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Abstract
The importance of multispecies models for understanding complex ecological processes 
and interactions is beginning to be realized. Recent developments, such as those by 
Lahoz-Monfort et al. (2011), have enabled  synchrony in demographic parameters across 
multiple species to be explored. Species in a similar environment would be expected to 
be subject to similar exogenous factors,  although their response to each of these factors 
may be quite different. The ability to group species together according to how they re-
spond to a particular measured covariate may be of particular interest to ecologists. We 
fit a multispecies model to two sets of similar species of garden bird monitored under the 
British Trust for Ornithology's Garden Bird Feeding Survey. Posterior model probabilities 
were estimated using the reversible jump algorithm to compare posterior support for 
competing models with different species sharing different subsets of regression coeffi-
cients. There was frequently good agreement between species with small asynchronous 
random-effect components and those with posterior support for models with shared re-
gression coefficients; however, this was not always the case. When groups of species 
were less correlated, greater uncertainty was found in whether regression coefficients 
should be shared or not. The methods outlined in this study can test additional  hypotheses 
about the similarities or synchrony across multiple species that share the same environ-
ment. Through the use of posterior model probabilities, estimated using the reversible 
jump algorithm, we can  detect multispecies responses in relation to measured covariates 
across any combination of species and covariates under consideration. The method can 
account for synchrony across species in relation to measured covariates, as well as 
 unexplained variation  accounted for using random effects. For more flexible, multiparam-
eter distributions, the support for species-specific parameters can also be measured.
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O R I G I N A L  R E S E A R C H

Identifying multispecies synchrony in response to 
environmental covariates

Ben Swallow1,2 | Ruth King1,3 | Stephen T. Buckland1 | Mike P. Toms 4

1  | INTRODUCTION

When modeling the dynamics of ecological populations, most standard 
approaches have tended to consider species independently of each 
other by fitting a single model to each of the species (Harris, 2015; 

Lecomte, Benoït, Etienne, Bel, & Parent, 2013). Parameters in these 
models are then estimated and interpreted independently of each 
other. However, this approach oversimplifies the complex interactions 
that inevitably underpin the ecological dynamics present within such 
ecosystems. The ability to understand these ecological dynamics is 
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often difficult in practice because traditional models typically estimate 
just a single set of demographic rates (e.g., survival or productivity, 
but not both). Linking demographic rates across numerous species, 
without merely measuring associations between species, adds an ad-
ditional nontrivial level of complexity (Buonaccorsi, Elkinton, Evans, & 
Liebhold, 2001; Ovaskainen, Hottola, & Siitonen, 2010).

In order to better understand such dynamics at an ecosystem level, 
it is important to account for these multispecies interactions. Further 
extensions to standard single-species models must be made if one is 
to account for more complex dependencies and correlation structures. 
Joint species distribution models (JSDMs), which pool data from mul-
tiple sources (Fithian, Elith, Hastie, & Keith, 2015) or from multiple 
species (Clark, Gelfand, Woodall, & Zhu, 2013; Pollock et al., 2014; 
Thorson et al., 2015), allow more parsimonious models to be fitted 
while also propagating all forms of uncertainty throughout the model. 
The development of such models outside of the JSDM literature has 
been slow; however, recent advances by Lahoz-Monfort, Morgan, 
Harris, Wanless, and Freeman (2011) have enabled such models to be 
formulated. The authors, extending the work of Grosbois et al. (2009), 
proposed a statistical model in which random effects were used to 
estimate the level of synchrony across multiple species. Within the 
model, a synchronous component is used to represent the common 
response of all the species considered, while an asynchronous com-
ponent accounts for any additional variation specific to each species. 
However, these components are conditional on environmental covari-
ates in the model, which then only estimate synchrony in unexplained 
variation.

Lahoz-Monfort et al. (2011) fitted the model with species-specific 
coefficients for all covariates. Only modeling synchrony in variance 
unexplained by the covariates in the model risks underestimating 
the magnitude of the synchrony inherent in the modeled species. If 
the variation explained by any covariates in the model is largely syn-
chronous across species, then corresponding species-invariant ran-
dom-effect variances will consequently be reduced in relation to the 
species-specific ones, and the amount of synchrony estimated across 
the species will be lower than in reality. Additionally, in this case, pre-
cision in parameter estimates will be lower if they could realistically be 
shared across multiple species.

To estimate the degree of synchrony with respect to the covariates, 
Lahoz-Monfort et al. (2011) fitted two models, one with covariates 
and one without (the null model), and then compared the random- 
effect variances in each case. Changes in the observed magnitude of 
the random-effect variances were then used to indicate whether the 
additional unexplained variation was largely synchronous or asynchro-
nous. If the species-invariant random-effect variance increases, then 
this suggests that the response to covariates is overall largely synchro-
nous. Conversely, if the species-specific variances increase, then it can 
be concluded that the response to covariates is largely asynchronous. 
However, in neither case can the synchronous aspect of the response 
to each individual covariate be easily analyzed for each species–covari-
ate combination. Fitting every model with unique species–covariate 
combinations in order to compare the ratio of random-effect variances 
would be completely infeasible. Apart from the obvious computational 

demand of this approach, which increases proportionally with each 
covariate added to the model, this approach also assumes that un-
explained variation no longer attributed to a given covariate will be 
completely absorbed into either of the two random effects. In reality, 
it is highly likely that part or all of this variation could be attributed to 
either a fixed intercept or other covariates in the model.

We propose an alternative approach, estimating posterior model 
probabilities associated with different models, where each regression 
coefficient can be shared across subsets of the species considered. 
The method explores uncertainty across both parameter and model 
space; posterior support for models with regression coefficients 
shared across different subsets of the species under consideration can 
be estimated. Each covariate is allowed to be shared across different 
subsets of the species considered, such that species with “similar" 
parameter estimates associated with each covariate can be grouped 
together.

