records collected general characteristics (age, BMI, gender, allergy history) symptoms
assessment (asthma control questionnaire (ACQ), clinical COPD questionnaire (CCQ), oral
corticosteroid assumption), functional tests (e.g., spirometry pre- and post- bronchodilator)
and, among the ever-smokers, whether they smoked before and after 24 h. The exhaled
breath measurements were collected in routine clinical practice and were subsequently
handled in compliance with the Dutch Personal Data Protection Act (WPB).

4.2. Subject Selection

Patients and healthy controls were enrolled by six centers of primary, secondary
and tertiary care in the Netherlands. Patients were included in this analysis if they were
≥18 years old, had a physician-reported diagnosis of asthma or COPD, and had answered
the questions about smoking history. Healthy subjects were those who did not report any
history of asthma or COPD, and who did not use any respiratory medications. Patients
were stratified according to their smoking habits. Patients with a recent history of acute
upper or lower respiratory tract infections were excluded because a history of upper [29–31]
or lower [32–34] respiratory infections may influence the quality of breath samplings, and
we did not know how much this could interfere with the resulting breath pattern profiles
in patients with a diagnosis of asthma and COPD. The purpose of adding the SpiroNose to
routine diagnostics was explained to the patients, who all gave their oral consent before
enrollment. Due to the non-invasive nature of the BreathCloud study, the Amsterdam
UMC medical ethical review board provided a waiver for ethical approval of the protocol
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(reference: W14_112#14.17.0147). All six sites made use of the same sampling protocol,
which was part of the AMC MRB approval no: 14.17.0147.

4.3. Smoking Definitions

Patient-reported smoking history was chosen as an outcome, according to previous
studies [35,36] that demonstrated that self-reported smoking is accurate. Smoking status
was further divided into ever- and never-smokers; ever-smokers were considered active
smokers who currently smoke cigarettes (number of pack/year) and former smokers who
had smoked at least 100 cigarettes in their lifetime, but have quit smoking. Never-smokers
were patients without any history of smoking habits, or who had smoked fewer than
100 cigarettes in their lifetime. The number of pack-years was calculated as (number of
cigarettes smoked per day/20) × number of years smoked.

The second smoking definition was patient-reported recent cigarette smoking, which
was defined as having smoked a cigarette in the 24 h prior to the exhaled breath measurement.

4.4. Exhaled Breath Measurements

Exhaled breath samples were collected using the SpiroNose [10]; an eNose composed
of seven separate cross-reactive metal oxide semiconductor (MOS) sensors used to detect
exhaled breath VOCs while monitoring for ambient VOCs. The SpiroNose comprises
7 different MOS sensors, each present in duplicate in both the reference and the exhaled
breath sensor arrays. The MOS sensors (Figaro Engineering Inc., Osaka, Japan) were
chosen based on their good stability and long-term performance [37]. MOS sensors operate
with temperatures ranging between −40 ◦C and +70 ◦C. Using thick film techniques,
the sensor material was printed onto electrodes on an alumina substrate. Tin dioxide
(SnO2) was the main sensing material of the sensor element [38]. From each sensor signal,
two variables were derived. The SpiroNose provided a spectrum of signals representing
13 data points originated by 6 sensor peaks normalized to sensor 2, the most stable sensor,
and 7 peak/breath hold ratios. Each SpiroNose sensor signal had a high sensitivity to
different mixtures of volatile organic compounds (VOCs)/gases in the exhaled breath and
the reference (ambient air) sensor arrays [39].

Before breath measurement, patients had to rinse their mouth thoroughly with water
three times, and then perform five tidal breaths, after which they maximally inhaled and
held their breath for 5 s before slowly exhaling. The measurement was performed two
times, with an interval of two minutes between maneuvers. Data were sent in real-time
and stored on the online BreathCloud server.

4.5. Statistical Analysis

A descriptive analysis was performed to generate tables with the general character-
istics of the population (Tables 1–3, Tables S1 and S2). A chi-squared test was used for
categorical variables and a one-way ANOVA test was used for continuous variables. A
principal component (PC) analysis was performed to summarize the eNose breath signals.
According to the Kaiser criterion [40], all PCs with an eigenvalue >1 were considered for
the analysis. PCs were constructed for the overall number of subjects (including both
the training and validation sets). Furthermore, a linear discriminant analysis (LDA) was
used to determine whether PCs could accurately classify patient-reported smoking history
(ever-smokers vs. never-smokers) and, among ever-smokers, recent cigarette consumption
(<24 h vs. >24 h). Internal validation was performed with leave-one-out cross-validation
and by a split analysis in which the LDA model constructed with the training set was ap-
plied to the validation set. The area under the receiver–operator characteristic curve (ROC)
was used to assess the accuracy of the models and it was obtained from the prediction
made by the LDA model. The dataset was randomly divided into a training set containing
80% of the data (total asthma and COPD group = 716; asthma = 426; COPD = 288; healthy
controls = 452) and a validation set including 20% of the data (total asthma and COPD
group = 180; asthma = 106; COPD = 74; healthy controls = 113). The model acquired with
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the training set was used to retrieve similar variables in the validation set. A sensitivity
analysis was also performed, using the number of pack-years of the ever-smokers (see
Supplementary Materials, Figure S2a,b). Supplementary analyses concerning only the
asthma group are reported in the Supplementary Materials (Figure S3); an additional
analysis assessing the accuracy of the eNose in distinguishing asthma and COPD among a
population of ever-smokers is also reported in Supplementary Materials (Figure S4). Data
selected had no missing sensor values in BreathCloud.

The analysis was performed using R studio version 1.1.463 (R Studio Inc., Boston,
MA, USA) and using R version 3.5.1 (The R Foundation for Statistical Computing, Vienna,
Austria), with packages; dplyr, caret, pROC, and MASS [41,42].

5. Conclusions

We demonstrated that a smoking history might influence eNose breath profiles in pa-
tients with chronic airway diseases, while we cannot distinguish patients and healthy
subjects according to recent cigarette consumption. This means that we can measure the
influence of smoking on airways, but not the cigarette smoke itself. The present findings
are in support of the usage of eNose technology as a quick and feasible technique for the
diagnosis and phenotyping of chronic airway diseases in a clinical setting.

Supplementary Materials: The following are available online at https://www.mdpi.com/1420-304
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0.55 (95% CI: 0.58–0.74). Figure S3: A ROC curve showing the accuracy of the linear discriminant
model based on principal component reduction in the asthmatic population (training and validation
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Figure S4: ROC curve showing the accuracy of the linear discriminant model based on principal
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demographics of COPD patients stratified by smoking status. Data are expressed in number of
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