The covariate synchrony method is applied to long-term longitu-
dinal data relating to numbers of six species of birds visiting garden 
feeding stations across the UK. These six species are split into two eco-
logically similar groups, namely blue tit (BT) Cyanistes caeruleus, great tit 
(GT) Parus major, and coal tit (CT) Periparus ater in the first, and house 
sparrow (HS) Passer domesticus, greenfinch (GF) Chloris chloris, and chaf-
finch (CF) Fringilla coelebs in the second. Some of these species have 
shown severe declines over the past few decades, while others have 
remained stable or are increasing (Newson, Rexstad, Baillie, Buckland, 
& Aebischer, 2010). Various explanations have been put forward to ex-
plain the declines observed in some of these species, but there have 
been disagreements over what the main drivers are. This has been par-
ticularly apparent in relation to the possible role of predation. While pre-
vious studies have attempted to understand the changes in numbers of 
some small passerines (e.g. Bell, Baker, Parkes, Brooke, & Chamberlain, 
2010; Chamberlain, Glue, & Toms, 2009; Newson et al., 2010; Swallow, 
Buckland, King, & Toms, 2015; Thomson, Green, Gregory, & Baillie, 
1998), there has been little attempt to understand these populations at 
a multispecies level (although see Sullivan, Newson, & Pearce-Higgins, 
2015). As the species concerned share a similar environment and are 
susceptible to the same exogenous factors, it would be expected that 
some or all of these species may interact with each other or respond in 
a similar way to the environment around them.

In particular, we concentrate on spatial synchrony in species’ re-
sponse to covariates using log-linear models; however, the method is 
easily applicable to many other cases and to model frameworks where 
parameters or coefficients can be shared across species, locations, or 
time periods.

2  | MATERIALS AND METHODS

2.1 | Data description

The data used come from the British Trust for Ornithology's (BTO) 
Garden Bird Feeding Survey (GBFS) and relate to an annual mean of 
up to 26 weekly maximum counts conducted between October and 
March each year at approximately 200 sites. Inevitably, given the long 
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time period involved, there is a degree of site turnover; however, re-
placement sites are selected to match as closely as possible—in terms 
of location and garden type—the site being replaced. The data analy-
ses in this study span the years 1970/71 to 2005/06 inclusive (hence-
forth the year 1970 signifies the winter of 1970/71) and correspond 
to 693 individually monitored sites spanning the UK. The spatial dis-
tribution of GBFS sites reflects that of the human population, such 
that there are more sites in areas with greater densities of people. 
Participants in the survey note the maximum number of each species 
they observe at any given time feeding at their garden feeding sta-
tions or, in the case of predators, hunting the birds visiting the feed-
ers, in up to 26 weeks each winter season.

In particular, we chose two distinct sets of three species of po-
tential sparrowhawk prey monitored under the GBFS that would be 
expected to have similar ecological requirements (Newton, 1986). 
The first is a group of closely related species of the same family, 
namely blue tit, great tit, and coal tit. The second are three species 
largely associated with a winter diet of medium- to large-sized seeds, 
namely house sparrow, greenfinch, and chaffinch. An average over 
the weekly maxima was calculated for each site and year, giving an 
 essentially continuous distribution.

Annual averages across all sites monitored under the GBFS sur-
veys show similar peaks and troughs for each of the three tit species, 

as well as similarities for greenfinch and chaffinch (Figure 1). Marginal 
correlations across both sites and years between the observations of 
each pair of species in the two groups were calculated (Table 1). For 
the tit species, a significant positive correlation was found between all 

F I G U R E  1   Average trends in the 
number of each of the three tit species 
(left) and grain-feeding birds (right) 
observed across sites monitored by the 
GBFS from 1970 to 2005
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T A B L E  1   Pairwise Pearson's correlations between site annual 
means for blue tit (BT), great tit (GT), and coal tit (CT) (left-hand 
columns), and house sparrow (HS), greenfinch (GF), and chaffinch 
(CF) (right-hand columns). (a) Marginal correlation between sites; that 
is, means are taken across years within sites and compared between 
species pairs. (b) Marginal correlation between years; that is, means 
are taken across sites for each year and compared between species 
pairs

Species pair
Correlation 
(p-value) Species pair

Correlation 
(p-value)

(a)

BT vs. GT .78 (<.001) HS vs. GF .09 (.023)

BT vs. CT .46 (<.001) HS vs. CF −.08 (.028)

GT vs. CT .60 (<.001) GF vs. CF .40 (<.001)

(b)

BT vs. GT .57 (<.001) HS vs. GF −.81 (<.001)

BT vs. CT .00 (.986) HS vs. CF −.84 (<.001)

GT vs. CT .57 (<.001) GF vs. CF .84 (<.001)
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pairings when averages across years were used (.78 [BT vs. GT], .46 [BT 
vs. CT], and.60 [GT vs. CT]; Table 1a). This suggests that sites that can, 
on average, support or attract greater numbers of one of these spe-
cies also attract greater numbers of the other species too. Correlation 
across years was also significant and positive for the blue tit–great tit 
and great tit–coal tit pairings, but not so for blue tit–coal tit. For the 
other three species, results were more variable. There was a strong pos-
itive correlation between the finch species across both space and time 
(.4 and .84, respectively), but less so for house sparrow (Table 1a), a 
species whose populations have been in long-term decline within the 
study period, and for which there has been a change in the temporal pat-
tern of peak garden use (Robinson, Siriwardena, & Crick, 2005). In fact, 
temporal correlation between house sparrow and each of the finch 
species was strongly negative in both (−.81 [HS vs. GF] and −.84 [HS vs. 
CF]). Populations of both finches are likely to be augmented over the 
winter with migrants from the continent. As house sparrows are largely 
sedentary, we would not expect the years where the finch populations 
are particularly large to correspond to high numbers of sparrows.

In gardens across the UK, these species are all subject to similar ex-
ogenous factors and it may be that the different species are respond-
ing similarly or differently to these same factors. We would expect, 
due to the similarities in ecology of these three species in each group, 
that there would be some degree of synchrony across them in relation 
to their response to environmental covariates. However, the results 
of Swallow, Buckland, King, & Toms, unpublished data indicate that 
the species within each of the two groups studied here also respond 
differently in response to some of the covariates. As such, they offer 
ideal groups to analyze both synchronous and asynchronous aspects 
of their population dynamics.

2.2 | The model

The model is an extension of that presented in Swallow et al. (2015), 
to incorporate the simultaneous modeling of more than one response 
species and the sharing of relevant parameters where possible. We 
extended the modeling framework of Grosbois et al. (2009) and 
Lahoz-Monfort et al. (2011), which accounts for variation not ex-
plained by the fixed effects through two independent random effects. 
The method adds to previous work done on multispecies synchrony 
by Lahoz-Monfort et al. (2013), who studied multispecies productivity 
and Schaub, von Hirschheydt, and Grüebler (2015), who studied mul-
tisite synchrony in demographic rates and populations.

Formally, let ys,i,t be the observed mean of weekly maxima of spe-
cies s at site i in year t, xi spatially explicit covariates with associated 
parameter vector β{s}, and vi,t spatially explicit and time-explicit co-
variates with associated parameter vector γ{s}. We denote θ{s1,s2} 
to be the parameter θ shared over species s1 and s2. The covariates 
xi and vi,t could also be species-specific, but in this application they 
are not. In addition, we tested for interactions within and between 
prey species by including a year-lagged measure of each species as 
a covariate ỹs,i,t−1. The associated coefficient νj,k corresponds to the 
effect of species j on species k. In the case where j = k, this parameter 
is equivalent to the concept of density dependence (Dennis & Taper, 

1994). As the empirical distributions for each of the three species have 
a nonzero probability of exact zeros, while also being bounded below 
by zero, effectively continuous with discrete mass at zero and pos-
itively skewed, special consideration was given to the distributional 
form of the model. To account for each of these aspects of the data, we 
used the Tweedie distributions (here denoted Tw) (Jørgensen, 1987). 
Given a positive dispersion parameter ϕ and index parameter p∉(0,1), 
the Tweedie distributions are defined by the power mean–variance 
relationship Var(y)=ϕμp. For values of p ∈ (1,2), the distributions are 
non-negative-continuous with a discrete probability mass at the ori-
gin. The model is then defined as follows:

where

and

The first random effect, ε(i), is a site-specific random effect that 
is constant across species, accounting for synchronous variation that 
is common to all species. The second, δs(i), is a site-specific random 
effect that is estimated separately for each species and accounts for 
additional variation that is asynchronous. The δs(i) were assumed to be 
independent of each other and of the ε(i).

Additional intra- and interspecific interactions between response 
species can also be added to the model where appropriate to create 
an even more flexible model that accounts for all levels of interactions 
between the species considered.

Following some simple algebraic manipulation and implementing 
the hierarchical centering reparameterization method (Browne, 2004; 
Browne, Steele, Golalizadeh, & Green, 2009), equation (2) can be re-
written as:

where

and

That is, we modeled the difference in log abundance of species s as 
a function of environmental covariates and random effects. The model 
also requires the estimation of μs,i,0, which is a site- and species-spe-
cific offset corresponding to the expected value in the year prior to the 
survey commencing at each site. As in Swallow et al. (2015), we used a 
data augmentation approach to estimate these parameters. That is, they 
are treated as additional unknowns to be estimated from the rest of the 
data. This methodology allows both zero observations and the first ob-
servation at each site to contribute to estimating the remaining regres-
sion parameters. This method can also be used when covariate values are 
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missing or for missing years of observations during the survey (although 
that was not necessary here). The data-augmented μi0 are also used as 
the density-dependence covariate for the initial year of observations.

The analyses are conducted in a Bayesian framework using a 
Markov chain Monte Carlo (MCMC) approach to obtain inference on 
the model parameters of interest. A single-update Metropolis–Hastings 
algorithm is used to update the parameters, with an adaptive tuning 
approach used for the proposal distributions to improve efficiency of 
the algorithm. More details can be found in Swallow et al. (2015).

Estimates of the proportion of variance for each species that is syn-
chronous with the other species considered in the model can be cal-
culated. That is the intraclass correlation coefficient (ICC) defined as:

Values close to 1 suggest largely synchronous unexplained vari-
ation, while values close to zero suggest mostly asynchronous un-
explained variation. This measure of synchrony, however, does not 
take into consideration any variation explained by the covariates. This 
variation may be an important driver of the synchrony or asynchrony 
inherent in the species population dynamics, and therefore, being able 
to identify which species responds similarly or differently to any of the 
measured covariates considered should also be of interest.

2.3 | Detecting synchrony to measured covariates

In order to group together species with similar responses to the en-
vironmental covariates presented in Swallow et al. (2015) (or similar 
mean–variance relationships in the case of the Tweedie parameters), 
we used the reversible jump algorithm (e.g. King, Morgan, Gimenez, 
& Brooks, 2010) to estimate posterior model probabilities associated 
with different species groupings for each of the covariate coefficients 
and the two Tweedie parameters ϕ and p. The particular reversible 
jump algorithm used is based on that described by King and Brooks 
(2002), who fit a model for detecting age dependency in mark–recap-
ture parameters. We used a similar algorithm here to group together 
species with similar responses to measured covariates. The full algo-
rithm is detailed in the supporting information. The algorithm essen-
tially selects one of the parameters that can be shared across species at 
random and then proposes to move to a model where either an existing 
shared group is split into two distinct groups with different parameter 
values or two existing groups of species with distinct parameter values 
are merged into one group with a single shared parameter value.

To test for interactions within and between prey species, a co-
variate-dependence approach was taken to model selection. We es-
timated the posterior model probabilities associated with the model 
where νj,k=0 vs. νj,k≠0. Further details can also be found in Swallow 
et al. (2015).

2.4 | Prior distributions

Conducting the analysis in a Bayesian framework requires prior distri-
butions to be specified on all model parameters. We used uninformative 

priors for parameter distributions (Table 2). Prior distributions for each 
species were assumed equal and specified independently of each 
other. Density dependence was formulated in such a way that it can 
only intuitively have a negative coefficient; hence, a half-normal prior 
is specified for these parameters. All species–covariate combinations 
were assumed equal a priori; however, this could easily be relaxed to 
give zero mass to ecologically infeasible combinations.

To aid with specifying the parameters of the proposal distributions 
for the parameter update step, we initially ran the full model without 
the reversible jump step for 50,000 iterations, of which the first 30,000 
iterations were discarded as burn-in. The posterior means and standard 
deviations for the density-dependence and interspecific interactions 
coefficients were then used as the proposal distribution means and 
standard deviations for the corresponding parameters in the full anal-
ysis. Independent normal distributions with a zero mean and standard 
deviation 10−3 were used as the proposal distributions for the reversible 
jump step. Good mixing between models appeared to be achieved when 
using these proposals. The full model defined above including model 
uncertainty was then run independently for 100,000 iterations with the 
first 50,000 iterations discarded as burn-in for the two sets of species 
discussed above. Convergence was checked using visual observation of 
trace plots, which gave no evidence to suggest a lack of convergence.

3  | RESULTS

Marginal posterior means and 95% credible intervals for the model 
parameters and intraclass correlation coefficients, together with their 
marginal posterior model probabilities, are given in Tables 3–7 (tits) 
and 8–12 (ground-feeding species).

Only synchrony across a maximum of two species was found for 
any covariate in either of the analyses. For the three tit species, most 
synchrony was across blue tit and great tit, with distinct coefficients 
for coal tit. The model with shared coefficients for blue tit and great 
tit was the model with highest posterior probability for all covariates 
aside from the suburban or rural and ground frost covariates. In the 
case of the former, the model with blue tit and coal tit shared had the 

(8)ICCs=
σ2
ϵ

σ2
ϵ
+σ2

s

.

T A B L E  2   Prior distributions for the model parameters

Parameter
Prior 
distribution

αs N(0,10−2)

βj{s} N(0,10−2)

γj{s} N(0,10−2)

νi,j(i= j) HN−(0,10−2)

νi,j(i≠ j) N(0,10−2)

μs,i,0 U[0,200]

ϕ{s} U[0,5]

p{s} U[1,2]

σ2
ϵ

Γ−1(10−3,10−3)

σ2
s

Γ−1(10−3,10−3)
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highest posterior mass, while the latter was shared across great tit and 
coal tit.

The posterior means of the ICCs were close to 1 for blue tit and 
great tit (0.903, 95% credible interval (0.852, 0.947); and 0.912, 95% 
credible interval (0.857, 0.957), respectively), suggesting that the 
majority of unexplained variation for these species was largely syn-
chronous with the other two species in the joint model. The estimate 
for coal tit, however, was lower at 0.494 (with 95% credible interval 
[0.411, 0.591]), suggesting that additional asynchronous variation 

was inherent in the data for this species. This does agree largely 
with the species that were most frequently shared for the regression 
coefficients.

In the second analysis, much more of the unexplained variation on 
average was asynchronous and the magnitude of the random-effect 
variances was also greater, probably reflecting the greater tendency of 
these species to form flocks at feeding sites. This was particularly the 
case for house sparrow, with posterior mean of 0.205 (0.154, 0.256) 
for the ICC associated with this species. Greenfinch and chaffinch 
showed comparatively more synchrony (ICCs of 0.308 (0.211, 0.399) 
and 0.495 (0.344, 0.648), respectively), but these were both still below 
the lowest value estimated for the three species of tits. Similarly, 
greater uncertainty was found across models with regard to which 
coefficients should be shared, with the preferred pairwise combina-
tion only having around 50% posterior support for each of the three 
time-invariant covariates. In these three covariates, all three pairwise 
combinations had greater than 10% posterior support. For each of 
these coefficients, however, the greenfinch and chaffinch shared pa-
rameter had the highest posterior support. For the time-varying co-
variates, greater certainty was attributed to a single model, but the 
shared pair of species in each case was different. For the sparrow-
hawk covariate, greenfinch and chaffinch shared a parameter value. 
For collared dove this pair was house sparrow and greenfinch, while 
for ground frost it was house sparrow and chaffinch.

The results also suggest that the Tweedie variance parameters, 
namely ϕ and p, should have distinct values for all three species in the 
first analysis, with marginal posterior probabilities of 1 in each case. In 
the second analysis, the data supported the model with unique values 
for ϕ (posterior marginal of 1) and p shared across house sparrow and 
chaffinch (posterior marginal of 0.835). The tit species analysis was 
rerun without model selection on the Tweedie parameters; that is, a 
single parameter value was assumed across all three species, the re-
sults of which can be found in the supporting information.

Density dependence, that is, intraspecific interactions, was found 
to be highly significant for each of the three tit species (BT: −0.0260 
[−0.0298, −0.0221]; GT: −0.0298 [−0.0339, −0.0260]; CT: −0.0333 

T A B L E  3   Blue tit, great tit, and coal tit multispecies model. 
Intercept and density-dependence parameters are species-specific, 
with the reversible jump algorithm used to test for synchrony across 
the three species for all other regression covariate parameters. 
Posterior means and 95% symmetric credible intervals are presented. 
Covariate dependence is also conducted on the density-dependence 
parameters

Parameter Covariate
Posterior 
mean 95% CI

αbt Intercept −0.0352 (−0.0414, −0.0284)

αgt Intercept −0.0269 (−0.0326, −0.0202)

αct Intercept −0.0477 (−0.0575, −0.0378)

β1{bt} Northing −0.0102 (−0.0177, −0.0039)

β1{gt} Northing −0.0102 (−0.0176, −0.0039)

β1{ct} Northing 0.0076 (−0.0026, 0.0180)

β2{bt} Easting −0.0080 (−0.0143, −0.0009)

β2{gt} Easting −0.0080 (−0.0142, −0.0009)

β2{ct} Easting −0.0275 (−0.0375, −0.0172)

β3{bt} Sub/rur −0.0155 (−0.0209, −0.0101)

β3{gt} Sub/rur −0.0169 (−0.0228, −0.0114)

β3{ct} Sub/rur −0.0133 (−0.0200, −0.0038)

νbt,bt Dens dep −0.0260 (−0.0298, −0.0221)

νgt,gt Dens dep −0.0298 (−0.0339, −0.0260)

νct,ct Dens dep −0.0333 (−0.0404, −0.0464)

γ1{bt} Sparrowhawk −0.0032 (−0.0073, 0.0010)

γ1{gt} Sparrowhawk −0.0030 (−0.0070, 0.0012)

γ1{ct} Sparrowhawk 0.0170 (0.0088, 0.0255)

γ2{bt} Collared dove −0.0005 (−0.0042, 0.0033)

γ2{gt} Collared dove −0.0004 (−0.0042, 0.0034)

γ2{ct} Collared dove 0.0160 (0.0082, 0.0238)

γ3{bt} Ground frost 0.0185 (0.0133, 0.0238)

γ3{gt} Ground frost 0.0126 (0.0074, 0.0183)

γ3{ct} Ground frost 0.0134 (0.0073, 0.0197)

ϕ{bt} — 0.1654 (0.1567, 0.1749)

ϕ{gt} — 0.1985 (0.1912, 0.2060)

ϕ{ct} — 0.3439 (0.3298, 0.3584)

p{bt} — 1.4469 (1.4106, 1.4814)

p{gt} — 1.1797 (1.1656, 1.1938)

p{ct} — 1.2714 (1.2595, 1.2831)

T A B L E  4   Blue tit, great tit, and coal tit multispecies model. 
Intercept and density-dependence parameters are species-specific, 
with the reversible jump algorithm used to test for synchrony across 
the three species for all other regression covariate parameters. 
Posterior means and 95% symmetric credible intervals are presented. 
Covariate dependence is also conducted on the density-dependence 
parameters

Parameter Posterior mean 95% CI

σ2
ϵ

0.0043 (0.0036, 0.0051)

σ2
bt

0.0005 (0.0003, 0.0007)

σ2
gt

0.0004 (0.0002, 0.0007)

σ2
ct

0.0049 (0.0032, 0.0059)

ICCbt 0.903 (0.852, 0.947)

ICCgt 0.912 (0.857, 0.957)

ICCct 0.494 (0.411, 0.591)
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[−0.0404, −0.0464]). In the grain-feeding species analysis, no evidence 
in support of density dependence was found for house sparrow, but 
there was strong evidence to suggest density-dependent mechanisms 
present in greenfinch and chaffinch dynamics (−0.0142 (−0.0195, 
−0.0093) and −0.0282 (−0.0330, −0.0228), respectively). These results 
agree well with the analyses conducted in Swallow et al. (2015), where 
once again no evidence supporting the presence of density-dependence 
effects was found in house sparrow. No significant interspecific interac-
tions were found for any combination of the three tit species. In the sec-
ond analysis, the interspecific interactions were found between some 
of the species pairs. Both positive and negative interactions were found 
between different species in the second analysis. The posterior means 
suggest there is a significant positive effect of greenfinch on house spar-
row (0.0327 [0.0258, 0.0401]), while similarly there is a negative effect 
of chaffinch on house sparrow (−0.0462 [−0.0555, −0.0367]).

4  | DISCUSSION

The model presented in this study is a highly flexible model that can 
account for and estimate numerous types of interactions that are 

inherent in many ecological data sets. The method extends the work 
of Grosbois et al. (2009) and Lahoz-Monfort et al. (2011) to allow 
synchrony across species to be estimated both in their response to 
environmental covariates fitted as fixed effects in the model and in 
unexplained variation accounted for through random effects. The use 
of posterior model probabilities estimated using the reversible jump 
algorithm ensures that all aspects of synchrony are modeled, and ena-
bles more specific conclusions to be drawn as to the nature of the 

Northing Easting Sub/rur

Model MPP Model MPP Model MPP

{bt, gt}, {ct} .931 {bt, gt}, {ct} .979 {bt, ct}, {gt} .892

{bt, ct}, {gt} .041 {bt}, {gt}, {ct} .021 {gt, ct}, {bt} .107

{bt}, {gt}, {ct} .028 {bt}, {gt}, {ct} .001

T A B L E  5  �s marginal posterior probabilities (MPP) testing for 
synchrony in response to environmental covariates from the model 
in Table 3, corresponding to northing, easting, and suburban/rural, 
respectively. {bt, gt} denotes the parameter shared across blue tit 
and great tit

Sparrowhawk Collared dove Ground frost

Model MPP Model MPP Model MPP

{bt, gt}, {ct} .968 {bt, gt}, {ct} .997 {gt, ct}, {bt} .994

{bt}, {gt}, {ct} .032 {bt}, {gt}, {ct} .003 {bt, ct}, {gt} .006

TABLE 6 �s marginal posterior probabilities (MPP) testing for 
synchrony in response to environmental covariates from the model in 
Table 3, corresponding to sparrowhawk collared dove and ground 
frost, respectively. {bt, gt} denotes the parameter shared across blue 
tit and great tit

T A B L E  7   Marginal posterior probabilities (MPP) relating to the 
sharing of the two Tweedie variance parameters across tit species 
from the model in Table 3. {bt, gt} denotes the parameter shared 
across blue tit and great tit

ϕ p

Model MPP Model MPP

{bt}, {gt}, {ct} 1.000 {bt}, {gt}, {ct} 1.000

T A B L E  8   House sparrow, greenfinch, and chaffinch multispecies 
model. Intercept and density-dependence parameters are species-
specific, with the reversible jump algorithm used to test for 
synchrony across the three species for all other regression covariate 
parameters. Posterior means and 95% symmetric credible intervals 
are presented. Covariate dependence is also conducted on the 
density-dependence parameters

Parameter Covariate
Posterior 
mean 95% CI

αhs Intercept −0.0600 (−0.0720, −0.0485)

αgf Intercept −0.0353 (−0.0453, −0.0250)

αcf Intercept −0.0058 (−0.0138, 0.0021)

β1{hs} Northing −0.0060 (−0.0192, 0.0048)

β1{gf} Northing −0.0012 (−0.0102, 0.0076)

β1{cf} Northing −0.0008 (−0.0084, 0.0072)

β2{hs} Easting −0.0285 (−0.0400, −0.0178)

β2{gf} Easting −0.0246 (−0.0360, −0.0146)

β2{cf} Easting −0.0226 (−0.0315, −0.0138)

β3{hs} Sub/rur −0.0156 (−0.0252, −0.0043)

β3{gf} Sub/rur −0.0181 (−0.0266, −0.0087)

β3{cf} Sub/rur −0.0202 (−0.0277, −0.0129)

νhs,hs Dens dep NA NA

νgf,gf Dens dep −0.0142 (−0.0195, −0.0093)

νcf,cf Dens dep −0.0282 (−0.0330, −0.0228)

νgf,hs Interaction 0.0327 (0.0258, 0.0401)

νcf,hs Interaction −0.0462 (−0.0555, −0.0367)

γ1{hs} Sparrowhawk −0.0459 (−0.0532, −0.0387)

γ1{gf} Sparrowhawk −0.0016 (−0.0064, 0.0035)

γ1{cf} Sparrowhawk −0.0016 (−0.0063, 0.0036)

γ2{hs} Collared dove 0.0037 (0.0003, 0.0071)

γ2{gf} Collared dove 0.0036 (0.0001, 0.0071)

γ2{cf} Collared dove 0.0118 (0.0070, 0.0175)

γ3{hs} Ground frost 0.0375 (0.0321, 0.0431)

γ3{gf} Ground frost 0.0145 (0.0046, 0.0238)

γ3{cf} Ground frost 0.0375 (0.0321, 0.0431)

ϕ{hs} — 0.6867 (0.6619, 0.7121)

ϕ{gf} — 0.5360 (0.5182, 0.5545)

ϕ{cf} — 0.3890 (0.3754, 0.4029)

p{hs} — 1.3534 (1.3407, 1.3639)

p{gf} — 1.4218 (1.4069, 1.4370)

p{cf} — 1.3563 (1.3450, 1.3731)
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synchrony and to which measured covariates this synchrony relates. 
This method allows species to be grouped together quantitatively ac-
cording to how they respond to any covariate under consideration, 
while estimating distinct coefficients for those species that respond 
in a significantly different way. Although this is possible through 
comparison of parameter estimates from single-species models, our 
framework is a method that quantitatively discriminates between 
competing models with different combinations of species grouped to-
gether according to their response to covariates. It also takes advan-
tage of the increased precision that sharing parameters affords, with 
synchrony in response to covariates predominantly relating to spe-
cies with the highest overlap in credible intervals in the single-species 
models. Synchrony to covariates in these analyses relates both to spe-
cies that show no significant relationship with a given covariate and to 
those covariates that have a significant but similar manner.

There has been a recent trend in joint modeling approaches to 
multispecies assemblages. Harris (2015) fitted a joint species dis-
tribution model and provided more accurate estimates than were 
obtained through comparison of results from independent, single-spe-
cies models. Single-species models ignore much of the dependencies 
and correlations that exist between each of the different species and 
therefore risk attributing some of the variation spuriously to a covari-
ate that may not be having an overall effect.

The ratio of the unexplained variation can also indicate potential 
covariates that may be missing from the model. If the unexplained 
variance is largely synchronous, as is the case in blue and great tits, 
this suggests that any missing covariates (if there are any) are most 

likely largely global covariates that have a wide-ranging effect. In the 
case of coal tit, where the unexplained variation was largely asyn-
chronous, the indication would be that any missing covariates affect 
this species alone. As a species, the coal tit has more specific habitat 
requirements than the other tit species considered. McKenzie, Petty, 
Toms, and Furness (2007) showed that numbers of coal tits visiting 
gardens were negatively correlated with a measure of the success of 
conifer cone production. A covariate measuring the distance to the 
nearest coniferous forest or the success of the cone crop locally may 
account for a greater amount of variation than the one fitted here.

The flexibility of the model does not come without computational 
cost. However, the flexibility can be reduced depending on the na-
ture of the application of interest. In this application, greater flexibility 
was added to the model through species-specific dependencies of the 
Tweedie variance parameters. In the case where a single-parameter 
distribution is used, such as in Lahoz-Monfort et al. (2011), this ad-
ditional complexity would not be required. In these analyses, poste-
rior support for species-specific parameters was found and, as such, 
it seems that the greater computational cost of allowing this flexi-
bility was warranted. Compared to models that did not allow these 
Tweedie parameters to be species-specific, the corresponding esti-
mates of the species-specific random-effect variances were reduced. 

Northing Easting Sub/rur

Model MPP Model MPP Model MPP

{gf, cf}, {hs} .591 {gf, cf}, {hs} .649 {gf, cf}, {hs} .494

{hs, cf}, {gf} .223 {hs, gf}, {cf} .238 {hs, cf}, {gf} .252

{hs, gf}, {cf} .175 {hs, cf}, {gf} .105 {hs, gf}, {cf} .250

{hs}, {gf}, {cf} .010 {hs}, {gf}, {cf} .008 {hs}, {gf}, {cf} .003

T A B L E  1 0  �s marginal posterior 
probabilities (MPP) testing for synchrony in 
response to environmental covariates from 
the model in Table 8, corresponding to 
northing, easting, and suburban/rural, 
respectively. {hs, gf} denotes the parameter 
shared across house sparrow and 
greenfinch

T A B L E  9   House sparrow, greenfinch, and chaffinch multispecies 
model. Intercept and density-dependence parameters are species-
specific, with the reversible jump algorithm used to test for 
synchrony across the three species for all other regression covariate 
parameters. Posterior means and 95% symmetric credible intervals 
are presented. Covariate dependence is also conducted on the 
density-dependence parameters

Parameter Posterior mean 95% CI

σ2
ϵ

0.0037 (0.0027, 0.0050)

σ2
hs

0.0145 (0.0120, 0.0173)

σ2
gf

0.0084 (0.0068, 0.0103)

σ2
cf

0.0039 (0.0025, 0.0055)

ICChs 0.205 (0.154, 0.256)

ICCgf 0.308 (0.221, 0.398)

ICCcf 0.495 (0.344, 0.648)

Sparrowhawk Collared dove Ground frost

Model MPP Model MPP Model MPP

{gf, cf}, {hs} .991 {hs, gf}, {cf} .981 {hs, cf}, {gf} .994

{hs}, {gf}, {cf} .009 {hs}, {gf}, {cf} .019 {hs}, {gf}, {cf} .006

TABLE 11 �s marginal posterior probabilities (MPP) testing for 
synchrony in response to environmental covariates from the model 
in Table 8, corresponding to sparrowhawk collared dove and ground 
frost, respectively. {hs, gf} denotes the parameter shared across 
house sparrow and greenfinch

T A B L E  1 2   Marginal posterior probabilities (MPP) relating to the 
sharing of the two Tweedie variance parameters across tit species 
from the model in Table 8. {hs, gt} denotes the parameter shared 
across blue tit and great tit

ϕ p

Model MPP Model MPP

{hs}, {gf}, {cf} 1.000 {hs, cf}, {gf} .835

{hs}, {gf}, {cf} .165
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This suggests that accounting for these differences at the distribution 
level allows a greater proportion of the variation between species to 
be directly accounted for and should therefore lead to improved model 
performance.

In addition, this framework does not require two separate mod-
els to be fitted to detect synchrony in relation to measured covari-
ates, something that is required in the model of Lahoz-Monfort et al. 
(2011). Simultaneously, the method also calculates synchrony within 
any species–covariate combination. The ability to detect how spe-
cies respond similarly or differently to various exogenous factors can 
provide important information on possible causes of wide-ranging, 
ecosystem-level changes in populations. It can also account for vary-
ing levels of interactions and similarities between species. The need 
to consider changes in biodiversity at an ecosystem level has been 
suggested previously (e.g. McCarthy, 2011), and this modeling frame-
work allows such modeling to be conducted. The dynamics under-
pinning the changes in ecological species are inevitably linked, and 
failing to take these links into consideration will oversimplify or even 
incorrectly identify drivers of population change. Lahoz-Monfort 
et al. (2011) compare the ICCs for models with and without covari-
ates; however, such an approach does not take into consideration 
the fact that when removing covariates, some of that additional vari-
ation could be absorbed by the intercept or alter the dynamics of 
the remaining variation that was previously attributed to one of the 
random effects. The method outlined here prevents this problem by 
directly accounting for the synchrony to measured covariates in a uni-
fied approach.

Although fitting independent models or a joint multispecies model 
with unique coefficients, followed by postanalysis comparison of cred-
ible intervals, could be used as a more simplistic method for detecting 
synchrony in covariates, the approach outlined here offers a more ro-
bust method for comparing similarities between coefficient estimates. 
The agreement between methods is good, but there were occasions 
when parameters with distinct credible intervals in the independent 
models were then shared across multiple species in the joint model 
(e.g., p in the ground-feeding species analysis).

In both analyses, there tended to be little support for models 
with no synchrony in response to each covariate—that is, unique co-
efficients for each of the three species—suggesting that synchrony 
in response to covariates is a phenomenon that should be taken into 
consideration in models of this type. Merely using the proportion of 

unexplained variation as a means for estimating total synchrony will 
therefore tend to underestimate the total level of synchrony inherent 
in the data, while also reducing precision in comparison with models 
with shared coefficients.

The posterior means of the regression coefficients were consistent 
with those from independent species analyses Swallow et al., unpub-
lished data. Where coefficients were shared, these were usually equal 
to roughly the average of the two corresponding estimates from the 
independent analyses. The coefficients that were shared corresponded 
to either cases where the effect was nonsignificant—that is, where 95% 
credible intervals included zero—and significant coefficients whose 
95% credible intervals did not include zero. In comparing the results 
from the multispecies analyses with those from independent models, 
the parameters that were shared almost always corresponded with 
those whose 95% credible intervals had the largest degree of overlap 
(Table 13). The biggest exception to this was the suburban/rural co-
variate in the ground-feeding species, with the model with the highest 
posterior model probability relating to the two species having the least 
overlap in credible intervals in the independent analyses. Secondly, the 
index parameter p was shared between house sparrow and chaffinch, 
which had quite distinct values in the independent models. All param-
eters that were shared had a large degree of overlap, although there 
were some with reasonable overlap that were not shared.

Accounting for the different shape distributions for each species—
that is, allowing p and ϕ to be species-invariant—also reduced the 
magnitude of asynchronous variance compared to models with these 
parameters constrained to be equal, particularly for coal tit whose 
posterior means for these two parameters were most different from 
the others. The posterior mean of ICCct decreased from 0.494 to 0.414 
when the Tweedie parameters remained shared across all species, a 
bigger change than the other two species suggesting more asynchro-
nous variance in the shared parameter model. As these parameters 
determine the variance of the Tweedie distribution, allowing them to 
differ for each species will directly account for differences in variance 
for each species and, as such, a smaller amount of asynchronous varia-
tion would then be expected in the means for each species.

In some cases, it appears that the model is unable to differenti-
ate between inter- and intraspecific interactions. Once the interaction 
with conspecifics has been accounted for, that is, density dependence, 
there appears to be little additional variation left that can be explained 
by the number of other species observed at that site. The two species 

T A B L E  1 3   Proportion of overlap of 95% credible intervals from the independent analyses from Swallow et al. (unpublished data) for each 
pairwise combination of species. The negative values indicate distinct intervals for each of that pairwise species comparison. Bold values relate 
to the species pair with the highest posterior model probability for that covariate from the joint model

Species North East Sub/rur S. hawk C. dove Grd. frost p ϕ

BT/GT 0.87 0.59 0.82 −0.02 0.62 0.57 −2.75 −0.69

BT/CT 0.03 0.11 0.34 −0.70 0.11 0.46 −1.67 −5.40

GT/CT 0.10 0.05 0.24 −0.31 0.20 0.53 −2.23 −4.34

HS/GF 0.28 0.68 0.82 −1.15 0.22 −0.73 −1.44 −2.18

HS/CF −0.18 0.51 0.33 −2.58 0.29 −1.37 −2.32 −5.96

GF/CF 0.51 0.82 0.16 −0.11 0.02 0.58 −4.26 −4.43
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groups considered in the two models were chosen largely because 
they have similar ecological requirements, and hence, we would ex-
pect these interaction covariates to be highly correlated. It seems pos-
itive, though, that the model is predominately selecting the number 
of conspecifics over the number of the other species in the model as 
the best predictor of variation. No species showed significant density 
dependence in addition to an effect of another species on it. That is, 
the changes observed in species counts were affected by either the 
presence of conspecifics or that of at most one other species. This may 
highlight a difficulty of separating out some of the high-level interac-
tions between species that are inherent in these multispecies models. 
However, modeling the simpler ones clearly adds to the understanding 
of the ecology, rather than ignoring the effects of other birds visiting 
the feeders at the same time.

The results presented in this analysis suggest that there is indeed a 
large degree of synchrony in many of the species studied. The drivers 
of numbers of blue tit and great tit visiting garden feeding stations 
appear to be particularly strongly correlated, observed through both 
their tendency for shared covariate parameters and their ICC values. 
The shared northing and easting parameters suggest similar spatial 
trends for the two species, which is supported by information pre-
sented within Bird Atlas 2007–11 (Balmer et al., 2013, pp. 496–499). 
Coal tits have shown negative trends in the southeast of the UK 
(Balmer et al., 2013, pp. 502–503), which is reflected in their unique 
parameter values. The effect of sparrowhawks and collared doves on 
the three species seems to be negligible in blue and great tits, but 
with a small but significant positive association with coal tits. The lat-
ter could represent confounding factors that led to sparrowhawks 
and collared doves recolonizing sites that were also more attractive to 
coal tits, such as a preference for larger gardens, rather than a causal 
relationship. All three species have a tendency to make use of garden 
feeders more in conditions of cold weather Chamberlain et al. (2005), 
when natural food sources can be harder to access. The positive effect 
of ground frost on numbers of observed birds suggests a behavioral 
response of birds entering gardens to access food sources that will be 
independent of the weather. The strongest effect of this covariate was 
found in blue tits, with a smaller and equivalent effect on the other 
two species.

In the case of the ground-feeding species, our results have shown 
that there are frequently similar effects of environmental factors on 
the numbers visiting garden feeding stations. However, in this case the 
differences between ICCs were much smaller than in the other species 
group. Greenfinch and chaffinch unsurprisingly were the two species 
showing most synchrony in their response to environmental covari-
ates. The exceptions to this were in their relationship with collared 
doves and ground frost. In the former case, numbers of chaffinches 
were more positively associated with collared doves than the other 
two species, while greenfinches were less affected by ground frost. 
Chaffinch and collared dove are more strongly ground-feeding than 
greenfinch and frost would be expected to effect ground feeders more 
than those species using perched feeders. These individual differences 
in responses to covariates would have been missed if covariate syn-
chrony had not been added to the modeling process.

Multispecies models that account for the complex interactions 
within and between species have the potential to offer a much greater 
understanding of the underlying dynamics to which species are re-
sponding, either individually or at an ecosystem level. Although the 
subtleties of the complex processes will always be simplified to some 
degree when using mathematical models, the method outlined here 
allows some of those complexities to be accounted for directly. Joint 
species responses to specific covariates may suggest areas for further 
research or indicate areas for management that can benefit a whole 
ecosystem rather than just its constituent parts. Long-term studies, 
such as the GBFS, provide invaluable insight into a community of spe-
cies that are subject to the same environmental factors; the methods 
used to analyze such data should really take this into consideration. 
Given the increasing pressures on land, and a growing degree of urban-
ization, there is a clear need to understand the ecological processes 
driving the changes that we are seeing within wild bird populations. 
New statistical approaches, such as this, provide an opportunity to 
look at these processes across species in a more effective manner.
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